最新北师大版八年级上册数学期末试卷1
北师大版八年级上册期末考试数学试卷(共5套,含参考答案)

初二上学期期末考试数学试卷选择题(每小题3分,共30分)1.下列各数:1.414,2,31-,0,其中是无理数的为( ) A. 1.414 B. 2 C. 31- D. 0 2.下列二次根式中,不是最简二次根式的是( ) A.10 B.8 C.6 D.23.今年5月1日~7日,威海地区每天最高温度(单位:℃)情况如图1所示,则表示最高温度的这组数据的中位数是( )A. 24B. 25C. 26D. 27① ②图1 图2 图34. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是( )A. ∠A =30°,∠B =40°B. ∠A =30°,∠B =110°C. ∠A =30°,∠B =70°D. ∠A =30°,∠B =90°5.如图2,给出下列条件:①∠3=∠4;②∠1=∠2;③EF ∥CD ,且∠D =∠4;④∠3+∠5=180°. 其中,能推出AD ∥BC 的条件为( )A. ①②③B. ①②④C. ①③④D. ②③④6.小亮解方程组651x y x y -=∙⎧⎨+=-⎩,的解为1x y =-⎧⎨=*⎩,,由于不小心,滴上了两滴墨水,刚好遮住了•和*处的两个数,则点(•,*)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.设0<k <2,关于x 的一次函数y =kx +2(1-x ),当1≤x≤2时的最大值是( )A. 2k -2B. k -1C. kD. k +18. 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分和4分四个等级,将调查结果绘制成条形统计图(如图3-①)和扇形统计图(如图3-②).根据图中信息,这些学生的平均分数是( )A. 2.25B. 2.5C. 2.95D. 39.若一次函数y 1=k 1x +b 1与y 2=k 2x +b 2,满足b 1<b 2,且已知21k k 没有意义,则能大致表示这两个函数图象的是( )最高温度日期A B C D 图410.如图4,在长方形纸片ABCD中,AB=5 cm,BC=10 cm,CD上有一点E ,ED=2 cm,AD上有一点P,PD=3 cm,过点P作PF⊥AD,交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是()A.134cm B. 3 cm C. 2 cm D.72cm二、填空题(每小题4分,共32分)11. 如图5,点A表示的实数是____________.图5 图6 图7 图812.已知函数23(1)my m x-=+是正比例函数,且图象在第二、四象限内,则m的值是.13.如图6,在方格纸中有三个点A,B,C,若点A的位置记为(0,1),点B的位置记为(2,-1),则点C 的位置应记为________________.14.方程组4123x yy x-=⎧⎨=+⎩,的解是____________,则一次函数y=4x-1与y=2x+3的图象的交点坐标为________________.15.一副三角尺如图7所示叠放在一起,则图中∠α的度数是___________.16.(2016年大庆)甲、乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_______________.(填“甲”或“乙”)17.如图8,已知A点坐标为(2,0),点B在直线y=x上运动,当线段AB长度最短时,直线AB的表达式为_____________.18.如图9,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线,…若∠A1=α,则∠A2016的度数为.图9三、解答题(共58分)19.(每小题5分,共10分)计算:(1()20161-;(2)()()()2227373-++-.y=x20.(8分)一次函数y=kx+b的图象经过点A(-1,3),B(2,-3).(1)求这个一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输. 为提高质量,做进一步研究,某饮料加工厂需生产A,B 两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶添加2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?22.(10分)某中学举行“中国梦·校园好声音”歌手大赛,初中部与高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛. 两个队各选出的5名选手的决赛成绩(满分100分)如图10所示:(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.图1023.(10分)在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OB=OA=3.(1)求点A,B的坐标;(2)已知点C(-2,2),求△BOC的面积;(3)若P是第一象限角平分线上一点,且S△ABP=332,求点P的坐标.100 95 90 85 80 75 70O24.(12分)平面内不重合的两条直线有相交和平行两种位置关系.(1)如图12-①,若AB∥CD,点P在AB,CD的同侧,则有∠B=∠BOD,∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB,CD的异侧,如图12-②,结论∠BPD=∠B-∠D是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图12-②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图12-③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?并证明你的猜想;(3)设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为_____________度,∠A比∠F大_______________度.①②③图12期末模拟测试题 参考答案一、1. B 2. B 3. B 4. C 5. C 6. B 7. C 8. C 9. D 10. A二、11.5 12. -2 13. (-3,-2) 14. 2,7x y =⎧⎨=⎩ (2,7) 15. 75° 16. 甲 17. y =-x +2 18. 20152α 三、19. 解:(1)原式=-3+21-1=-72. (2)原式=9-7+22-2=2+22-2=22.20. 解:(1)依题意,得323k b k b -+=⎧⎨+=-⎩,,解得21.k b =-⎧⎨=⎩,所以所求一次函数的表达式是y=-2x+1. (2)令x=0,由y=-2x+1,得y=1;令y=0,由y=-2x+1,得x=21. 所以直线AB 与坐标轴的交点坐标分别是(0,1)和(21,0).所以围成的三角形的面积为21×21×1=14. 21. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶.根据题意,得方程组10023270.x y x y +=⎧⎨+=⎩,解得3070.x y =⎧⎨=⎩,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.22. 解:(1)初中部决赛成绩的平均数为15(75+80+85+85+100)=85(分),众数85分,高中部决赛成绩的中位数80分.(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)因为2s 初=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,2s 高=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,所以2s初<2s 高. 所以初中代表队选手的成绩较为稳定.23.解:(1)由OB=OA=3,A ,B 两点分别在x 轴、y 轴的正半轴上,得A (3,0),B (0,3).(2)画图形如图1所示,知点C 到OB 的距离为点C 的横坐标的绝对值,则S △BOC =2321⨯⨯=3.(3)由点P 在第一象限的角平分线上,可设P 的坐标为(a ,a ).由S △AOB =12OA·OB=92<S △ABP ,知点P 在AB 的右侧,则S △ABP =S △PAO +S △PBO -S △AOB=12×3a+12×3a-12×3×3,即12×3a+12×3a-12×3×3=233. 整理,得293-a =233,解得7=a .所以P 的坐标为(7,7). 24. 解:(1)不成立.应为∠BPD=∠B+∠D.证明:如图2,延长BP 交CD 于点E.∵AB ∥CD ,∴∠B=∠BED. 又∵∠BPD=∠BED+∠D ,∴∠BPD=∠B+∠D.(2)∠BPD=∠BQD+∠B+∠D.证明:如图3所示,连接QP 并延长.利用“三角形的一个外角等于和它不相邻的两个内角的和”,得∠BPD=(∠BQP+∠B )+(∠DQP+∠D )=∠BQD+∠B+∠D .(3)75 65提示:由(2)的结论,得∠ENF=∠B+∠E+∠F ,∠AMB=∠B+∠E+∠A.因为∠ANF=105°,所以∠B+∠E+∠F=180°-∠ANF=180°-105°=75°.因为∠A=∠AMB-∠B-∠E ,∠F=∠ENF-∠B-∠E ,所以∠A-∠F=∠AMB-∠ENF=140°-75°=65°.图2 图3北师大版八年级上学期期末测试题数学一、选择题(每小题3分,共30分)1.下列四组线段中,能构成直角三角形的是( )A .1,2,3B .13 C .2,3,4 D .1,12.下列计算正确的是( )A5 B12= C=1D3.一组数据2,7,6,3,4,7的众数和中位数分别是( )A .7,4.5B .4,6C .7,4D .7,54.如图1,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组y ax b y kx=+⎧⎨=⎩,的解是( ) A .31x y =⎧⎨=-⎩, B .31x y =-⎧⎨=-⎩, C .31x y =-⎧⎨=⎩, D .31x y =⎧⎨=⎩,图1 图2 图3 图4 5.一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6. 点M 关于y 轴对称的点为M 1(3,–5),则点M 关于x 轴对称的点M 2的坐标为( )A .(–3,5)B .(–3,–5)C .(3,5)D .(3,–5)7.如图2,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE8=0,则x 2015+y 2016的值为( )A .0B .1C .﹣1D .29.图3所示是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°10. 甲、乙两车从A 地匀速驶向B 地,甲车比乙车早出发2 h ,并且甲车图中休息了0.5 h 后仍以原速度驶向B 地,图4所示是甲、乙两车行驶的路程y (km )与行驶的时间x (h )之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40 km/h ,乙车的速度是80 km/h ;③当甲车距离A 地260 km 时,甲车所用的时间为7 h ;④当两车相距20 km 时,则乙车行驶了3 h 或4 h.其中正确的个数是( )32 1A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.已知正比例函数y=kx (k≠0)的图象经过点(1,﹣2),则正比例函数的表达式为 .12.若7在两个连续整数a ,b 之间,即a <7<b ,则=+b a .13.若一组数据2,4,x ,6,8的平均数是6,则这组数据的极差为 ,方差为 .14.若点P 的坐标为(a 2+1,–6+2),则点P 在第_________象限.15. 如图5,点D ,B ,C 在同一直线上,∠A=75°,∠C=55°,∠D=20°,则∠1的度数是_______________.图5 图6 图7 图816.若m ,n 为实数,且,则(m+n )2017的值为____________.17.在Rt △ABC 中,∠C=90°,AB=AC+BC=6,则△ABC 的面积为 .18.如图6,直线y=x+1分别与x 轴、y 轴相交于点A ,B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A 1,再过点A 1作x 轴的垂线交直线y=x+1于点B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2,…,按此作法进行下去,则点A 8的坐标是 .三、解答题(共58分)19. (每小题6分,共12分)(1) 计算:2+(2)解方程组:230311.x y x y +=⎧⎨-=⎩, 20. (6分) 如图7,AB ∥CD ,∠A=75°,∠C=30°,求∠E 的度数.21. (8分)目前节能灯在城市已基本普及,今年广东省面向农村地区推广,为响应号召,某商场计划用3800元购进节能灯120个,这两种节能灯的进价、售价如下表:进价(元/个) 售价(元/个)甲 型25 30 乙 型45 60 (1)求甲、乙两种节能灯各购进多少个?(2)全部售完120个节能灯后,该商场获利润多少元?22. (10分)如图8,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0),B (﹣1,4),C (﹣3,1).(1)在图中作△A′B′C′与△ABC 关于x 轴对称;(2)写出点A′,B′,C′的坐标.23.(10分)甲、乙两人参加理化实验操作测试,学校进行了6次模拟测试,成绩如表所示:第1次第2次第3次第4次第5次第6次平均数众数甲7 9 9 9 10 10 9 9乙7 8 9 10 10 10 _______ _______(1)根据图表信息,补全表格;(2)已知甲的成绩的方差等于1,请计算乙的成绩的方差;(3)从平均数和方差相结合看,分析谁的成绩好些?24.(12分)甲、乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象(如图9所示).请根据图象所提供的信息,解答下列问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?图9期末测试题参考答案一、1. D 2. C 3. D 4. C 5. D 6. A 7. D 8. D 9. D 10. C二、11. y=﹣2x 12. 5 13. 8 8 14. 四15. 30°16. -1 17. 4 18.(15,0)三、19. (1) 原式=2+3﹣.(2)方程组230 311x yx y+=⎧⎨-=⎩,②,①②×3+①,得11x=33,解得x=3.把x=3代入②,得y=﹣2.则原方程组的解是32. xy=⎧⎨=-⎩,20. 解:如图1所示.∵AB∥CD,∠A=75°,∴∠1=∠A=75°. ∵∠C=30°,∴∠E=∠1-∠C=75°-30°=45°.图1 图2 图321. 解:(1)设商场购进甲型节能灯x个,则购进乙型节能灯y个.由题意,得25453800120.x yx y+=⎧⎨+=⎩,解得8040.xy=⎧⎨=⎩,答:甲型节能灯购进80个,乙型节能灯购进40个.(2)由题意,得80×5+40×15=1000(元).答:全部售完120个节能灯后,该商场获利润1000元.22. 解:(1)如图所示.(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).23. 解:(1)乙的平均数是(7+8+9+10+10+10)÷6=9;因为10出现了3次,出现的次数最多,所以乙的众数是10.(2)乙的方差是16[(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=43.(3)甲的成绩好些,因为两个人的平均成绩都是9分,但甲的方差小,所以成绩更稳定.24. 解:(1)设甲登山的路程y与登山时间x之间的函数表达式为y=kx.∵点C(30,600)在函数y=kx的图象上,∴30k=600,解得k=20.∴y=20x(0≤x≤30).(2)设乙在AB段登山的路程y与登山时间x之间的函数表达式为y=ax+b(8≤x≤20).将点A(8,120),B(20,600)代入,得812020600a ba b+=⎧⎨+=⎩,.解得40200.ab=⎧⎨=-⎩,所以y=40x﹣200.联立方程,得2040200.y xy x=⎧⎨=-⎩,解得10200.xy=⎧⎨=⎩,故乙出发后10分钟追上甲,此时乙所走的路程是200米.北师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共30分。
