点和直线位置关系

合集下载

空间点、直线、平面之间的位置关系-高一数学同步精讲课件(人教A版2019必修第二册)

空间点、直线、平面之间的位置关系-高一数学同步精讲课件(人教A版2019必修第二册)
(3)利用生活中的实物,如墙面、电线、笔代表线面进行判断
应用新知
题型三:异面直线的判定(逻辑推理)
例5.如图, ∩ = , ∉ , ⊂ , ∉ .直线与具有怎样的位置关系?
为什么?
解:直线与是异面直线.理由如下.
若直线与直线不是异面直线,则它们相交或平行.
设它们确定的平面为,则 ∈ , ⊂ .
思考:分别在两个平面内的两条直线是否一定异面?
b
a

a


a
b


b

总结新知
空间中直线与直线的位置关系
共面直线
相交直线:在同一平面内,有且只有一个公共点;
平行直线:在同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点.
平行直线
//
相交直线
∩=
异面直线
与异面
探究新知
A.平行
B.相交
C.异面
解:因为∥,所以与没有公共点,
又 ⊂ , ⊂ ,所以与没有公共点,
则与的关系为平行或异面.
选D
D.平行或异面
)
应用新知
题型二:空间位置关系的判断(直观想象)
关于点、直线、平面位置关系的判断
(1)根据位置关系的分类,利用直观想象判断;
(2)借助熟悉的几何体,如长方体进行判断;
活动. ①一个平面把空间分为几部分?
②二个平面把空间分为几部分?
③三个平面把空间分为几部分?
02
典 型 例 题 分 析
应用新知
题型一:用符号语言描述位置关系(数学抽象)
例1.如图,用符号表示下列图形中直线、平面之间的位置关系.
解:在(1)中, ∩ = , ∩ = , ∩ = .

高中数学必修2点、直线、平面之间的位置关系(1)

高中数学必修2点、直线、平面之间的位置关系(1)

1.空间中的平行关系1.集合的语言:点A 在直线l 上,记作: A ∈l ;点A 在平面α内,记作: A ∈α;直线在平面α内(即直线上每一个点都在平面α内),记作l ⊂α ; 注意:点A 是元素,直线是集合,平面也是集合。

2.平面的三个公理:(1)公理一:如果一条直线上的两点在同一个平面内那么这条直线上所有的点都在这个平而内.符号语言表述:A ∈l ,B ∈l , A ∈α, B ∈α⇒l ⊂α ; (2)公理二:经过不在同一条直线上的三点,有且只有一个平面,即不共线的三点确定一个平面.符号语言表述: A,B,C 三点不共线⇒有且只有一个平面α,使A ∈a, B ∈a, C ∈(3)公理三:如果不重合的两个平面有一个公共点,那么它们 有且只有一条过这个点的公共直线,符号语言表述: A ∈α∩β⇒α∩β= a, A ∈a.3. 平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

【例1.【解析】(1)D;直线上有两点在一个平面内,则这条直线一定在平面内,公理1保证了A 正确;公理2保证了C 正确;如果两个平面有两个公共点,则它们的交线是过这两点的直线,公理3保证了B 正确;直线不在平面内,可以与平面有一个交点,故D 错误.(2)①错误,如果这三条直线交于一点,比如过正方体同一顶点的三条棱就无法确定一个平面;②正确,两条相交直线确定一个平面;③错误,必须是不共线的三点,如果是共线三点,则有无数个平面;④正确,两条相交的对角线确定一个平面,四个顶点都在这个平面内,故是平面图形;⑤错误,两个平面若相交,公共点必是一条直线;⑥错误;若四点共线,则可以有无穷多个平面过这四点,若是对不共线的四点,该命题正确.【备选】 已知点A ,直线l ,平面α,① αα∉⇒⊄∈A l l A , ② αα∈⇒∈∈A l l ,A ③ αα∉⇒⊂∉A l l A , ④ αα⊄⇒∉∈l A l A , 以上说法表达正确的有______________【解析】④直线不在平面内,可以与平面有一个交点,故①错误; 直线是点集,故只能用l ⊂α,②错误;直线是平面的真子集,故不在直线上的点可以在平面内,③错误; 一条直线在一个平面内,则直线上任一点都在平面内,故④正确。

点直线平面之间的位置关系知识点总结

点直线平面之间的位置关系知识点总结

点、直线、平面之间的位置关系知识点总结立体几何知识点总结1.直线在平面内的判定1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.2.存在性和唯一性定理1过直线外一点与这条直线平行的直线有且只有一条;2过一点与已知平面垂直的直线有且只有一条;3过平面外一点与这个平面平行的平面有且只有一个;4与两条异面直线都垂直相交的直线有且只有一条;5过一点与已知直线垂直的平面有且只有一个;6过平面的一条斜线且与该平面垂直的平面有且只有一个;7过两条异面直线中的一条而与另一条平行的平面有且只有一个;8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时;射影是一条线段;当图形所在平面不与射影面垂直时;射影仍是一个图形.4射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:i射影相等的两条斜线段相等;射影较长的斜线段也较长;ii相等的斜线段的射影相等;较长的斜线段的射影也较长;iii垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.异面直线所成的角1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.2取值范围:0°<θ≤90°.3求解方法①根据定义;通过平移;找到异面直线所成的角θ;②解含有θ的三角形;求出角θ的大小.5.直线和平面所成的角1定义和平面所成的角有三种:i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.2取值范围0°≤θ≤90°3求解方法①作出斜线在平面上的射影;找到斜线与平面所成的角θ.②解含θ的三角形;求出其大小.③最小角定理斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角1半平面直线把平面分成两个部分;每一部分都叫做半平面.2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一半平面组成.若两个平面相交;则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是0°<θ≤180°3二面角的平面角①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这两条射线所组成的角叫做二面角的平面角.如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.③找或作二面角的平面角的主要方法.i定义法ii垂面法iii三垂线法Ⅳ根据特殊图形的性质4求二面角大小的常见方法①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.2求点面距离常用的方法:1直接利用定义求①找到或作出表示距离的线段;②抓住线段所求距离所在三角形解之.2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4转化法将点到平面的距离转化为平行直线与平面的距离来求.8.直线和平面的距离1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.2求线面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.③作辅助垂直平面;把求线面距离转化为求点线距离.9.平行平面的距离1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.2求平行平面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.10.异面直线的距离1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.2求两条异面直线的距离常用的方法①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。

高中数学 点、直线、平面之间的位置关系

高中数学 点、直线、平面之间的位置关系

点、直线、平面之间的位置关系知识回顾1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.空间两条直线的位置关系(1)空间两条直线的位置关系有且只有三种:相交、平行、异面.(2)异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线.(3)异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).3. 线面、面面的位置关系1.一条直线a和一个平面α有且仅有a⊂α,a∩α=A或a∥α三种位置关系.(用符号语言表示)2.两平面α与β有且仅有α∥β或α∩β=l两种位置关系(用符号语言表示).题型讲解题型一概念例1、下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 M,宽是20 M;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为()A.1 B.2 C.3 D.4答案:A例2、若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈b⊂βC.M⊂b⊂β D.M⊂b∈β答案:B例3、如图所示正方体ABCD-A1B1C1D1中,E、F分别为CC1和AA1的中点,画出平面BED1F和平面ABCD的交线.解析:如图所示,在平面ADD1A1内延长D1F与DA,交于一点P,则P∈平面BED1F,∵DA⊂平面ABCD,∴P∈平面ABCD,∴P是平面ABCD与平面BED1F的一个公共点,又B是两平面的一个公共点,∴PB为两平面的交线.例4、空间四边形ABCD的两条对角线AC、BD相互垂直,顺次连接四边中点的四边形一定是()A.空间四边形 B.矩形C.菱形 D.正方形答案:B题型二异面直线例5、已知正方体ABCD—A′B′C′D′中:(1)BC′与CD′所成的角为________;(2)AD与BC′所成的角为________.答案:(1)60°(2)45°解析连接BA′,则BA′∥CD′,连接A′C′,则∠A′BC′就是BC′与CD′所成的角.由△A′BC′为正三角形,知∠A′BC′=60°,由AD∥BC,知AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.例6、一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确结论的序号为________.答案:①③解析把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.题型三线面关系例7、已知直线a∥平面α,直线b⊂α,则a与b的位置关系是()A.相交 B.平行C.异面 D.平行或异面答案:D例8、三个互不重合的平面把空间分成6部分时,它们的交线有()A .1条B .2条C .3条D .1条或2条 答案:D例9、平面α∥β,且a ⊂α,下列四个结论: ①a 和β内的所有直线平行; ②a 和β内的无数条直线平行; ③a 和β内的任何直线都不平行; ④a 和β无公共点. 其中正确的个数为( )A .0B .1C .2D .3 答案:C跟踪训练1. 文字语言叙述“平面内有一条直线,则这条直线上的一点必在这个平面内”用符号表述是( )A .⎭⎪⎬⎪⎫A ⊂αA ⊂a ⇒A ⊂α B .⎭⎪⎬⎪⎫a ⊂αA ∈a ⇒A ∈α C .⎭⎪⎬⎪⎫a ∈αA ⊂a ⇒A ∈α D .⎭⎪⎬⎪⎫a ∈αA ∈a ⇒A ⊂α 答案:B2. 若直线a 、b 与直线l 相交且所成的角相等,则a 、b 的位置关系是( ) A .异面 B .平行C .相交D .三种关系都有可能答案:D3.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD)B .MN ≤12(AC +BD)C .MN =12(AC +BD)D .MN<12(AC +BD)答案:D4.正方体AC 1中,E 、F 分别是面A 1B 1C 1D 1和AA 1DD 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90° 答案:B5.已知a 是一条直线,过a 作平面β,使β∥平面α,这样的β( ) A .只能作一个 B .至少有一个 C .不存在 D .至多有一个答案:D6.正方体ABCD -A 1B 1C 1D 1中,平面BA 1C 1和平面ACD 1的交线与棱CC 1的位置关系是________,截面BA 1C 1和直线AC 的位置关系是________.答案:平行 平行 解析:如图所示,。