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.四个实数2-,0,,1-中,最大的实数是()A .2-B .0C .D .1-2.在直角坐标系中,点()1,2M 关于x 轴对称的点的坐标为()A .()1,2-B .()2,1-C .()1,2--D .()1,2-3.下列二次根式中能与)A BC D 4.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形()A .可能是锐角三角形B .不可能是直角三角形C .仍然是直角三角形D .可能是钝角三角形5.如图,直线AB ∥CD ,60B ∠=︒,40C ∠=︒,则E ∠等于()A .70°B .80°C .90°D .100°6.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码3940414243平均每天销售数量(件)1012201212该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A .平均数B .方差C .众数D .中位数7.方程2317x y +=的正整数解的对数是()A .1对B .2对C .3对D .4对8.对于一次函数y=﹣2x+4,下列结论错误的是()A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是()0,4C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数图像随自变量的增大而下降9.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A .0.4元B .0.45元C .约0.47元D .0.5元10.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组()A .24883284x y x y +=⎧⎨+=⎩B .24882384x y x y +=⎧⎨+=⎩C .42883284x y x y +=⎧⎨+=⎩D .42882384x y x y +=⎧⎨+=⎩二、填空题11.8的立方根为______.12.若点A (2,y 1),B (﹣1,y 2)都在直线y=﹣2x+1上,则y 1与y 2的大小关系是_____.13.已知33x y -=,则代数式726x y -+=______.14.若2m -互为相反数,则()nm -=______.15a ,小数部分为b )·b 的值是_________.16.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x+y=1,则m 的值为__________.17.如图,在数轴上,点B 与点C 关于点A 对称,A .B1,则线段BC 的长为______.18.如图,在平面直角坐标系中有一个ABC ,顶点()1,3A -,()2,0B ,()3,1C --,若P是y 轴上的动点,则PA PC +的最小值为______.三、解答题19(101412-⎛⎫+-+- ⎪⎝⎭20.解方程组:1{410x y x y +=+=.21.如图,就()2,1A -、()3,2B --、()1,2C -,把ABC 向上平移3个单位长度,再向右平移2个单位长度,得到111A B C △.(1)在图中画出111A B C △,并写出平移后1A 的坐标;(2)若点P 在直线1y =-上运动,当线段1A P 长度最小时,则点P 的坐标为______.22.如图,点D 、F 在线段AB 上,点E 、G 分别在线段BC 和AC 上,CD EF ∥,12∠=∠.(1)求证:DG BC ∥;(2)若DG 是角ADC ∠的平分线,385∠=︒,且:9:10DCE DCG ∠∠=,请说明AB 和CD 怎样的位置关系?23.已知关于x ,y 的方程组37x y ax b y -=⎧⎨+=⎩和28x by a x y +=⎧⎨+=⎩的解相同.(1)求a ,b 的值;(2)若直线11:l y ax =+与直线21:2l y x b =-+分别交y 轴于点A 、B ,两直线交于点P ,求ABP △的面积.24.我市夏季经常收台风天气影响,台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A ,B 的距离分别为300km 和400km ,且500AB =km ,以台风中心为圆心周围250km 以内为受影响区域.(1)求证:90ACB ∠=︒;(2)海港C 受台风影响吗?为什么?(3)若台风的速度为40km/h ,则台风影响该海港持续的时间有多长?25.如图,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A 、B 分别在x 轴与y 轴上,已知6OA =,10OB =.点D 为y 轴上一点,其坐标为()0,2,点P 从点A 出发以每秒2个单位的速度沿线段AC CB -的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数表达式;(2)如图1,设OPD △的面积为S ,求S 关于t 的函数表达式;(3)如图2,把长方形沿着OP 折叠,点B 的对应点B 恰好落在AC 边上,求点P 的坐标.26.如图,四边形ABCD 是长方形,AD ∥BC .点F 是DA 延长线上一点,点G 是CF 上一点,并且∠ACG =∠AGC ,∠GAF =∠F .则∠ECB 与∠ACB 有什么数量关系?为什么?27.进入夏季,为了解某品牌电风扇销售量的情况,厂家对某商场7月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该商场7月份售出这种品牌三种型号的电风扇共多少台?补全条形统计图.(2)若该商场计划订购这三种型号的电风扇共5000台,根据7月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?参考答案1.B【分析】根据负数小于0,可以直接判断.-、1-都是负数,【详解】解:∵2-、2∴0大于这三个数,故选:B.【点睛】本题考查了实数比较大小,解题关键是明确负数小于0.2.D【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:点M(1,2)关于x轴对称的点的坐标为:(1,-2),故选D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.3.B【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【详解】A ,不能与BCD 3不能与故选B .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.4.C【详解】试题解析:∵将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形的三条边与原三角形的三条边对应成比例,∴两三角形相似.又∵原来的三角形是直角三角形,而相似三角形的对应角相等,∴得到的三角形仍是直角三角形.故选C .5.B【分析】设CD 交BE 于点F ,根据AB ∥CD ,可得∠CFE=∠B=60°,再根据三角形内角和定理,即可求解.【详解】解:如图,设CD 交BE 于点F ,∵AB ∥CD ,60B ∠=︒,∴∠CFE=∠B=60°,∵∠CFE+∠C+∠E=180°,40C ∠=︒,∴∠E=180°-∠C-∠CFE=80°.故选:B【点睛】本题主要考查了平行线的性质,三角形内角和定理,熟练掌握两直线平行,同位角相等;三角形的内角和等于180°是解题的关键.6.C【分析】销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.C【分析】将x=1,2,…,分别代入2x+3y=17,求出方程的正整数解的对数是多少即可.【详解】解:当x =1时,方程变形为2+3y =17,解得y =5;当x =4时,方程变形为8+3y =17,解得y =3;当x =7时,方程变形为14+3y =17,解得y =1;∴二元一次方程2317x y +=的正整数解的对数是3对:15x y =⎧⎨=⎩、43x y =⎧⎨=⎩和71x y =⎧⎨=⎩.故选:C .【点睛】此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x 与y 必须为正整数.8.B【分析】根据一次函数的性质对A 、D 进行判断;根据一次函数图象上点的坐标特征对B 进行判断;根据一次函数的几何变换对C 进行判断.【详解】A 、k=-2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;B 、函数的图象与y 轴的交点坐标是(0,4),符合题意;C 、函数的图象向下平移4个单位长度得y=-2x 的图象,不符合题意;D 、k=-2,函数图像随自变量的增大而下降,不符合题意;故选B .【点睛】本题考查了一次函数的性质:当k >0,y 随x 的增大而增大,函数从左到右上升;当k <0,y 随x 的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.9.A【详解】由图像可知超过100面的部分,每面收费=(70-50)÷(150-100)=0.4元10.A【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】解:设大盒装x 瓶,小盒装y 瓶,根据题意可列方程组为:24883284x y x y +=⎧⎨+=⎩,故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.11.2【分析】根据立方根的意义即可完成.【详解】∵328=∴8的立方根为2故答案为:2【点睛】本题考查了立方根的意义,掌握立方根的意义是关键.12.y 1<y 2【分析】由所给直线解析式的比例系数为负数可得y 将随x 的增大而减小.【详解】∵直线y=−2x+1的比例系数为−2,∴y 随x 的增大而减小,∵2>−1,∴12y y <,故答案为12y y <.13.1【分析】根据33x y -=,可得266x y -+=-,再代入,即可求解.【详解】解:∵33x y -=,∴()2326236x y x y --=-+=-⨯=-,∴726761x y -+=-=.故答案为:114.-8【分析】根据相反数的定义得2m -,从而由2m -≥00,可得2=0m -,3=0n -,解出m 、n 的值,代入所求式子就可以求解.【详解】解:因为|2|0m -=,所以m=2,n=3,所以()3(2)8n m -=-=-.故答案为:-8.15.1【分析】先根据23,确定a=2,,代入所求代数式,运用平方差公式计算即可.【详解】∵23,∴a=2,,)·b=))=5-4=1,故答案为:1.16.﹣1【分析】由①+②,得:2224x y m +=+,从而得到2x y m +=+,再由x+y=1,可得到21+=m ,即可求解.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②,由①+②,得:2224x y m +=+,∴2x y m +=+,∵x+y=1,∴21+=m ,解得:1m =-.故答案为:-117.2+【分析】根据数轴上两点之间距离的计算方法求出AB ,进而根据对称的性质,得出BC =2AB得出结果.【详解】解:∵A.B两点对应的实数是3和-1,∴AB=3﹣(﹣1)=3+1,∵点B与点C关于点A对称,∴BC=2AB=2(3+1)=23+2,故答案为:23+2.18.42【分析】作点A关于y轴的对称点D,连接CD交y轴于点P,则PA+PC取得最小值,且最小值为线段CD的长,利用勾股定理即可求得CD的长,从而求得最小值.【详解】作点A关于y轴的对称点D,连接CD交y轴于点P,则PA+PC取得最小值,且最小值为线段CD的长∵A、D两点关于y轴对称,A(−1,3),∴点D的坐标为(1,3)由勾股定理得:22CD=+=4442故答案为:42【点睛】本题考查了坐标与图形,两点间线段最短,勾股定理,点的对称等知识,作点A 关于y轴的对称点是解答本题的关键.19.6【分析】根据算术平方根的意义、绝对值的意义、零指数与负整数指数幂的意义即可完成计算.=++-=.【详解】原式34126【点睛】本题考查了算术平方根的意义、绝对值的意义、零指数与负整数指数幂的意义,掌握这些概念是完成解答的关键.20.32 xy=⎧⎨=-⎩【分析】方程组利用加减消元法求出解即可.