【新人教版】数学必修二第八章 8.4.2空间点、直线、平面之间的位置关系

【新人教版】数学必修二第八章 8.4.2空间点、直线、平面之间的位置关系

【新人教版】数学必修二第八单元8.4.2 空间点、直线、平面之间的位置关系学习目标 1.了解空间两直线间的位置关系.2.理解空间直线与平面的位置关系.3.掌握空间平面与平面的位置关系.知识点一空间两直线的位置关系1.异面直线(1)定义:不同在任何一个平面内的两条直线.(2)异面直线的画法(衬托平面法)如图①②③所示,为了表示异面直线不共面的特点,作图时,通常用一个或两个平面来衬托.(3)判断两直线为异面直线的方法①定义法;②两直线既不平行也不相交.2.空间两条直线的三种位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线:在同一平面内,有且只有一个公共点平行直线:在同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点知识点二直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点有无数个公共点只有1个公共点没有公共点符合表示a⊂αa∩α=A a∥α图形表示知识点三平面与平面的位置关系位置关系两平面平行两平面相交公共点没有公共点有无数个公共点(在一条直线上)符号表示α∥βα∩β=l图形表示思考平面平行有传递性吗?答案有若α,β,γ为三个不重合的平面,且α∥β,β∥γ,则α∥γ.1.分别在两个平面内的两条直线一定是异面直线.(×)2.两条直线无公共点,则这两条直线平行.(×)3.若直线l上有无数个点不在平面α内,则l∥α.(×)4.若两个平面都平行于同一条直线,则这两个平面平行.(×)一、两直线位置关系的判定例1如图,在长方体ABCD-A1B1C1D1中,(1)直线A1B与直线D1C的位置关系是________;(2)直线A1B与直线B1C的位置关系是________;(3)直线D1D与直线D1C的位置关系是________;(4)直线AB与直线B1C的位置关系是________.答案(1)平行(2)异面(3)相交(4)异面解析(1)在长方体ABCD-A1B1C1D1中,A1D1∥BC,A1D1=BC,∴四边形A1BCD1为平行四边形,∴A1B∥D1C.(2)直线A1B与直线B1C不同在任何一个平面内.(3)直线D1D与直线D1C相交于点D1.(4)直线AB与直线B1C不同在任何一个平面内.反思感悟判断空间两条直线位置关系的决窍(1)建立空间观念全面考虑两条直线平行、相交和异面三种位置关系,特别关注异面直线.(2)重视长方体、正方体等常见几何体模型的应用,会举例说明两条直线的位置关系.跟踪训练1若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.平行B.异面C.相交D.平行、相交或异面答案 D解析可借助长方体来判断.如图,在长方体ABCD-A′B′C′D′中,A′D′所在直线为a,AB所在直线为b,已知a和b是异面直线,b和c是异面直线,则c 可以是长方体ABCD-A′B′C′D′中的B′C′,CC′,DD′.故a和c可以平行、相交或异面.二、直线与平面的位置关系例2(1)若直线上有一点在平面外,则下列结论正确的是()A.直线上所有的点都在平面外B.直线上有无数多个点都在平面外C.直线上有无数多个点都在平面内D.直线上至少有一个点在平面内(2)下列命题中正确的个数是()①如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面;②如果直线a和平面α满足a∥α,那么a与平面α内的任何一条直线平行;③如果直线a,b和平面α满足a∥b,a∥α,b⊄α,那么b∥α.A.0B.1C.2D.3答案(1)B(2)B解析(1)直线上有一点在平面外,则直线不在平面内,故直线上有无数多个点在平面外.(2)如图,在正方体ABCD-A′B′C′D′中,AA′∥BB′,AA′在过BB′的平面ABB′A′内,故命题①不正确;AA′∥平面BCC′B′,BC⊂平面BCC′B′,但AA′不平行于BC,故命题②不正确;假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即命题③正确.故选B.反思感悟在判断直线与平面的位置关系时,三种情形都要考虑到,避免疏忽或遗漏,另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,便于作出正确判断,避免凭空臆断.跟踪训练2下列说法:①若直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b⊂α,那么直线a平行于平面α内的无数条直线.其中正确的个数为()A.0B.1C.2D.3答案 B解析对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴l不一定平行于α,①错误;对于②,∵直线a在平面α外包括两种情况:a∥α和a与α相交,∴a和α不一定平行,②错误;对于③,∵a∥b,b⊂α,那么a⊂α或a∥α,a与平面α内的无数条直线平行,③正确.三、平面与平面的位置关系例3在以下三个命题中,正确的命题是()①平面α内有两条直线和平面β平行,那么这两个平面平行;②平面α内有无数条直线和平面β平行,则α与β平行;③在平面α,β内分别有一条直线,这两条直线互相平行,那么这两个平面平行或相交.A.①②B.②③C.③D.①③答案 C解析如图所示,在正方体ABCD-A1B1C1D1中,对于①,平面AA1D1D 中,AD∥平面A1B1C1D1,分别取AA1,DD1的中点E,F,连接EF,则EF∥平面A1B1C1D1,但平面AA1D1D与平面A1B1C1D1是相交的,交线为A1D1,故命题①错;对于②,平面AA1D1D中,与平面A1B1C1D1平行的直线有无数条,但平面AA1D1D与平面A1B1C1D1不平行,而是相交于直线A1D1,故命题②错.命题③是正确的.反思感悟利用正方体(或长方体)这个“百宝箱”能有效地判断与两个平面的位置关系有关命题的真假,另外先假设所给定的结论成立,看是否能推出矛盾,也是一种判断两平面位置关系的有效方法.跟踪训练3已知两平面α,β平行,且a⊂α,下列四个命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③直线a与β内任何一条直线都不垂直;④a与β无公共点.其中正确命题的个数是()A.1B.2C.3D.4答案 B解析①中a不能与β内的所有直线平行而是与无数条直线平行,有一些是异面,故①错误;②正确;③中直线a与β内的无数条直线垂直,故③错误;④根据定义a与β无公共点,故④正确.1.如果直线a∥平面α,那么直线a与平面α内的(请选择最贴切的)()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交答案 D解析直线a∥平面α,则a与α无公共点,a与α内的直线均不相交.2.与两个相交平面的交线平行的直线和这两个平面的位置关系是()A.都平行B.都相交C.在两个平面内D.至少与其中一个平面平行答案 D解析这条直线与两个平面的交线平行,有两种情形,其一是分别与这两个平面平行,其二是在一个平面内且平行于另一个平面,符合至少与一个平面平行.3.下列命题中,正确的有()①平行于同一直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两个平面平行.A.0个B.1个C.2个D.3个答案 C4.过平面外两点作该平面的平行平面,可以作()A.0个B.1个C.0个或1个D.1个或2个答案 C解析平面外两点的连线与已知平面的位置关系有两种情况:①直线与平面相交,可以作0个平行平面;②直线与平面平行,可以作1个平行平面.5.下列命题:①两个平面有无数个公共点,则这两个平面重合;②若l,m是异面直线,l∥α,m∥β,则α∥β.其中错误命题的序号为________.答案①②解析对于①,两个平面相交,则有一条交线,也有无数多个公共点,故①错误;对于②,借助于正方体ABCD-A1B1C1D1,AB∥平面DCC1D1,B1C1∥平面AA1D1D,又AB与B1C1异面,而平面DCC1D1与平面AA1D1D相交,故②错误.1.知识清单:(1)两直线的位置关系.(2)直线与平面的位置关系.(3)平面与平面的位置关系.2.方法归纳:举反例、特例.3.常见误区:异面直线的判断.1.若空间两条直线a和b没有公共点,则a与b的位置关系是()A.共面B.平行C.异面D.平行或异面答案 D解析若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.2.与同一平面平行的两条直线()A.平行B.相交C.异面D.平行、相交或异面答案 D解析与同一平面平行的两条直线的位置关系有三种情况:平行、相交或异面.3.棱柱的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.无法确定答案 A4.长方体的一条体对角线与长方体的棱所组成的异面直线有()A.2对B.3对C.6对D.12对答案 C解析如图所示,在长方体中没有与体对角线平行的棱,要求与长方体体对角线AC1异面的棱所在的直线,只要去掉与AC1相交的六条棱,其余的都与体对角线异面,∴与AC1异面的棱有BB1,A1D1,A1B1,BC,CD,DD1,∴长方体的一条体对角线与长方体的棱所组成的异面直线有6对,故选C.5.