【详解】1{410 x yx y++=①=②②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为32 xy=⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)图见解析,A1(0,4);(2)(0,-1)【分析】(1)根据平移的性质即可画出△A1B1C1;(2)根据垂线段最短即可得点P的坐标;(1)解:如图△A1B1C1即为所求;观察图形,A1(0,4);(2)解:∵点P在直线y=-1上运动,当线段PA1长度最小时,根据垂线段最短,此时线段PA1垂直于直线y=-1,∴点P 的坐标为(0,-1);故答案为:(0,-1).【点睛】本题考查了作图-平移变换,解决本题的关键是根据平移的性质画出△A 1B 1C 1.22.(1)见解析(2)CD AB ⊥,理由见解析【分析】(1)根据CD EF ∥可得2DCB =∠∠,由12∠=∠等量代换可得1DCB ∠=∠根据内错角相等,两直线平行可得DG BC ∥;(2)根据平行线的性质可得180395BCG ∠=︒-∠=︒,由:9:10DCE DCG ∠∠=可得45DCG ∠=︒,根据平行线的性质可得45CDG ∠=︒,根据角平分线的性质可得45ADG CDG ∠=∠=︒,进而可得ADC ∠90=︒,即CD AB ⊥.(1)证明∵CD EF ∥,∴2DCB =∠∠,又∵12∠=∠,∴1DCB ∠=∠,∴DG BC ∥;(2)CD AB ⊥,理由如下:由(1)知DG BC ∥,∵385∠=︒,∴180395BCG ∠=︒-∠=︒,∵:9:10DCE DCG ∠∠=,∴9954519DCE ∠=︒⨯=︒,∵DG BC ∥,∴45CDG ∠=︒,∵DG 是ADC ∠的平分线,∴290ADC CDG ∠=∠=︒,∴CD AB ⊥.【点睛】本题考查了平行线的性质与判定,角平分线的定义,垂直的定义,掌握平行线的性质是解题的关键.23.(1)11a b =⎧⎨=-⎩(2)43【分析】(1)由题意,方程组37,28,x y x y -=⎧⎨+=⎩的解是两个方程组的解,解此方程组,并把解代入方程组,,ax b y x by a +=⎧⎨+=⎩中,即可求得a 与b 的值;(2)由(1)可得两直线的函数解析式,从而可求得点A 、B 的坐标,从而可求得AB 的长度;联立两直线的函数解析式可求得点P 的坐标,从而可得点P 的横坐标,即可求得ABP △的面积.(1)根据题意得37,28,x y x y -=⎧⎨+=⎩解得3,2,x y =⎧⎨=⎩将3,2,x y =⎧⎨=⎩代入方程组,,ax b y x by a +=⎧⎨+=⎩,得32,32,a b b a +=⎧⎨+=⎩解得11;a b =⎧⎨=-⎩即1a =,1b =-(2)由(1)可知1a =,1b =-,∴直线1l 的解析式为1y x =+,直线2l 的解析式为112y x =--,令x=0,得01=1y =+,10112y =-⨯-=-∴点()0,1A ,()0,1B -,∴2AB =联立1,11,2y x y x =+⎧⎪⎨=--⎪⎩解得4,31,3x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴点P 的横坐标为43-∴114422233ABP p S AB x =⋅=⨯⨯-=△【点睛】本题考查了解二元一次方程组及二元一次方程组的解,一次函数的图象、一次函数与二元一次方程组的关系、直线围成的图形面积等知识,正确理解二元一次方程组的解及一次函数与二元一次方程组的关系是本题的关键.注意数形结合.24.(1)见解析(2)海港C 受台风影响,理由见解析(3)3.5h【分析】(1)根据勾股定理的逆定理,即可求解;(2)过点C 作CD AB ⊥于D .根据直角三角形的面积,可得1122AC BC AB CD ⋅=⋅,即可求解;(3)在线段AB 上取点E ,F ,使250EC =km ,250FC =km ,则台风中心在线段EF 上时正好影响C 港口.根据等腰三角形的性质可得ED=FD ,然后根据勾股定理可得()70km ED =,从而得到140EF =km ,即可求解.(1)解:∵300AC =km ,400BC =km ,500AB =km ,∴222AC BC AB +=.∴ABC 是直角三角形,∴90ACB ∠=︒;(2)解:海港C 受台风影响.理由如下:如图,过点C 作CD AB ⊥于D .∵1122ABCS AC BC AB CD =⋅=⋅ ,∴()300400240km 500AC BC CD AB ⋅⨯===.∵250240>,∴海港C 受到台风影响.(3)解:如图,在线段AB 上取点E ,F ,使250EC =km ,250FC =km ,则台风中心在线段EF 上时正好影响C 港口.∴EC=FC ,∵CD ⊥AB ,∴ED=FD ,在Rt CED 中,由勾股定理得:()70km ED ===,∴140EF =km ,∵台风的速度为40km/h ,∴()14040 3.5h ÷=.∴台风影响该海港持续的时间为3.5h .25.(1)423y x =+(2)()()6,0526,58t S t t ⎧<≤⎪=⎨-+<≤⎪⎩(3)10,103⎛⎫ ⎪⎝⎭【分析】(1)根据题意可得()6,10C .然后根据()0,2D ,()6,10C ,即可求解;(2)分两种情况:当点P 在线段AC 上时,当点P 在线段BC 上时,即可求解;(3)设(),10P m ,则PB PB m '==,由勾股定理可得8AB '=,从而得到2B C '=,然后在Rt B CP ' 中,由勾股定理,即可求解.(1)解:∵6OA =,10OB =,四边形OACB 为长方形,∴()6,10C .设此时直线DP 解析式为()0y kx b k =+≠,把(0,2),()6,10C 分别代入,得2610b k b =⎧⎨+=⎩,解得432k b ⎧=⎪⎨⎪=⎩,∴此时直线DP 解析式为423y x =+;(2)解:①当点P 在线段AC 上时,即05t <≤,2OD =,高为6,∴1662S OD =⨯=;②当点P 在线段BC 上时,即58t <≤,2OD =,高为6102162t t +-=-,12(162)2162S t t =⨯⨯-=-+;∴S 关于t 的函数表达式为()()6,0526,58t S t t ⎧<≤⎪=⎨-+<≤⎪⎩;(3)解:设(),10P m ,则PB PB m '==,如图2,∵10OB OB '==,6OA =,∴8AB '==,∴1082B C '=-=,∵6PC m =-,在Rt B CP ' 中,由勾股定理得:∴()22226m m =+-,解得103m =则此时点P 的坐标是10,103⎛⎫ ⎪⎝⎭.26.∠ACB=3∠ECB ,理由见解析.【分析】由矩形的性质可得AD ∥BC ,由平行线的性质和外角的性质可求∠ACF=2∠ECB ,即可求解.【详解】解:∠ACB=3∠ECB ,理由如下,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠F=∠BCE ,∵∠AGC=∠F+∠GAF ,∠GAF=∠F ,∴∠AGC=2∠F ,∵∠ACG=∠AGC ,∴∠ACG=2∠F ,∴∠ACF=2∠ECB ,∴∠ACB=∠ACF+∠BCE=3∠ECB .27.(1)该商场7月份售出这种品牌三种型号的电风扇共1000台,补全统计图见解析.(2)1750台.【分析】(1)该商场7月份售出这种品牌三种型号的电风扇=甲种型号的电风扇销售的台数÷甲种型号的电风扇所占的百分比;求出丙型号的冰箱数,再补全统计图即可;(2)先求丙种型号电风扇在7月份销售量中所占的百分比,再用5000×丙所占的百分比=该商场应订购丙种型号电风扇的台数.【详解】(1)40040%1000÷=台,故该商场7月份售出这种品牌三种型号的电风扇共1000台.1000400250350--=台,即该商场7月份售出丙型号的电风扇350台.补全条形统计图如下:.(2)350500017501000⨯=台.故该商场应订购丙种型号电风扇1750台.。
北师大版八年级数学上册期末试卷及参考答案

北师大版八年级数学上册期末试卷及参考答案第一部分:选择题(共30小题,每小题2分,共60分)1. 某数加上4再除以3的结果是8,求这个数。
答案:122. 若分子是a,分母是2a的一个真分数,且这个真分数比3/8 大3/5 ,求a的值。
答案:1/23. 若在数轴上,点A坐标是2.1 ,点B坐标是-4.9 ,求AB的长度。
答案:7……(依次回答4-30题)……第二部分:解答题(共6题,每小题10分,共60分)31. 某数的5倍与这个数的和是180,求这个数。
答案:3032. 小红买了一本数学书,书的原价是30元,后来有优惠活动,全部图书7折销售,小红要付多少钱?答案:21元33. 一辆汽车从A地到B地,全程240千米,第一个多小时速度为v千米/小时,下一个多小时速度为2v千米/小时,第三个多小时速度为3v千米/小时,求这辆车平均速度。
答案:2.4v千米/小时34. 用10个1元纸币点餐,有超过10种选择,菜品每份价格为a元,求a的最小整数值。
答案:335. 矩形ABC D 的AB边垂直于BC边,将矩形从A点对折后,使A点和C点重合,该点为E ,连接AE ,求∠BAE的大小。
答案:45°36. 某校为学生布置了一道数学题,如果x/3<2 ,则x的结果为()A. 4B. 6C. 8D. 10答案:B第三部分:填空题(共5题,每题6分,共30分)37. 如果一个正整数x满足(x+4)/(x-4)=7/3 ,那么x的值为___ 。
答案: 1438. 小明家有36毫升洗洁精,他用一个容量为m毫升的瓶子装了一部分洗洁精,还剩下1/3给了邻居,这时,瓶子里的洗洁精为原来的1/10,问m等于____。
39. 若正整数x的个位数字比十位数字大3,将x的两位数字颠倒,所得正整数y 是x的3倍,那么x的值为____。
答案: 4340. 某数除以11的余数为0,如果这个数的各位数字之和为14 ,那么这个数的值为____。
北师大版八年级数学上册期末复习练习题(含答案)

北师大新版八年级上册数学期末复习试卷一.选择题1.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或372.方程x+2y=7在自然数范围内的解有()A.只有1组B.只有4组C.无数组D.以上都不对3.已知实数a满足|2009﹣a|+=a,那么a﹣20092的值是()A.2008B.2009C.2010D.20114.已知x、y为实数,,则y x的值等于()A.8B.4C.6D.165.如果一个三角形的三边长分别为1、k、4.则化简|2k﹣5|﹣的结果是()A.3k﹣11B.k+1C.1D.11﹣3k6.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为()A.(8076,0)B.(8064,0)C.(8076,)D.(8064,)7.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.6B.5C.4D.38.如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A.10cm B.cm C.(6+)cm D.9cm9.如图,平面直角坐标系中,长方形OABC,点A,C分别在x轴,y轴的正半轴上,点B(6,3),现将△OAB 沿OB翻折至△OA′B位置,OA′交BC于点P.则点P的坐标为()A.(,3)B.(,3)C.(,3)D.()二.填空题10.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是.11.已知一次函数图象经过点(﹣2,0),并且与两坐标围成的封闭图形面积为6,则这个一次函数的解析式为.12.如图,在平面直角坐标系中,直线y=﹣x+3交x轴于点A,交y轴于点B,以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则直线BC的解析式为.13.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.若成立,那么2*3=.14.若实数x、y满足,则2x+y的立方根是.15.已知A=,则A2+2A+1=.三.解答题16.设a,b,c为△ABC的三边,化简:++﹣.17.根据题意列出方程组(1)甲、乙两人在一环形场地上从点A同时同向匀速跑步,甲的速度是乙的速度的2.5倍,4min后两人首次相遇,此时乙还需要跑300m跑完第一圈.求甲、乙两人的速度及环形场地的周长.(2)将若干只鸡放入若干笼中,若每个笼中放4只.则有一鸡无笼可放;若每个笼里放5只.则有一笼无鸡可放,问有多少只鸡,多少个笼?18.像=2;;…两个含有二次根式的代数式相乘,积不含有二次根式,则称这两个代数式互为有理化因式.爱动脑筋的小明同学在进行二次根式计算时,利用有理化因式化去分母中的根号.(1);(2).勤奋好学的小明发现;可以用平方之后再开方的方式来化简一些有特点的无理数.(3)化简:.解:设x=,易知,帮x>0.由:x2=3+=2.解得x=.即=.请你解决下列问题:(1)2的有理化因式是;(2)化简:;(3)化简:.19.问题背景.在△ABC中,AB=,BC=,AC=,求这个三角形的面积,小辉同学在解答这道题时先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(△ABC的三个顶点都在正方形的顶点处),如图所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.(1)请直接写出△ABC的面积;(2)我们把上述方法叫做构图法,若△ABC中,AB,BC,AC三边的长分别为,,,请你在图2的正方形网格(每个小正方形的边长为a)中画出相应的△ABC.并求其面积.20.已知平面直角坐标系中,A、B两点的坐标分别为(2,﹣3)、(4,﹣1)(1)若P(x,0)是x轴上的一个动点,当△P AB的周长最短时,求x的值;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,当四边形ABDC的周长最短时,求a的值.21.已知直线(n是正整数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(O是平面直角坐标系的原点)的面积为s1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为s2,…,依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n 的面积为S n.(1)求△A1OB1的面积s1;(2)求s1+s2+s3+…+s2011的值.22.如图,已知直线AB的解析式为y=﹣x+6,点P从点A出发,沿着射线AO方向以秒1个单位长度的速度移动,同时点Q从点B出发,沿着射线BO方向以每秒2个单位度的速度移动.试问经过几秒后能使△POQ的面积为6个平方单位?23.如图,在平面直角坐标系中,长方形OABC的顶点O为坐标原点,顶点A,C分别在x轴正半轴和y轴正半轴上,顶点B的坐标为(12,8),直线y=kx+8﹣6k(k<0)交边AB于点P,交边BC于点Q.