(多选)以下四个命题中正确的有()A.三个平面最多可以把空间分成八部分B.若直线a⊂平面α,直线b⊂平面β,则“a与b相交”与“α与β相交”等价C.若α∩β=l,直线a⊂平面α,直线b⊂平面β,且a∩b=P,则P∈lD.若n条直线中任意两条共面,则它们共面答案AC解析对于A,正确;对于B,逆推“α与β相交”推不出“a与b 相交”,也可能a∥b,故B错误;对于C,正确;对于D,反例:正方体的侧棱任意两条都共面,但这4条侧棱却不共面,故D错误.所以正确的是AC.6.若点A∈α,B∉α,C∉α,则平面ABC与平面α的位置关系是________. 答案相交解析∵点A∈α,B∉α,C∉α,∴平面ABC与平面α有公共点,且不重合,∴平面ABC与平面α的位置关系是相交.7.如果空间的三个平面两两相交,则下列判断正确的是________(填序号).①不可能只有两条交线;②必相交于一点;③必相交于一条直线;④必相交于三条平行线.答案①解析空间的三个平面两两相交,可能只有一条交线,也可能有三条交线,这三条交线可能交于一点.8.在下列图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填上所有正确答案的序号)答案②④解析题图①中,GH∥MN;题图②中,G,H,N三点共面,但M∉平面GHN,所以GH与MN异面;题图③中,连接GM,则GM∥HN,所以GH与MN共面;题图④中,G,M,N共面,但H∉平面GMN,所以GH与MN异面.9.如图所示,在长方体ABCD-A1B1C1D1中,直线B1D1与长方体的六个面之间的位置关系如何?解B1D1在平面A1C1内,B1D1与平面BC1,平面AB1,平面AD1,平面CD1都相交,B1D1与平面AC平行.10.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的位置关系并证明你的结论.解a∥b,a∥β.证明如下:由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a,b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点.又a⊂α,∴a与β无公共点,∴a∥β.11.三棱台的一条侧棱所在直线与其对面所在的平面之间的关系是()A.相交B.平行C.直线在平面内D.平行或直线在平面内答案 A解析延长各侧棱可恢复成棱锥的形状,所以三棱台的一条侧棱所在直线与其对面所在的平面相交.12.若平面α与β的公共点多于两个,则()A.α,β可能只有三个公共点B.α,β可能有无数个公共点,但这无数个公共点不在一条直线上C.α,β一定有无数个公共点D.以上均不正确答案 C解析若平面α与β的公共点多于两个,则平面α与β相交或重合,故C项正确.13.在四棱锥P-ABCD中,各棱所在的直线互相异面的有________对.答案8解析以底边所在直线为准进行考察,因为四边形ABCD是平面图形,4条边在同一平面内,不可能组成异面直线,而每一边所在直线能与2条侧棱所在直线组成2对异面直线,所以共有4×2=8(对)异面直线.14.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;④若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是____________.答案③解析①错,a与b也可能异面;②错,a与b也可能平行;③正确,∵α∥β,∴α与β无公共点,又∵a⊂α,b⊂β,∴a与b无公共点,那么a∥b或a与b异面;④错,a与β也可能平行.15.如图是一个正方体的展开图,则在原正方体中()A.AB∥CDB.AD∥EFC.CD∥GHD.AB∥GH答案 C解析把正方体的展开图还原成正方体,得到如图所示的正方体,由正方体性质得,AB与CD相交,AD与EF异面,CD与GH平行,AB与GH异面. 16.如图,已知平面α和β相交于直线l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.解平面ABC与平面β的交线与l相交.证明如下:∵AB与l不平行,且AB⊂α,l⊂α,∴AB与l是相交直线.设AB∩l=P,则点P∈AB,点P∈l.又∵AB⊂平面ABC,l⊂β,∴P∈平面ABC且P∈平面β,即点P是平面ABC与平面β的一个公共点,而点C也是平面ABC与平面β的一个公共点,又∵P,C不重合,∴直线PC就是平面ABC与平面β的交线,即平面ABC∩平面β=直线PC,而直线PC∩l=P,∴平面ABC与平面β的交线与l相交.。