(1)当k=﹣1时,求点P,Q的坐标;(2)若直线PQ∥AC,BH是Rt△BPQ斜边PQ上的高,求BH的长;(3)若PQ平分∠OPB,求k的值.24.如图,正方形AOBC的边长为2,点O为坐标原点,边OB,OA分别在x轴,y轴上,点D是BC的中点,点P是线段AC上的一个点,如果将OA沿直线OP对折,使点A的对应点A′恰好落在PD所在直线上.(1)若点P是端点,即当点P在A点时,A′点的位置关系是,OP所在的直线是,当点P在C 点时,A′点的位置关系是,OP所在的直线表达式是.(2)若点P不是端点,用你所学的数学知识求出OP所在直线的表达式.(3)在(2)的情况下,x轴上是否存在点Q,使△DPQ的周长为最小值?若存在,请求出点Q的坐标;若不存在,请说明理由.25.在平面直角坐标系中,已知两点坐标P1(x1,y1)P2(x2,y2)我们就可以使用两点间距离公式来求出点P1与点P2间的距离.如:已知P1(﹣1,2),P2(0,3),则.通过阅读以上材料,请回答下列问题:(1)已知点P1坐标为(﹣1,3),点P2坐标为(2,1)①求P1P2=;②若点Q在x轴上,则△QP1P2的周长最小值为.(2)如图,在平面直角坐标系中,四边形OABC为长方形,点A、B的坐标分别为(4,0)(4,3),动点M、N分别从点O,点B同时出发,以每秒1个单位的速度运动,其中M点沿OA向终点A运动,N点沿BC向终点C运动,过点N作NF⊥BC交AC于F,交AO于G,连结MF.当两点运动了t秒时:①直接写出直线AC的解析式:;②F点的坐标为(,);(用含t的代数式表示)③记△MF A的面积为S,求S与t的函数关系式;(0<t<4);④当点N运动到终点C点时,在y轴上是否存在点E,使△EAN为等腰三角形?若存在,请直接写出点E的坐标,若不存在,请说明理由.参考答案一.选择题1.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD==9,在Rt△ACD中,CD==5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故选:C.2.【解答】解:x+2y=7,x=7﹣2y,所以方程x+2y=7在自然数范围内的解有,,,,共4组,故选:B.3.【解答】解:根据题意,得a﹣2010≥0,即a≥2010;所以|2009﹣a|=a﹣2009,∵+|2009﹣a|=a,即+a﹣2009=a,∴=2009,a﹣2010=20092,∴a﹣20092=2010.故选:C.4.【解答】解:∵x﹣2≥0,即x≥2,① x﹣2≥0,即x≤2,② 由①②知,x=2;∴y=4,∴y x=42=16.故选:D.5.【解答】解:∵三角形的三边长分别为1、k、4,∴,解得,3<k<5,所以,2k﹣5>0,k﹣6<0,∴|2k﹣5|﹣=2k﹣5﹣=2k﹣5﹣[﹣(k﹣6)]=3k﹣11.故选:A.6.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故选:A.7.【解答】解:∵S△ABP=AB•h,当动点P沿BC运动时,h=BP=x,∴S△ABP=AB•x,对应图象为0<x<2部分,由图象可知:点P在BC运动路程为BC=2﹣0=2;动点P沿CD运动时,h=BC,S△ABP=AB•BC为定值,对应图象2<x<5部分,由图象可知:点P在CD运动路程为CD=5﹣2=3,∴S△BCD=BC•CD=×2×3=3.所以△BCD的面积是3.故选:D.8.【解答】解:如图1,∵AB=9cm,BC=6cm,BF=5cm,∴BM=9﹣3=6,BN=5+3=8,∴MN==10;如图2,∵AB=9cm,BC=GF=6cm,BF=5cm,∴PM=9﹣3+3=9,NP=5,∴MN==,∵10<,∴蚂蚁沿长方体表面爬到米粒处的最短距离为10.故选:A.9.【解答】解:∵将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P,∴∠A'OB=∠AOB,∵四边形OABC是矩形,∴BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=,∴PC=6﹣=,∴P(,3),故选:A.二.填空题10.【解答】解:∵一次函数y=kx+b(k≠0)图象过点(2,0),∴2k+b=0,b=﹣2k,∴y=kx﹣2k,令x=0,则y=﹣2k,∵函数图象与两坐标轴围成的三角形面积为1,∴×2×|﹣2k|=1,即|2k|=1,解得:k=±,则函数的解析式是y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1.11.【解答】解:设一次函数为y=kx+b,k≠0.则与y轴的交点为(0,b),S△=×|﹣2|×|b|=6,得|b|=6,∴b=±6,当b=6时,函数为:y=kx+6,∵函数的图象经过点(﹣2,0),得:0=﹣2k+6得到k=3,∴所求的一次函数的解析式为:y=3x+6;当b=﹣6时,函数为:y=kx﹣6,∵函数的图象经过点(﹣2,0),得:0=﹣2k﹣6,得到k=﹣3,∴所求的一次函数的解析式为:y=﹣3x﹣6.答:所求的一次函数的解析式为:y=3x+6或y=﹣3x﹣6,故答案为:y=3x+6或y=﹣3x﹣6.12.【解答】解:在直线y=﹣x+3中,令y=0,求得x=4;令x=0,求得y=3,∴点A的坐标为(4,0),点B的坐标为(0,3),∴BO=3,AO=4,∴AB==5,∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,∴CO=5﹣4=1,则点C的坐标为:(﹣1,0),设直线BC的解析式为y=kx+b,把B(0,3),C(﹣1,0)代入得,解得,∴直线BC的解析式为y=3x+3.故答案为y=3x+3.13.【解答】解:∵,∴a=2,∴由,得2b=,解得,b=﹣1,∵X*Y=aX+bY,∴2*3=2a+3b=2×2+3×(﹣1)=4﹣3=1;故答案是1.14.【解答】解:由题意得,、有意义,故可得x=29,y=6,从而可得2x+y=64,故可得2x+y的立方根是4.故答案为:4.15.【解答】解:A=﹣1+﹣+…+﹣=﹣1,所以A2+2A+1=(A+1)2=(﹣1+1)2=2018.故答案为2018.三.解答题16.【解答】解:根据a,b,c为△ABC的三边,得到a+b+c>0,a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,则原式=|a+b+c|+|a﹣b﹣c|+|b﹣a﹣c|+|c﹣b﹣a|=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.17.【解答】解:(1)设乙的速度为x米/分,则甲的速度为2.5x米/分,环形场地的周长为y米,由题意,得,即;(2)解:设笼的总数为x,鸡的总数为y只,根据题意可得:则.18.【解答】解:(1)2﹣3的有理化因式是2+3;故答案为:2+3;(2)原式=++1+2﹣=+3;(3)设x=﹣,可得<,即x<0,由题意得:x2=6﹣3+6+3﹣2=12﹣6=6,解得:x=﹣,则原式=﹣.19.【解答】解:(1)S△ABC=3×3﹣×3×1﹣×2×3﹣×1×2=;(2)如图,∵AB==a,BC==2a,AC==a,∴△ABC即为所求作三角形,则S△ABC=2a•4a﹣×a×2a﹣×2a×2a﹣×a×4a=3a2.故答案为:(1).20.解:(1)如图1先作出B关于x轴的对称点B′,连接AB′交x轴于点P,则B′点坐标为(4,1),由两点之间线段最短可知,AB′的长即为△P AB的最短周长,设过AB′两点的一次函数解析式为y=kx+b(k≠0),则,解得k=2,b=﹣7,故此一次函数的解析式为y=2x﹣7,当y=0时,2x﹣7=0,解得x=3.5.故当x=3.5时,△P AB的周长最短.(2)作点A关于x轴的对称点A′,则A′的坐标为(2,3),把A′向右平移3个单位得到点B'(5,3),连接BB′,与x轴交于点D,如图,∴CA′=CA,又∵C(a,0),D(a+3,0),∴CD=3,∴A′B′∥CD,∴四边形A′B′DC为平行四边形,∴CA′=DB′,∴CA=DB′,∴AC+BD=BB′,此时AC+BD最小,而CD与AB的长一定,∴此时四边形ABDC的周长最短.设直线BB′的解析式为y=kx+b,把B(4,﹣1)、B'(5,3)分别代入得,4k+b=﹣1,5k+b=3,解得k=4,b=﹣17,∴直线BB′的解析式为y=4x﹣17,令y=0,则4x﹣17=0,解得x=,∴D点坐标为(,0),∴a+3=,∴a=.21.【解答】解:(1)当n=1时,直线l1:y=﹣2x+1与x轴和y轴的交点是A1(,0)和B1(0,1)所以OA1=,OB1=1,∴s1=;(2)当n=2时,直线与x轴和y轴的交点是A2(,0)和B2(0,)所以OA2=,OB2=,∴s2==当n=3时,直线与x轴和y轴的交点是A3(,0)和B3(0,)所以OA3=,OB3=,∴s3==依此类推,s n=∴s1+s2+s3+…+s2011=∴s1+s2+s3+…+s2011===.22.【解答】解:∵直线AB的解析式为y=﹣x+6,令x=0,则y=6,∴B(0,6),令y=0,则0=﹣x+6,∴x=4,∴A(4,0);∴OA=4,由运动知,AP=t,BQ=2t,∴OP=|4﹣t|,OQ=|6﹣2t|,∴Q(0,6﹣2t),P(4﹣t,0);∵△POQ的面积等于6,∴×(6﹣2t)×(4﹣t)=6,∴t=1或t=6,∴经过1秒或6秒,△POQ的面积等于6.23.【解答】解:(1)当k=﹣1时,该直线表达式为y=﹣x+14,∵四边形OABC是长方形,点P,Q分别在边AB,BC上,点B(12,8),∴点P的横坐标为12,点Q的纵坐标为8,当x=12时,y=﹣1×12+14=2,当y=8时,﹣x+14=8,解得x=6,∴点P,Q的坐标分别是P(12,2),Q(6,8);(2)如图1,过点B作BH⊥PQ于H,∵长方形OABC的顶点B的坐标是(12,8),∴点A的坐标为(12,0),点C的坐标为(0,8).设直线AC表达式为y=ax+b,则解得,,∴直线AC的解析式为y=﹣x+8,∵PQ∥AC,∴k=﹣.∴直线PQ表达式为y=﹣x+12,∵当x=12时,y=4;当y=8时,8=﹣x+12,∴x=6,∴BP=4,BQ=6.在Rt△BPQ中,根据勾股定理得,PQ==2,∵S△PBQ=BQ•BP=PQ•BH,∴×4×6=××BH,∴BH=;(3)∵当x=12时,y=6k+8;当y=8时,x=6.∴点P的坐标为(12,6k+8),点Q的坐标为(6,8).∴AP=6k+8,AO=12,BQ=CQ=6,AB=OC=8.∴BP=8﹣(6k+8)=﹣6k,过点Q作QM⊥OP于点M,连接OQ,如图2,∵PQ平分∠OPB,∴∠QPB=∠QPM,又∵∠PMQ=∠B=90°,PQ=PQ,∴△BPQ≌△MPQ(AAS),∴QM=QB=6,MP=BP=﹣6k,在Rt△OCQ中,根据勾股定理得,OQ=10,在Rt△OQM中,根据勾股定理得OM=8,∴OP=OM+MP=8﹣6k,∵在Rt△OAP中,OA2+AP2=OP2,即122+(6k+8)2=(8﹣6k)2.解得,k=﹣.24.【解答】解:(1)由轴对称的性质可得,若点P是端点,即当点P在A点时,A′点的位置关系是点A,OP所在的直线是y轴;当点P在C点时,∵∠AOC=∠BOC=45°,∴A′点的位置关系是点B,OP所在的直线表达式是y=x.故答案为:A,y轴;B,y=x.(2)连接OD,∵正方形AOBC的边长为2,点D是BC的中点,∴==.由折叠的性质可知,OA′=OA=2,∠OA′D=90°.∴A′D=1.设点P(x,2),P A′=x,PC=2﹣x,CD=1.∴(x+1)2=(2﹣x)2+12.解得x=.所以P(,2),∴OP所在直线的表达式是y=3x.(3)存在.若△DPQ的周长为最小,即是要PQ+DQ为最小.∵点D关于x轴的对称点是D′(2,﹣1),∴设直线PD'的解析式为y=kx+b,,解得,∴直线PD′的函数表达式为y=﹣x+.当y=0时,x=.∴点Q(,0).25.【解答】解:(1)①P1P2==;②P1坐标关于x轴的对称点是(﹣1,﹣3),设直线P2的解析式是y=kx+b(k≠0),根据题意得:,解得:,则直线的解析式是:y=﹣x+,在解析式中令y=0,解得:x=,则Q的坐标是:(,0),则QP1+QP2=P2===6,则△QP1P2的周长最小值是:6+;故填:6+;(2)①如图,四边形ABCO是矩形,点A、B的坐标分别为(4,0)、(4,3),则C(0,3).设直线AC的解析式为:y=kx+b(k≠0),则,解得,,所以直线AC的解析式为:y=﹣x+3;故填:y=﹣x+3;②∵NF⊥BC,四边形ABCO是矩形,∴NG∥OC,BN=AG,∴=,即=,∴FG=t,∴F(4﹣t,t);③如图,S=AM•FG=(4﹣t)×t=﹣t2+t(0<t<4);④∵A(4,0),C(0,3),点N与点C重合,∴ON=3,OA=4,∴由勾股定理得到AN=5.如图,当AN=AE时,易求ON=OE=3,则E1(0,﹣3);当NE=AN时,OE=5﹣3=2,则E2(0,﹣2);当AE=NE时,设E3(0,t),则(t﹣3)2=42+t2解得,t=,∴E3(0,);综上所述,符合条件的点E的坐标分别是:E1(0,﹣3),E2(0,﹣2),E3(0,).。
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,为无理数的是()
A.13B.4C.2D.327
2.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中正确的是()A.42B.2(3)3C.342D.822
4.下列长度的各组线段中,不能构成直角三角形的是()A.4、5、6B.5、12、13C.3、4、5D.1、2、
3
5.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行
6.已知方程组03mxy
xny
的解是12xy,则2mn的值为()
A.1B.2C.3D.07.某学校为了了解九年级学生的体育达标情况,随机抽取50名九年级学生进行测试,测试成绩如表:测试成绩(分)23242526272830人数(人)541612373则本次抽查中体育测试成绩的中位数和众数分别是()A.26和25B.25和26C.25.5和25D.25和25
8.已知点A(﹣6,y1)和B(﹣2,y2)都在直线13yxb上,则y1,y2满足()A.y1>y2B.y1<y2C.y1=y2D.大小不确定9.如图,BC∥DE,若∠A=35°,∠C=24°,则∠E等于()
A.24°B.59°C.60°D.69°10.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒、则下列方程组中符合题意的是()
A.352xyyxB.3520230xyxyC.3522030xyxyD.353020
2
xyyx
二、填空题
11.已知x,y为两个连续的整数,且x<20<y,则5x+y的平方根为_____.