高一数学知识点总结_点、直线、平面之间的位置关系

高一数学知识点总结_点、直线、平面之间的位置关系

高一数学知识点总结_点、直线、平面之间的位置关系高一数学怎么学?减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;今天小编在这给大家整理了高一数学知识点总结,接下来随着小编一起来看看吧!高一数学知识点总结(一)空间点、直线、平面之间的位置关系以下知识点需要我们去理解,记忆。

1、数学所说的直线是无限延伸的,没有起点,也没有终点。

2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。

3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

4、过不在同一直线上的三点,有且只有一个平面。

5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

6、平行于同一条直线的两条直线平行。

7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。

8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。

9、做位置关系的题目,可以借助实物,直观理解。

一、直线与方程考试内容及考试要求考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系。

高一数学知识点总结(二)直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

空间点、直线、平面之间的位置关系


3.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB, BC,CD,DA的中点,则 (1)当AC,BD满足条件_A_C__=__B_D_时,四边形EFGH为菱形;
∵四边形EFGH为菱形, ∴EF=EH, ∵EF 綉12AC,EH 綉12BD, ∴AC=BD.
(2) 当 AC , BD 满 足 条 件 _A__C_=__B_D__且__A_C_⊥__B_D__ 时 , 四 边 形 EFGH为正方形.
∴CE,D1F,DA三线共点.
教师备选
如 图 所 示 , 已 知 在 正 方 体 ABCD - A1B1C1D1 中 , E , F 分 别 为 D1C1 , C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:
(1)D,B,F,E四点共面;
∵EF是△D1B1C1的中位线, ∴EF∥B1D1. 在正方体ABCD-A1B1C1D1中,B1D1∥BD, ∴EF∥BD. ∴EF,BD确定一个平面,即D,B,F,E四点共面.
(1)E,C,D1,F四点共面;
如图所示,连接CD1,EF,A1B, ∵E,F分别是AB,AA1的中点, ∴EF∥A1B,且 EF=12A1B. 又∵A1D1∥BC,A1D1=BC, ∴四边形A1BCD1是平行四边形, ∴A1B∥CD1,∴EF∥CD1, ∴EF与CD1能够确定一个平面ECD1F, 即E,C,D1,F四点共面.
方法一 如图,连接C1P,因为ABCD-A1B1C1D1是正方体,且P为 B1D1的中点,所以C1P⊥B1D1, 又C1P⊥BB1,所以C1P⊥平面B1BP. 又BP⊂平面B1BP,所以C1P⊥BP. 连接BC1,则AD1∥BC1,所以∠PBC1为直线PB与AD1所成的角. 设正方体ABCD-A1B1C1D1的棱长为2, 则在 Rt△C1PB 中,C1P=12B1D1= 2, BC1=2 2,sin∠PBC1=PBCC11=12, 所以∠PBC1=π6.

必修二2.1.空间点、直线、平面之间的位置关系(教案)

人教版新课标普通高中◎数学 2 必修(A 版)第二章点、直线、平面之间的位置关系2. 1空间点、直线、平面之间的位置关系教案 A第 1 课时教学内容: 2. 1. 1平面教学目标一、知识与技能1.利用生活中的实物对平面进行描述,掌握平面的表示法及水平放置的直观图;2.掌握平面的基本性质及作用,提高学生的空间想象能力.二、过程与方法在师生的共同讨论中,形成对平面的感性认识.三、情感、态度与价值观通过实例认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.教学重点、难点教学重点:1.平面的概念及表示;2.平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言.教学难点:平面基本性质的掌握与运用.教学关键:让学生理解平面的概念,熟记平面的性质及性质的应用,使学生对平面的概念及其性质由感性认识上升到理性认识.教学突破方法:对三个公理要结合图形进行理解,清楚其用途.教法与学法导航教学方法:探究讨论,讲练结合法.学习方法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标.教学准备教师准备:投影仪、投影片、正(长)方形模型、三角板.学生准备:直尺、三角板.教学过程教学教学内容师生互动设计过程意图创设什么是平面?师:生活中常见的如黑板、情境一些能看得见的平面实桌面等,给我们以平面的印象,形成平导入例 .你们能举出更多例子吗?那么面的概新课平面的含义是什么呢?这就是念我们这节课所要学习的内容 .1教师备课系统──多媒体教案续上表1.平面含义随堂练习判定下列命题是否正确:主题① 书桌面是平面;探究② 8 个平面重叠起来要比合作 6 个平面重叠起来厚;交流③ 有一个平面的长是50m,宽是 20m;④平面是绝对的平,无厚度,可以无限延展的抽象的数学概念 .师:以上实物都给我们以平面的印象,几何里所说加强对知的平面,就是从这样的一些识的理解物体中抽象出来的,但是,培养,自几何里的平面是无限延展觉钻研的的 .学习习惯 . 数形结合,加深理解 .2.平面的画法及表示师:在平面几何中,怎(1)平面的画法:水平放样画直线?(一学生上黑板置的平面通常画成一个平行四画)边形,锐角画成 45°,且横边之后教师加以肯定,解说、画成邻边的 2 倍长(如图).类比,将知识迁移,得出平面的画法:D CαA B如果几个平面画在一起,主题当一个平面的一部分被另一个探究平面遮住时,应画成虚线或不合作画(打出投影片).交流(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC 、平面 ABCD等.(3)平面内有无数个点,平面可以看成点的集合 .点 A 在平面α内,记作:A ∈ α ; 点B 在平面α外,记作: Bα.β通过类比α探索,培养学生知识迁移能β力,加强知识的系统性 .α·B·Aα2续上表人教版新课标普通高中◎数学 2 必修(A 版)3.平面的基本性质公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.A Bα· C··教师引导学生思考教材P41 的思考题,让学生充分发表自己的见解 .师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出公理主题探究合作交流符号表示为A ∈ LB∈ L? L ? α.A ∈ αB∈ α公理 1:判断直线是否在平面内.公理 2:过不在一条直线上的三点,有且只有一个平面 .A· Bα·L符号表示为: A 、B、C 三点不共线 ? 有且只有一个平面α,使A ∈ α、 B∈ α、 C∈ α.公理 2 作用:确定一个平面的依据 .公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 .βPα·L符号表示为: P∈ α∩β? α∩β =L,且P∈ L .公理 3 作用:判定两个平面是否相交的依据 .1.教师引导学生阅读教材P42 前几行相关内容,并加以解析.师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等.通过类比引导学生归纳出公理探索,培2.养学生知教师用正(长)方形识迁移能模型,让学生理解两个平力,加强面的交线的含义.知识的系注意:( 1)公理中“有统性 .且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形唯一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“ 有且只有一个平面”也可以说成“确定一个平面 . ”引导学生阅读P42 的思考题,从而归纳出公理3.3教师备课系统──多媒体教案续上表拓展 4. 教材 P43 例 1教师及时评价和纠正同创新通过例子,让学生掌握图形学的表达方法,规范画图和巩固应用中点、线、面的位置关系及符号符号表示 .提高.提高的正确使用 .1.平面的概念,画法及表示方法 .培养学2.平面的性质及其作用.生归纳3.符号表示.整合知4.注意事项.学生归纳总结、教师给识能小结力,以予点拨、完善并板书 .及思维的灵活性与严谨性 .课堂作业1.下列说法中,(1)铺得很平的一张白纸是一个平面;( 2)一个平面的面积可以等于 6cm 2;( 3)平面是矩形或平行四边形的形状. 其中说法正确的个数为().A . 0 B . 1 C. 2 D . 32.若点 A 在直线 b 上,在平面内,则 A, b,之间的关系可以记作().A . A b B. A b C. A b D . A b3.图中表示两个相交平面,其中画法正确的是().A B C D4.空间中两个不重合的平面可以把空间分成()部分.答案: 1. A 2. B 3. D 4. 3 或 4第 2 课时教学内容2.1. 2 空间中直线与直线之间的位置关系教学目标一、知识与技能1.了解空间中两条直线的位置关系;4人教版新课标普通高中◎数学 2 必修(A 版)2.理解异面直线的概念、画法,提高空间想象能力;3.