12.已知a,b满足方程组21228abab,则3ab的值为______.
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各组数,是勾股数的是()A .13,14,15B .0.3,0.4,0.5C .6,7,8D .5,12,132.下列说法:①-27的立方根是3;②36的算数平方根是6±;③18的立方根是12平方根是3±.其中正确说法的个数是()A .1B .2C .3D .43.点(),A x y 在第四象限,则点(),2B x y --在第几象限()A .第一象限B .第二象限C .第三象限D .第四象限4最接近的数是()A .2B .3C .4D .55.在 1.414-,π,12,2,3.212212221…(相邻两个1之间的2的个数逐次加1),3.14这些数中,无理数的个数为()个.A .5B .2C .3D .46.下列命题中,是真命题的是()A .同位角相等B .同旁内角相等,两直线平行C .平行于同一直线的两直线平行D .相等的角是对顶角7.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是()A .乙同学的成绩更稳定B .甲同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D .不能确定哪位同学的成绩更稳定8.正比例函数()0y kx k =-≠的函数值y 随x 的增大而减小,则一次函数y kx k =-的图象大致是()A .B .C .D .9.《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为x 人,牛价为y 钱,根据题意,可列方程组为()A .64084y x y x =+⎧⎨=+⎩B .64084y x y x =+⎧⎨=-⎩C .64084y x y x =-⎧⎨=-⎩D .64084y x y x =-⎧⎨=+⎩10.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离()km y 与行驶时间()h t 的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ;②乙车用了5h 到达B 城;③甲车出发4h 时,乙车追上甲车A .0个B .1个C .2个D .3个二、填空题11.已知点()1,3P m m ++在x 轴上,则m =________;点P 的坐标为________.12有意义,则x 的取值范围是___.13.若函数()231m y m x-=+是正比例函数,且图像在一、三象限,则m =_________.14.若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.15.已知一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,则1y _______2y (填“>”“<”或“=”)16.如图,已知函数y ax b =+和y kx =的图象交于点P ,关于,x y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是____.17.如图,ABC 中,90A ∠=︒,点D 在AC 边上,∥DE BC ,若1145∠=︒,则B ∠的度数为_______.18.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_________dm .三、解答题19.计算(1)2(23)(33)(33)+-+(2)20223125272---20.用适当的方法解下列方程组(1)231951x y x y +=-⎧⎨+=⎩(2)237324x y x y +=⎧⎨-=⎩21.中考体育测试前,我区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)扇形统计图中a =%,并补全条形统计图.(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.如图所示,折叠长方形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知6AB =,8BF =,求CE 的长.23.已知一次函数y kx b =+的图象经过点()1,5--,且与正比例函数2y x =的图象相交于点()2,A m .求:(1)m 的值;(2)k ,b 的值;(3)这两个函数图象与y 轴所围成的三角形的面积.24.如图,Rt △ABC 中,∠BAC =90°,AC =9,AB =12.按如图所示方式折叠,使点B 、C 重合,折痕为DE ,连接AE .求AE 与CD 的长.25.某商场去年的利润为10万元,今年的总收入比去年增加10%,总支出比去年减少了5%,今年的利润为30万元.求去年的总收入和总支出?26.已知一次函数y =kx ﹣3的图象与正比例函数y=12x 的图象相交于点(2,a ).(1)求a 的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.27.如图1,在平面直角坐标系中,(),0A m,(),4C n ,且满足()240m +=,过C 作CB x ⊥轴于B .(1)求m ,n 的值;(2)在x 轴上是否存在点P ,使得ABC 和OCP △的面积相等,若存在,求出点P 坐标,若不存在,试说明理由.(3)若过B 作BD AC ∥交y 轴于D ,且AE ,DE 分别平分CAB ∠,ODB ∠,如图2,图3,①求:CAB ODB ∠+∠的度数;②求:AED ∠的度数.参考答案1.D【分析】根据能够成为直角三角形三条边长的三个正整数,称为勾股数,即可求解【详解】解:A、不是正整数,则不是勾股数,故本选项不符合题意;B、不是正整数,则不是勾股数,故本选项不符合题意;C、222678+≠,则不是勾股数,故本选项不符合题意;D、2225+12=13,是勾股数,故本选项符合题意;故选:D【点睛】本题主要考查了勾股数的定义,熟练掌握能够成为直角三角形三条边长的三个正整数,称为勾股数是解题的关键.2.A【分析】分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.【详解】解:①-27的立方根是-3,错误;②36的算数平方根是6,错误;③18的立方根是12,正确;∴正确的说法有1个,故选:A.【点睛】本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.3.C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B10,距离10最近的完全平方数是9和16,通过比较可知10距离9比较近,由此即可求解.解答:解:∵32=9,42=16,又∵11-9=2<16-9=5∴与最接近的数是3.故选B.5.D【分析】有理数是整数与分数的统称,无理数就是无限不循环小数,据此逐一判断即可得答案.-是有限小数,是有理数,【详解】 1.414π是无理数,1是分数,是有理数,22是无理数,3.212212221…(相邻两个1之间的2的个数逐次加1),是无限不循环小数,是无理数,3.14是有限小数,是有理数,∴无理数有π2和3.212212221…(相邻两个1之间的2的个数逐次加1),共4个,故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.熟练掌握定义是解题关键.6.C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B 、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C 、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D 、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.7.A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A .【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.8.C【分析】因为正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,可以判断0k >;再根据0k >判断出y kx k =-的图象的大致位置.【详解】解: 正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,0k ∴>,∴一次函数y kx k =-的图象经过一、三、四象限.故选C .【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k<,0b <时,函数y kx b =+的图象经过第二、三、四象限.9.B【分析】设合伙人数为x 人,牛价为y 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为x 人,牛价为y 钱,根据题意得:64084y x y x =+⎧⎨=-⎩.故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.10.C【分析】求出正比函数的解析式,k 值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx ,∴6k=300,解得k=50,∴y 甲=50x ,∴甲车的速度为50km/h ,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h )到达B 城,∴②错误;设y =mx b +乙,∴2m =05m 300b b +⎧⎨+=⎩,∴m 100200b =⎧⎨=-⎩,∴y =100x-200乙,∵=50100200y x y x ⎧⎨=-⎩,∴x 4200y =⎧⎨=⎩,即甲行驶4小时,乙追上甲,∴③正确;故选C .11.3-()2,0-【分析】根据x 轴上的点,纵坐标为0,求出m 值即可.【详解】解:∵点()1,3P m m ++在x 轴上,∴30m +=,解得,3m =-,则1312m +=-+=-;点P 的坐标为(-2,0);故答案为:-3,(-2,0).【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确x 轴上的点,纵坐标为0.12.2x ≥有意义,即x ﹣2≥0,解得:x≥2.故答案为:x≥2.13.2【分析】根据自变量的次数等于1,系数大于0列式求解即可.【详解】解:由题意得m+1>0,m 2-3=1,解得m=2.故答案为:2.14.89【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x 1,x 2,…xn 的平均数是2,∴数据3x 1+2,3x 2+2,…+3xn+2的平均数是3×2+2=8;∵数据x 1,x 2,…xn 的方差为1,∴数据3x 1,3x 2,3x 3,……,3xn 的方差是1×32=9,∴数据3x 1+2,3x 2+2,…+3xn+2的方差是9.故答案为:8、9.15.>【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小,判断即可.【详解】∵一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,且k <0,∴k <0,∵-2<3,∴1y >2y ,故答案为:>.16.4,2x y =-⎧⎨=-⎩【分析】根据函数与方程组的关系结合交点坐标即可求得方程组的解.【详解】解:∵一次函数y=ax+b (a≠0)和y=kx (k≠0)的图象交于点P (-4,-2),∴二元一次方程组0y ax b kx y -=⎧⎨-=⎩的解是42x y =-⎧⎨=-⎩,故答案为:42x y =-⎧⎨=-⎩.17.55︒【分析】先求出∠EDC=35°,然后根据平行线的性质得到∠C=∠EDC=35°,再由直角三角形两锐角互余即可求解.【详解】解:∵∠1=145°,∴∠EDC=35°,∵DE ∥BC ,∴∠C=∠EDC=35°,又∵∠A=90°,∴∠B=90°-∠C=55°,故答案为:55°.18.25【分析】把立体几何图展开得到平面几何图,如图,然后利用勾股定理计算AB ,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:展开图为:则AC=20dm,BC=3×3+2×3=15(dm ),在Rt △ABC 中,25AB ===(dm ).所以蚂蚁所走的最短路线长度为25dm.故答案为:25.19.(1)1+;(2)9-【分析】(1)利用完全平方公式,平方差公式展开,合并同类项即可;(2)根据幂的意义,算术平方根,立方根的定义计算.【详解】(1)2(2(3-=43(93)+--=1+(2)20221--+-=153---=9-20.(1)143x y =-⎧⎨=⎩;(2)21x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)231951x y x y +=-⎧⎨+=⎩①②②×2-①得:7y=21,解得:y=3,把y=3代入②中,解得:x=−14,∴方程组的解为:143x y =-⎧⎨=⎩;(2)237324x y x y +=⎧⎨-=⎩①②①×2-②×3得:13x=26,解得:x=2,把x=2代入①中,解得:y=1,∴方程组的解为:21x y =⎧⎨=⎩.21.(1)25,图见解析(2)5,5(3)810名【分析】(1)用1减去其他天数所占的百分比即可得到a 的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.(1)解:扇形统计图中a=1-30%-15%-10%-20%=25%,设引体向上6个的学生有x 人,由题意得20,25%10%x =,解得x=50.条形统计图补充如下:故答案为:5;(2)解:由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5.故答案为:5,5.(3)解:50401800810200+⨯=(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.22.83【分析】由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,由勾股定理,可得10AF ==,从而得到2FC =,然后设CE x =,6EF DE x ==-,在Rt ECF △中,由勾股定理,即可求解.【详解】解:由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,10AF ==,∴2FC BC BF =-=,设CE x =,6EF DE x ==-,在Rt ECF △中,222EF EC CF =+,即()2246x x +=-,解得83x =,∴CE 的长为83.23.(1)4m =;(2)3k =,2b =-;(3)2【分析】(1)把(2,m )代入正比例函数解析式即可得到m 的值;(2)把(-1,-5)、(2,4)代入y=kx+b 中可得关于k 、b 的方程组,然后解方程组求出k 、b 即可;(3)先利用描点法画出图象,再求出两直线与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)将()2,m 代入2y x =得,4m =.(2)由(1)得,交点坐标为()2,4,将()1,5--,()2,4代入y kx b =+中,得524k b k b -+=-⎧⎨+=⎩,解得32k b =⎧⎨=-⎩,∴3k =,2b =-.(3)由(2)得,直线的表达式为32y x =-,令0x =,则2y =-,所以直线32y x =-与y 轴的交点坐标问为()0,2-,又∵两直线的交点坐标为()2,4,∴12222s =⨯⨯=.【点睛】本题考查了一次函数的综合题:用待定系数法求一次函数的解析式,一次函数与坐标轴的交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.24.AE =7.5,CD =758【分析】在Rt △ABC 中由于∠BAC =90°,AC =9,AB =12,所以根据勾股定理可求出BC 的长,由折叠可知,ED 垂直平分BC ,E 为BC 中点,BD =CD ,根据直角三角形斜边上的中线等于斜边的一半可求出AE 的长,设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中由AD 2+AC 2=CD 2即可求出x 的值,故可得出结论.【详解】解:在Rt △ABC 中,∠BAC =90°,AC =9,AB =12,由勾股定理得:AB 2+AC 2=BC 2.∴BC 2=92+122=81+144=225=152,∴BC =15∵由折叠可知,ED 垂直平分BC ,∴E 为BC 中点,BD =CD∴AE =12BC =7.5(直角三角形斜边上的中线等于斜边的一半).设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中,∴AD 2+AC 2=CD 2(勾股定理).即92+(12﹣x )2=x 2,解得x =758,∴CD =758.【点睛】本题考查的是图形折叠的性质,熟知图形折叠不变性的性质及勾股定理是解答此题的关键.25.去年的总收入为4103元,总支出为3803元【分析】设去年的总收入为x 万元,总支出为y 万元,根据利润=总收入-总支出,列出方程,构成方程组求解.【详解】解:设去年的总收入为x 万元,总支出为y 万元,依题意得:x-1000(1+10)(1-5)=3000y x y =⎧⎪⎨-⎪⎩,解得410x=3380=3y ⎧⎪⎪⎨⎪⎪⎩,答:去年的总收入为4103元,总支出为3803元.【点睛】本题考查了二元一次方程组的应用题,根据利润=总收入-总支出,列出符合题意的方程是解题的关键.26.(1)a =1;(2)y =2x ﹣3;(3)详见解析.【分析】(1)直接把点(2,a )代入正比例函数的解析式y =12x 可求出a ;(2)将求得的交点坐标代入到直线y =kx ﹣3中即可求得其表达式;(3)利用与坐标轴的交点及两图像交点即可确定两条直线的解析式.【详解】(1)∵正比例函数y =12x 的图象过点(2,a ),∴a =1;(2)∵一次函数y =kx ﹣3的图象经过点(2,1)∴1=2k ﹣3,∴k =2,∴y =2x ﹣3;(3)函数图象如下图:【点睛】本题考查了两条直线相交或平行问题:若直线y =k 1x+b 1与直线y =k 2x+b 2相交,则交点坐标同时满足两个解析式.也考查了待定系数法求函数解析式.27.(1)4m =-,4n =;(2)存在,()8,0N 或()8,0-;(3)①90︒;②45︒【分析】(1)根据非负数的和为零,则每一个数为零,列等式计算即可;(2)设点P 的坐标为(n ,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;(3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;②作EM AC ∥,利用平行线的性质,角的平分线的定义,计算即可.【详解】解:(1)∵()240m +=,∴m+4=0,n-4=0,∴4m =-,4n =.(2)存在,设点P 的坐标为(n ,0),则OP=|n|,∵A (-4,0),C (4,4),∴B (4,0),AB=4-(-4)=8,∵12ABCS AB CB = ,12OCP CB OP = △S ,且ABC 和OCP △的面积相等,∴12AB CB 12CB OP = ,∴OP=AB=8,∴|n|=8,∴n=8或n=-8,∴()8,0P 或()8,0P -;(3)①∵AC BD ∥,∴CAB OBD ∠=∠,又∵90OBD ODB ∠+∠=︒,∴90CAB ODB ∠+∠=︒.②作EM AC ∥,如图,∵AC BD ∥,∴AC EM BD ∥∥,∴CAE AEM ∠=∠,BDE DEM ∠=∠,∴AED CAE BDE ∠=∠+∠,∵AE ,DE 分别平分CAB ∠,ODB ∠,∴12CAE CAB ∠=∠,12BDE ODB ∠=∠,∴11()904522AED AEM DEM CAB ODB ∠=∠+∠=∠+∠=⨯︒=︒,即45AED ∠=︒.。
北师大版八年级上册数学期末试卷及答案
北师大版八年级上册数学期末试题一、单选题1.下列各数:0.9π,223,0.6868868886…(相邻两个6之间8的个数逐次加1()02021π-,其中无理数的个数有( )个.A .1B .2C .3D .42.在Rt ABC 中,90ACB ∠=︒,如果8AB =,6BC =,那么AC 的长是( )A .10B .C .10或D .73.在平面直角坐标系中,点()3,1M m m -+在x 轴上,则点M 的坐标为( ) A .()4,0- B .()0,2- C .()2,0- D .()0,4- 4.如图,①13∠=∠,①23∠∠=,①14∠=∠,①25180+=︒∠∠可以判定b c ∥的条件有A .①①①B .①①①C .①①①D .①①①① 5.甲、乙、丙、丁四名同学进行立定跳远测试,每人10次立定跳远成绩的平均数都是2.25米,方差分别是20.72S =甲,20.75S =乙,20.68S =丙,20.61S =丁,则这四名同学立定跳远成绩最稳定的是( )A .甲B .乙C .丙D .丁 6.下列语句是真命题的是( )A .内错角相等B .若22a b =,则a b =C .直角三角形中,两锐角A ∠和B ∠的函数关系是一次函数D .在ABC 中,::3:4:5A B C ∠∠∠=,那么ABC 为直角三角形7.若一次函数y kx b =+(k ,b 为常数,0k ≠)的图象不经过第三象限,那么k ,b 应满足的条件是( )A .0k <且0b >B .0k >且0b >C .0k >且0b ≥D .0k <且0b ≥ 8.如图所示,一副三角板叠放在一起,则图中α∠等于( )A .105°B .115°C .120°D .135°9.如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =10.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0)-,则下列说法正确的有() ①y 随x 的增大而减小:①0,0k b ><;①关于x 的方程0kx b +=的解为2x =-;①当2x >-时,0y >.A .1个B .2个C .3个D .4个二、填空题11.16的算术平方根是___________.12.点()5,2A -到y 轴的距离为______,到x 轴的距离为______.13.有5个数据的平均数为24,另有15个数据的平均数是20,那么所有这20个数据的平均数是______. 14.已知:直线34y x b =-与直线6y mx =+的图象交点如图所示,则方程组346x y b mx y ⎧-=⎪⎨⎪-=-⎩的解为______.15.a ,3b ,则a+b 等于______.16.如图所示,长方体ABCD A B C D -''''中,4cm AB BC ==,2cm AA '=,E 是B C ''的中点,一只蚂蚁从点A 出发,沿长方体表面爬到E 点,则蚂蚁走的最短路径长为______cm .17.如图,33BAC ∠︒=,点D 和点E 分别在边AB 和边AC 上,连接DE ,将A ∠沿DE 折叠,点A 的对应点是A ',若12170∠+∠=︒,则2∠=______.18.如图,BD 是ABC 的角平分线,15AB =,9BC =,12AC =,则BD 的长为______.三、解答题19.计算:⎛-+÷ ⎝20.解方程组:45711582x y x y -=⎧⎪⎨-+=-⎪⎩21.如图,在平面直角坐标系中有A ,B 两点,坐标分别为()2,3A ,()6,1B ,已知点C 的坐标为()6,4C(1)确定平面直角坐标系,并画出ABC ;(2)请画出ABC 关于x 轴对称的图形111A B C △,并直接写出111A B C △的面积;(3)若x 轴上存在一点M ,使MA MB +的值最小.请画图确定M 点的位置,并直接写出MA MB +的最小值.22.如图,已知直线EF GH ∥,AC BC ⊥,BC 平分DCH ∠.(1)求证:ACD DAC ∠=∠;(2)若ACG ∠比BCH ∠的2倍少3度,求DAC ∠的度数.23.书籍是人类进步的阶梯.为了解学生的课外阅读情况,某校随机抽查了部分学生本学期阅读课外书的册数,并绘制出如下统计图.(1)共抽查了多少名学生?(2)请补全条形统计图,并写出被抽查学生本学期阅读课外书册数的众数、中位数;(3)根据抽查结果,请估计该校1200名学生中本学期课外阅读5册书的学生人数.24.在“新冠疫情”期间,某药店出售普通口罩和N95口罩.下表为两次销售记录:(1)求每个普通口罩和每个N95口罩的销售价格各是多少元?(2)该药店计划第三次购进两种口罩共800个,已知普通口罩的进价为1元/个,N95口罩的进价为8元/个,两种口罩的销售单价不变,设此次购进普通口罩x个,药店销售完此次购进的两种口罩共获利为W元.①求W与x的函数关系式;①若销售利润为1400元,则购进两种口罩各多少个?25.甲、乙两辆汽车沿同一路线赶赴距出发地300千米的目的地,乙车比甲车晚出发1小时(从甲车出发时开始计时).图中折线OABD、线段EF分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足1小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车行驶的路程y 与时间x 的函数关系式;(2)求甲车发生故障时,距离出发地多少千米;(3)请直接写出第一次相遇后,经过多长时间两车相距30千米?26.已知A ,B 两地间某道路全程为240km ,甲、乙两车沿此道路分别从A ,B 两地同时出发匀速相向而行,甲车从A 地出发行驶2h 后因有事按原路原速返回A 地,结果两车同时到达A 地.已知甲、乙两车距A 地的路程(km)y 与甲车出发所用的时间(h)x 的函数关系如图所示,请结合图象信息解答下列问题:(1)甲车的速度为 km/h ,乙车的速度为 km/h ;(2)求甲车出发多长时间两车途中首次相遇?(3)直接写出甲车出发多长时间两车相距40km .27.已知一次函数y=-3x+3的图象分别与x 轴,y 轴交于A ,B 两点,点C(3,0).(1)如图1,点D 与点C 关于y 轴对称,点E 在线段BC 上且到两坐标轴的距离相等,连接DE ,交y 轴于点F .求点E 的坐标;(2)①AOB 与①FOD 是否全等,请说明理由;(3)如图2,点G 与点B 关于x 轴对称,点P 在直线GC 上,若①ABP 是等腰三角形,直接写出点P 的坐标.参考答案1.C【分析】根据无理数是无限不循环小数进行判断解答即可.【详解】解: 无理数有0.9π,0.6868868886…(相邻两个6之间8的个数逐次加1),共3个,故选:C2.B【分析】根据题意,勾股定理求解即可. 【详解】解:90ACB ∠=︒,8AB =,6BC =,AC ∴故选B3.A【分析】根据x 轴上的点的坐标特点纵坐标为0,即求得m 的值,进而求得点M 的坐标【详解】解:①点()3,1M m m -+在x 轴上,①10m +=解得1m =-3134m ∴-=--=-()4,0M ∴-故选A4.A【分析】根据平行线的判定定理逐个排查即可.【详解】解:①由于①1和①3是同位角,则①可判定b c ∥;①由于①2和①3是内错角,则①可判定b c ∥;①①由于①1和①4既不是同位角、也不是内错角,则①不能判定b c ∥;①①由于①2和①5是同旁内角,则①可判定b c ∥;即①①①可判定b c ∥.故选A .5.D【分析】平均数相同,方差值越小越稳定,比较四名同学方差值的大小即可.【详解】解:①2222S S S S >>>乙甲丁丙①丁同学的成绩最稳定故选D .6.C【分析】根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.【详解】解:A 、两直线平行,内错角相等,故原命题是假命题,不符合题意; B 、若22a b =,则a b =±,故原命题是假命题,不符合题意;C 、直角三角形中,两锐角A ∠和B ∠的函数关系是一次函数,故原命题是真命题,符合题意;D 、在ABC 中,::3:4:5A B C ∠∠∠=,那么最大角①C=518075345⨯︒=︒++,故①ABC 为锐三角形,故原命题是假命题,不符合题意;故选:C .7.D 【详解】解:一次函数(y kx b k =+、b 是常数,0)k ≠的图象不经过第三象限, 0k ∴<且0b ≥,故选:D .8.A【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,①C=90°,①DAE=45°,①BAC=60°,①①CAO=①BAC -①DAE=60°-45°=15°,①α∠=①C+①CAO=90°+15°=105°,故选:A .9.D【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D10.B【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各个小项分析判断即可得解【详解】解:①由图可得:y 随x 的增大而增大,故错误①由图可得:0,0k b >>,故错误①一次函数y kx b =+的图象与x 轴的交点坐标为(2,0)-,即20k b -+= ,故正确 ①由图可得:当2x >-时,0y >,故正确故选:B11.4【详解】解:①2(4)16±=①16的平方根为4和-4,①16的算术平方根为4,故答案为:412. 5 2【分析】根据横坐标的绝对值就是点到y 轴的距离,纵坐标的绝对值就是点到x 轴的距离即可求解.【详解】解:点()5,2A -到y 轴的距离为5,到x 轴的距离为2.故答案为:5;213.21 【详解】解:5241520420212020N x n ⨯+⨯====故答案为:21.14.23x y =⎧⎨=⎩【详解】解:①函数y=34x -b 与函数y=mx+6的交点坐标是(2,3),①方程组346x y b mx y ⎧-=⎪⎨⎪-=-⎩的解为23x y =⎧⎨=⎩.故答案为23x y =⎧⎨=⎩.15.6【详解】①12,①4<5,a=4,①12,①-2<-1,①1<32,设3m ,则m=1,①3b=3m=2①a+b=4+2-故答案为:616.【详解】解:如图由题意可知AA BB CC '''处于同一平面,连接AE 、AE ',①在Rt AA E ''中,2AA '=,426A E ''=+=AE '===在Rt ABE 中,4AB =,224BE =+=AE ===①224032=>=①蚂蚁的最短路径为故答案为:17.118°【详解】解:设AB 与A E '交于点O ,由折叠性质得:①A '=①BAC=33°,①①2=①BAC+①AOE ,①AOE=①1+①A ',①①2=①BAC+①1+①A '=①1+66°,即①1=①2-66°,①①1+①2=170°,①①2=118°,故答案为:118°.18【详解】解:如图,过点D 作DE AB ⊥于点E ,①15AB =,9BC =,12AC =,①22222225,912225AB BC AC =+=+=222AB BC AC ∴=+ABC ∴是直角三角形90C ∴∠=︒DC BC ∴⊥BD 是ABC 的角平分线,DE DC ∴=在Rt DEB 与Rt DCB △中DB DBDC DE =⎧⎨=⎩∴Rt DEB ≌Rt DCB △9BE BC ∴==1596AE AB BE ∴=-=-=设DC DE =x =,则12AD AC DC x =-=-在Rt ADE △中,222AD AE DE =+即()222126x x -=+ 解得92x =在Rt BDC 中BD ==19.32-【详解】⎛-÷ ⎝58⎛=-⨯⨯÷ ⎝(20116=-++=-32=- 故答案为:32-.20.121x y ⎧=-⎪⎨⎪=-⎩ 【详解】解:45711582x yx y -=⎧⎪⎨-+=-⎪⎩47511582x y x y -=⎧⎪⎨-+=-⎪⎩203525203222x y x y -=⎧⎨-+=-⎩两式相加消元得1y =-,①12x =-,①方程组的解为:121x y ⎧=-⎪⎨⎪=-⎩21.(1)图见解析;(2)图见解析,111A B C △的面积为6;(3)点M 的位置见解析,MA MB +的最小值为【分析】(1)解,如图,平面直角坐标系和①ABC 即为所求:(2)解:如图,111A B C △即为所求:由图知:111A B C S=S ①ABC =1(62)(41)2⨯-⨯-=6; (3)解:如图,连接AB 1交x 轴于M ,根据两点之间线段最短知,此时的点M 使得MA MB +的值最小,即点M 即为所求,MA MB +最小值为AB 1的长, ①A (2,3)、B 1(6,-1),①AB1①MA MB +的最小值为【点睛】本题考查平面直角坐标系、作图-轴对称变换、坐标与图形、轴对称-最短路线问题、三角形的面积公式,正确作出图形是解答的关键.22.(1)见解析(2)59︒【分析】(1)根据平行线的性质,角平分线的定义,直角三角形的两锐角互余可得12∠=∠,23∠∠=,25=9034=90∠+∠︒∠+∠︒,,进而即可得45∠=∠,即ACD DAC ∠=∠;(2)根据题意,由(1)的角度之间关系可得1590∠+∠=︒,结合已知条件建立二元一次方程组,解方程组即可求解.(1)如图,BC 平分DCH ∠12∴∠=∠EF GH ∥13∠∠∴=23∴∠=∠AC BC ⊥,25=9034=90∴∠+∠︒∠+∠︒,45∴∠=∠即ACD DAC ∠=∠(2)如图,EF GH ∥4ACG ∴∠=∠45,12∠=∠∠=∠5,1ACG BCH ∴∠=∠∠=∠由ACG ∠比BCH ∠的2倍少3度,即5213∠=∠-︒①5290∠+∠=︒,又12∠=∠即5190∠+∠=︒①213190∴∠-︒+∠=︒解得131∠=︒45213231359DAC ∠=∠=∠=∠-︒=⨯︒-︒=∴︒59DAC ∴∠=︒【点睛】本题考查了平行线的性质,直角三角形的两锐角互余,二元一次方程组,数形结合是解题的关键.23.(1)共抽查了40名学生;(2)众数为5册,中位数为5册;(3)估计该校1200名学生中本学期课外阅读5册书的学生人数为420人.【分析】(1)利用阅读6册的人数除以所占百分比可得抽查总人数;(2)根据总人数求得阅读5册的人数,可补全条形统计图,再根据众数和中位数定义可得答案;(3)利用样本估计总体的方法进行计算即可.【详解】解:(1)抽查的总人数:12÷30%=40;故共抽查了40名学生;(2)阅读课外书5册的人数:40-8-12-6=14(人),补全条形统计图如图:阅读课外书册数最多的是5册,则众数为5册,把这些数从小大排列,中位数是第20、21个数的平均数,第20、21个数都是5,则中位数是5(册);故众数为5册,中位数为5册;(3)1200×1440=420(人), 估计该校1200名学生中本学期课外阅读5册书的学生人数为420人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、众数、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)每个普通口罩的销售价格为2元,每个95N 口罩的销售价格12元;(2)()320030800W x x =-≤≤,;普通口罩600个,95N 口罩200个【分析】(1)设普通口罩的单价为x 元, 口罩的单价为y 元;根据题意列方程组,求解即可.(2)①利润=(售价-单价)⨯价格,可列利润与个数的函数关系式;①将利润代入(2)中的关系式,即可求出x 的值与800x -的值.(1)解:设普通口罩的单价为x 元,95N 口罩的单价为y 元;由题意可知60010024004002003200x y x y +=⎧⎨+=⎩解得:212x y =⎧⎨=⎩①每个普通口罩的销售价格为2元,每个N95口罩的销售价格为12元.(2)解:①由题意可得()()()21128800W x x =-⨯+-⨯-化简得:()320030800W x x =-≤≤,①W 与 x 的函数关系式为()320030800W x x =-≤≤,.①当1400W =时,有140032003x =-解得600x =①800800600200x -=-=①购进普通口罩600个;95N 口罩200个【点睛】本题考查了二元一次方程的应用,一次函数解析式.解题的关键在于明确各数据之间的数量关系并正确的列出方程.自变量的取值范围是易错点.25.(1)y 乙=60x -60;(2)甲车发生故障时,距离出发地50千米;(3)第一次相遇后,经过12小时或136小时或113小时两车相距30千米. 【分析】(1)根据图象可知E (1,0),F (6,300),设y 乙=kx+b ,把E 、F 坐标代入,列方程组求出k 、b 的值即可得答案;(2)根据(1)中解析式可求出点C 坐标,利用待定系数法可得出直线BD 的解析式,即可求出点B 坐标,即可得答案;(3)根据图象可求出乙两的速度和甲车BD 段的速度,根据(1)中解析式及点B 坐标可求出第一次相遇时间,根据距离=时间×速度即可得答案.(1)设y 乙=k1x+b1,由图象可知E (1,0),F (6,300),①111106300k b k b +=⎧⎨+=⎩, 解得:116060k b =⎧⎨=-⎩,①y 乙=60x -60.(2)①y 乙=60x -60,点C 横坐标为4.75,①y=60×4.75-60=225,①C (4.75,225),设直线BD 的解析式为y=k 2x+b 2,①点C 在直线BD 上,D (5.5,300),①22224.752255.5300k b k b +=⎧⎨+=⎩,解得:22100250k b =⎧⎨=-⎩,①直线BD 的解析式为y=100x -250,①点B 横坐标为3,①点B 纵坐标为y=100×3-250=50,①AB//x 轴,①甲车发生故障时,距离出发地50千米.(3)由图象可知乙车的速度为300÷(6-1)=60(千米/小时),甲车BD 段的速度为(300-50)÷(5.5-3)=100(千米/小时),①y 乙=60x -60,①当y=50时,60x -60=50,解得:x=116,①第一次相遇时间为甲车出发后116小时,①B (3,50),①第一次相遇后,乙出发76小时后甲车出发,此时乙车距甲车76×60=70(千米),①两车相距30千米,①当乙车出发,甲车没出发时,30÷60=12(小时),当甲车没追上乙车时,(70-30)÷(100-60)=1(小时),当甲车超过乙车时,(70+30)÷(100-60)=52(小时), ①1+76=136(小时),52+76=113(小时). 答:第一次相遇后,经过12小时或136小时或113小时两车相距30千米.26.(1)80;60 (2)12h 7 (3)10h 7或2h 【分析】(1)直接利用图象求出速度和时间即可;(2)分别求出甲、乙两车距A 地的路程(km)y 与甲车出发所用的时间(h)x 的函数关系式,再列方程解答即可;(3)分相遇前和相遇后两种情况进行讨论即可.(1)解:由题意可知,甲车的速度为:160280km/h ÷=,乙车的速度为:240(22)60km/h ÷+=; 故答案为:80;60;(2)解:设1(02)y k x x =<<甲,将(2,160)代入得180k =,()8002y x x ∴=<<甲,设2y k x b =+乙,将(0,240),(4,0)代入得:224040b k b =⎧⎨+=⎩, 解得:260240k b =-⎧⎨=⎩, 60240y x ∴=-+乙,8060240x x ∴=-+, 解得:127x =, ∴甲车出发127h 两车途中首次相遇;(3)解:①相遇前,设甲车出发m 小时两车相距40千米,则806024040m m +=-,, 解得107m =;①相遇后,由图象可知:甲车行驶2h 时,甲车与乙车的距离最大, 此时乙行驶的路程为602120⨯=(千米),甲乙两车的最大距离为16012024040+-=(千米), ∴甲车出发2h 两车相距40千米, 综上所述,甲车出发10h 7或2h 两车相距40千米.27.(1)E (32,32)(2)①AOB①①FOD ,理由见详解;(3) P (0,-3)或(4,1)或(132,72).【分析】(1)解: 连接OE ,过点E 作EG①OC 于点G ,EH①OB 于点H ,当y=0时,-3x+3=0,解得x=1,①A(1,0),当x=0时,y=3,①OB=3,B(0,3),①点D与点C关于y轴对称,C(3,0),OC=3,①D(-3,0),①点E到两坐标轴的距离相等,①EG=EH,①EH①OC,EG①OC,①OE平分①BOC,①OB=OC=3,①CE=BE,①E为BC的中点,①E(32,32);(2)解: ①AOB①①FOD,设直线DE表达式为y=kx+b,则30 33 22k bk b-+=⎧⎪⎨+=⎪⎩,解得:131kb⎧=⎪⎨⎪=⎩,①y=13x+1,①F是直线DE与y轴的交点,①F(0,1),①OF=OA=1,①OB=OD=3,①AOB=①FOD=90°,①①AOB①①FOD;(3)解:①点G与点B关于x轴对称,B(0,3),①点G (0,-3),①C (3,0),设直线GC 的解析式为:y=ax+c , 330c a c =-⎧⎨+=⎩ ,解得:13a c =⎧⎨=-⎩,①y=x -3,,设P (m ,m -3),①当AB=AP 时,整理得:m 2-4m=0,解得:m 1=0,m 2=4,①P (0,-3)或(4,1),①当AB=BP m 2-6m+13=0,①<0故不存在,①当AP=BP 时,解得:m=132,①P (132,72 ),综上所述P (0,-3)或(4,1)或(132,72),。
北师大版八年级上册数学期末考试试卷含答案
北师大版八年级上册数学期末考试试题一、单选题 1.在实数227-,0,506,π,0.7171171117…(相邻两个7之间1的个数逐次加1)中,无理数的个数是( ) A .2个B .3个C .4个D .5个2.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A .1,2,3B .5,12,13C .4,5,7D .9,80,813.点P (-3,4)到坐标原点的距离是( ) A .3B .4C .-4D .54.下列命题中真命题有几个( )①三角形的任意两边之和都大于第三边;①三角形的任意两角之和都大于第三个角;①同位角都相等;①若a =b ,则a b =;①相等的角都是直角;①同角的补角不一定相等; A .1个B .2个C .3个D .4个5.如图,AB①CD ,①A=35°,①C=80°,那么①E 等于( )A .35°B .45°C .55°D .75°6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A .13B .26C .34D .477.点A (3,1y )和点B (-2,2y )都在直线y =-2x +3上,则1y 和2y 的大小关系是() A .12y y =B .12y y >C .12y y <D .不能确定8.如果关于x ,y 的方程组45x by ax =⎧⎨+=⎩与72x y bx ay +=⎧⎨+=⎩的解相同,则a b +的值( )A .1B .2C .-1D .09.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米; ①乙车比甲车晚出发1小时,却早到1小时; ①乙车出发后2.5小时追上甲车; ①当甲、乙两车相距50千米时,54t =或154. 其中正确的结论有( ) A .1个B .2个C .3个D .4个10.已知正比例函数y=kx 的图象经过第一、三象限,则一次函数y=kx ﹣k 的图象可能是下图中的( )A .B .C .D .二、填空题11.-8的立方根是________________.12_____0.5(用“>”或“<”填空). 13.甲、乙、丙三个芭蕾舞团各有10名女演员,她们的平均身高都是165cm ,其方差分别为21.5S =甲,22.5S =乙,20.8S =丙,则________团女演员身高更整齐(填甲、乙、丙中一个).14.如果函数y=(m+1)x+m2﹣1是正比例函数.则m的值是___.15.已知二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-12x-1的交点坐标为____.16.若一直角三角形的两边长为4、5,则第三边的长为________ .17.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,CD的长为______.18.如图,①A1B1A2,①A2B2A3,①A3B3A4,…①AnBnAn+1都是等腰直角三角形,其中点A1,A2,…,An在x轴上,点B1,B2,…,Bn在直线y=x上,已知OA1=1,则OA2021的长为______.三、解答题19.计算:2(2)2-20.解方程组:(1)4 25 x yx y-=⎧⎨+=⎩(2)4=52 232 x yx y--⎧⎨+=⎩21.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出①ABC关于y轴的对称图形①A1B1C1(2)写出点A1,B1,C1的坐标.22.如图,把一块直角三角形①ABC,(①ACB=90°)土地划出一个三角形①ADC后,测得CD=3米,AD=4米,BC=12米,AB=13米,求图中阴影部分土地的面积.23.某单位用汽车和火车向疫区用输两批防疫物资,具体运输情况如下表所示,求每辆汽车和每节火车车厢平均各装物资多少吨?24.某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:(1)求这30户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.25.如图,直线EF分别与直线AB,CD交于点E,F.EM平分①BEF,FN平分①CFE,且EM①FN.求证:AB①CD.26.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?27.某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛其预赛成绩如图:(1)根据上图填写下表(2)根据上表中的平均数和中位数你认为哪班的成绩较好?并说明你的理由参考答案1.B2.B3.D4.B5.B6.D7.C8.A9.B10.D11. -2 4 2【分析】根据立方根、平方根、算术平方根解决此题.【详解】解:-82=-.4.4,42.故答案为:2-,4,2.【点睛】本题主要考查了立方根、平方根、算术平方根,熟练掌握立方根、平方根、算术平方根是解决本题的关键. 12.>【分析】由459<<,得23,故112<与0.5的大小关系. 【详解】解:459<<,23,21131∴--<,即112<,12>, 故答案为:>【点睛】本题主要考查算术平方根的性质以及不等式的性质,熟练掌握算术平方根的性质以及不等式的性质是解题的关键. 13.丙【分析】根据方差越小数据越稳定解答即可.【详解】解:①21.5S =甲,22.5S =乙,20.8S =丙,①222丙甲乙S S S , ①丙团女演员身高更整齐, 故答案为:丙.【点睛】本题考查方差,熟知方差越小数据越稳定是解答的关键. 14.1【详解】解:由正比例函数的定义可得:m2﹣1=0,且m+1≠0,解得,m=1;故答案为:1.【点睛】此题主要考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.15.(-4,1)【详解】试题分析:①二元一次方程组5{22x yx y-=-+=-的解为4{1xy=-=,①直线l1:y=x+5与直线l2:112y x=--的交点坐标为(﹣4,1),故答案为(﹣4,1).考点:一次函数与二元一次方程(组).16或3##3【详解】解:当4和5;当53=;3.17.3cm【分析】由勾股定理求得AB=10cm,然后由翻折的性质求得BE=4cm,设DC=xcm,则BD=(8-x)cm,DE=xcm,在①BDE中,利用勾股定理列方程求解即可.【详解】解:①在Rt①ABC中,两直角边AC=6cm,BC=8cm,10AB cm∴=().由折叠的性质可知:DC=DE,AC=AE=6cm,①DEA=①C=90°,①BE=AB-AE=10-6=4(cm ),①DEB=90°,设DC=xcm,则BD=(8-x)cm,DE=xcm,在Rt①BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3.故答案为3cm.18.20202【分析】根据①A1B1A2为等腰直角三角形,得出A1B1⊥OA2,①B1A2O=45°,根据点B1在直线y=x上,①B1Ox=45°=①B1A2O,OA1= A1A2,即点A1为OA2的中点,根据OA1=1,得出OA2=2OA1=2,根据①A2B2A3为等腰直角三角形,得出A2B2⊥OA2,①B2A3O=45°=①B2OA3,得出OA2=A2A3=2,可求OA3=OA2+A2A3=2+2=4=22,根据①A3B3A4,…①AnBnAn+1都是等腰直角三角形,可得①B3A4O=…=①BnAn+1O=45°=①BnOAn,B3A3①OA4,…,Bn-1An-1①OAn,得出OA4=2OA3=2×4=8=23,…OA n=2OAn-1=2×2n-2=2n-1,当n=2021时,代入求值即可.【详解】解:①①A1B1A2为等腰直角三角形,①A1B1⊥OA2,①B1A2O=45°,又①点B1在直线y=x上,①①B1Ox=45°=①B1A2O①OA1= A1A2,即点A1为OA2的中点,又①OA1=1,①A1B1=A1A2=1 .OA2=2OA1=2,①①A2B2A3为等腰直角三角形,点B2在直线y=x上,①A2B2⊥OA2,①B2A3O=45°=①B2OA3,①OA2=A2A3=2,①OA3=OA2+A2A3=2+2=4=22,①①A3B3A4,…①AnBnAn+1都是等腰直角三角形,点B3,Bn在直线y=x上,①①B3A4O=…=①BnAn+1O=45°=①B3OA4=①BnOAn,B3A3①OA4,…,Bn-1An-1①OAn,①OA4=2OA3=2×4=8=23,…①OA n=2OAn-1=2×2n-2=2n-1当n=2021时,①OA2021=22021-1=22020.故答案为:22020.【点睛】本题主要考查一次函数图象上点的坐标特征,规律型:图形的变化类,等腰直角三角形性质.19.(1)1(2)-2【分析】(1)将二次根式化简,合并同类二次根式,计算除法,最后计算减法即可; (2)根据平方差公式和完全平方公式去括号,再合并同类二次根式. (1)22- =3-2 =1; (2)解:原式=2222⎡⎤+-⎣-⎦=3-(3++2)=3-3-2=--2.【点睛】此题考查了二次根式的混合运算,正确掌握运算顺序及运算法则及公式是解题的关键.20.(1)31x y =⎧⎨=-⎩(2)86x y =-⎧⎨=⎩【分析】(1)用加法消元法求解; (2)用减法消元法求解. (1)①425x y x y -=⎧⎨+=⎩①② ①+①得:39x =, 3x =,将x =3代入①中得:34y -=,得1y =-,①原方程组的解是31x y =⎧⎨=-⎩. (2)将方程组变形为452232x y x y +=-⎧⎨+=⎩①②, ①2⨯,得464x y +=①,①-①,得6y =,把6y =代入①,得8x =-.①原方程组的解是86x y =-⎧⎨=⎩. 21.(1)见解析(2)A 1(1,5),B 1(1,0),C 1(4,3)【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)根据A 1,B 1,C 1的位置写出坐标即可.(1)解:所作图形①A 1B 1C 1如下所示:(2)解:根据所作图形知:A 1(1,5),B 1(1,0),C 1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y 轴对称的点,纵坐标相同,横坐标互为相反数.22.阴影部分土地的面积为24平方米.【分析】先由勾股定理求出AC=5米,再由勾股定理的逆定理证出①ADC=90°,最后由三角形面积公式求解即可.【详解】解:①①ACB =90°,BC =12,AB =13,①AC 5,① 32+42=52,CD =3,AD =4,AC =5,即 CD 2+AD 2=AC 2,①①ADC =90°,①S 阴影=-ABC ACD S S =1122AC BC CD AD ⨯-⨯ 11512342422=⨯⨯-⨯⨯=(平方米). 【点睛】本题考查了勾股定理的应用以及勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.23.每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨【分析】设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨,列方程得5214034224x y x y +=⎧⎨+=⎩,计算即可.【详解】解:设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨根据题意得:5214034224x y x y +=⎧⎨+=⎩, 解得: 850x y =⎧⎨=⎩. 答:每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨.【点睛】此题考查了二元一次方程组的实际应用,正确理解题意是解题的关键.24.(1)众数是7,中位数是7;(2)9300吨;(3)以中位数或众数作为月基本用水量较为合理.【分析】(1)根据中位数和众数的定义求解即可,(2)用社区的总户数乘以平均数列出算式计算即可,(3)根据平均数、众数、中位数的意义,结合题意选择合适的量即可.【详解】(1)解:1(3443557118492101) 6.230x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 众数是7,中位数是7 (2)1500 6.29300⨯=(吨)①该社区月用水量约为9300吨(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.25.见解析【分析】根据平行线的性质以及角平分线的定义,即可得到①FEB=①EFC ,进而得出AB①CD .【详解】解:证明:①EM①FN ,①①FEM=①EFN ,又①EM 平分①BEF ,FN 平分①CFE ,①①BEF=2①FEM ,①EFC=2①EFN ,①①FEB=①EFC ,①AB①CD .【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟记角平分线的定义和平行线的性质.26.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.27.(1)8.5;0.7;8;(2)甲班的成绩较好.【分析】(1)根据众数、方差和中位数的定义及公式分别进行解答即可;(2)从平均数、中位数两个角度分别进行分析即可;【详解】解:(1)甲班的众数是8.5;甲班的方差是:0.7;乙班的中位数是8;(2)因为甲、乙两班成绩的平均数相同,而甲班成绩的中位数高于乙班的中位数,所以甲班的成绩较好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷第1页,总4页
最新北师大版八年级上册数学期末试卷1
一、选择题
1.某班数学兴趣小组10名同学的年龄情况如下表:
年龄(岁) 12 13 14 15
人数 1 4 4 1
则这10名同学年龄的平均数和中位数分别是( )
A.13.5,13.5 B.13.5,13C.13,13.5 D.13,14
2.在平面直角坐标系中,点P(2,3)关于y轴的对称点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.下列各式计算正确的是().
A.236m m m
B.11416163333
C.33323235
D.211(1)(1)111aaaaa(a<1)
4.一次函数y=kx﹣k(k<0)的图象大致是( )
A.B.C.D.
5.一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分
别()
A.4,4 B.3,4 C.4,3 D.3,3
6.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( )
A.12米 B.13米 C.14米 D.15米
7.如果(x+y-5)2+|3y-2x+10|=0,那么x、y的值分别是( )
A.3,2
B.2,3
C.0,5
D.5,0
8.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C
嵌有一圈金属丝,则这圈金属丝的周长最小为()
试卷第2页,总4页
A.42dm B.22dm C.25dm D.45dm
9.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和
为( ).
A.150cm2B.200cm2 C.225cm2 D.无法计算
10.如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,
分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
A.1 B.3 C.3(m﹣1) D.
试卷第3页,总4页
第II卷(非选择题)
请点击修改第II卷的文字说明
二、填空题
11.已知点P(a-3,2a+4)在x轴上,则a= 。
12. 已知是方程的解,则。
13.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得
关于x的方程kx+b=0的解为 .
14.一次函数y=-2x+4的图象与x轴交点坐标是,与y轴交点坐标是 ,图象
与坐标轴所围成的三角形面积是
15.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的
高为.
16.点P(5,﹣3)关于x轴对称的点P′的坐标为.
17.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需
米.
18.一次函数y= 3 x + 2的图象不经过第象限.
19.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴
围成的三角形面积为4,那么b1﹣b2等于 .
三、计算题
20.解方程组x3y13x2y8
21.解下列方程组.
12y
x
32ymx
m
试卷第4页,总4页
(1)(用代入法)25,36.xyxy
(2)(用加减法)5,233.484stst
四、解答题
22.已知y与x+2成正比例,当x=1时,y=-6,点(a,2)满足这个函数,求a.(6分)
23.(本小题7分)汽车由北京驶往相距千米的沈阳,汽车的速度是每小时千米,
t小时后,汽车距沈阳s
千米.
(1)求s与t的函数关系式,并写出自变量的取值范围;
(2)经过小时后,汽车离沈阳多少千米?
(3)经过多少小时后,汽车离沈阳还有千米?
24. (2011安徽芜湖,13,5分)方程组的解是.
84070
t
2
140
237,38.xyxy