理解并掌握公理 4 和等角定理;4.理解异面直线所成角的定义、范围及应用.二、过程与方法1.经历两条直线位置关系的讨论过程,掌握异面直线所成角的基本求法.2.体会平移不改变两条直线所成角的基本思想和方法.三、情感、态度与价值观感受到掌握空间两直线关系的必要性,提高学习兴趣.教学重点、难点教学重点1.异面直线的概念 .2.公理 4 及等角定理 .教学难点异面直线所成角的计算.教学关键提高学生空间想象能力,结合图形来判断空间直线的位置关系,使学生掌握两异面直线所成角的步骤及求法 .教学突破方法结合图形,利用不同的分类标准给出空间直线的位置关系,由两异面直线所成角的定义求其大小,注意两异面直线所成角的范围.教法与学法导航教学方法探究讨论法.学习方法学生通过阅读教材、思考与教师交流、概括,从而较好地完成教学目标.教学准备教师准备投影仪、投影片、长方体模型、三角板.学生准备三角板 .教学过程详见下表 .教学教学内容师生互动设计环节意图创设通过身边实物,相互设疑激情境异面直线的概念:不同在任何一个交流异面直线的概念.趣点出导入平面内的两条直线叫做异面直线.师:空间两条直线有主题.新课多少种位置关系?1. 空间的两条直线的位置关系教师给出长方体模多媒体5教师备课系统──多媒体教案相交直线:同一平面内,有且只有型,引导学生得出空间的演示提一个公共点;两条直线有如下三种关高上课平行直线:同一平面内,没有公共系.效率 .探索点;异面直线:不同在任何一个平面内,教师再次强调异面直新知没有公共点 .线不共面的特点.师生互异面直线作图时通常用一个或两个动,突平面衬托,如下图:破重点 .2. 平行公理师:在同一平面内,例 2 的思考:长方体ABCD-A'B'C'D' 中,如果两条直线都与第三条讲解让BB' ∥AA', DD' ∥AA',那么 BB' 与直线平行,那么这两条直学生掌DD' 平行吗?线互相平行 . 在空间中,是握了公否有类似的规律?理 4 的运用.生:是.强调:公理 4 实质上探索是说平行具有传递性,在新知公理 4:平行于同一条直线的两条平面、空间这个性质都适直线互相平行 .用.符号表示为:设a、b、c 是三条直线如果 a//b, b//c,那么 a//c.例 2 空间四边形ABCD 中, E、 F、G、 H 分别是AB 、BC 、 CD 、 DA 的中点.求证:四边形 EFGH 是平行四边形 .续上表3. 思考:在平面上,我们容易证明让学生观察、思考:等角定“如果一个角的两边与另一个角的两边理为异探索分别平行,那么这两个角相等或互补”.面直线新知空间中,结论是否仍然成立呢?所成的等角定理:空间中如果两个角的两角的概边分别对应平行,那么这两个角相等或念作准6人教版新课标普通高中◎数学 2 必修(A 版)互补 .∠ ADC与A'D'C' 、备.∠ ADC与∠ A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ ADC = A'D'C' ,∠ ADC +∠ A'B'C' = 180°4.异面直线所成的角如图,已知异面直线 a、b,经过空探索间中任一点 O 作直线 a'∥ a、b'∥ b,我新知们把 a'与 b'所成的锐角(或直角)叫异面直线 a 与 b 所成的角(夹角).教师画出更具一般性的图形,师生共同归纳出如下等角定理.师:① a'与 b'所成的角的以教师大小只由 a、b 的相互位置讲授为来确定,与 O 的选择无关,主,师为了简便,点 O 一般取在生共同两直线中的一条上;交流,② 两条异面直线所成的导出异角θ∈( 0,π);面直线2所成的③ 当两条异面直线所成角的概探索的角是直角时,我们就说念 .新知这两条异面直线互相垂例 3 让直,记作 a⊥ b;学生掌④ 两条直线互相垂直,有握了如共面垂直与异面垂直两种何求异情形;面直线⑤ 计算中,通常把两条异所成的例 3(投影)面直线所成的角转化为两角,从条相交直线所成的角 .而巩固了所学知识 .续上表充分调动学拓展生动手创新教材 P49 练习 1、 2.生完成练习,教师当的积极应用堂评价 .性,教提高师适时7教师备课系统──多媒体教案给予肯定 .本节课学习了哪些知识内容?小结知2.计算异面直线所成的角应注意什学生归纳,然后老师补识,形小结么?充、完善.成整体思维.课堂作业1. 异面直线是指().A.空间中两条不相交的直线B.分别位于两不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线2.如右图所示,在三棱锥 P-ABC 的六条棱所在的直线中,异面直线共有().A. 2 对 B . 3 对 C. 4 对 D. 6 对3.正方体 ABCD-A 1B1C1D1中与棱AA1平行的棱共有().A. 1 条 B . 2 条 C. 3 条 D. 4 条4.空间两个角、,且与的两边对应平行,若=60 °,则的大小为()..答案: 1. D 2.B 3. C 4. 60 °或 120°第 3 课时教学内容8人教版新课标普通高中◎数学 2 必修(A 版)2. 1. 3 空间中直线与平面之间的位置关系 2. 1. 4 平面与平面之间的位置关系教学目标一、知识与技能1.了解空间中直线与平面的位置关系,了解空间中平面与平面的位置关系;2.提高空间想象能力 .二、过程与方法1.通过观察与类比加深了对这些位置关系的理解、掌握;2.利用已有的知识与经验归纳整理本节所学知识.三、情感、态度与价值观感受空间中图形的基本位置关系,形成严谨的思维品质.教学重点、难点教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学关键借助图形,使学生清楚直线与平面,平面与平面的分类标准,并能依据这些标准对直线与平面、平面与平面的位置关系进行分类及判定.教学突破方法恰当地利用图形,用符号语言表述直线与平面、平面与平面的位置关系.教法与学法导航教学方法借助实物,让学生观察事物、思考关系,讲练结合,较好地完成本节课的教学目标.学习方法探究讨论,自主学习法.教学准备教师准备多媒体课件,投影仪,三角板,直尺.学生准备三角板,直尺.教学过程详见下表 .教学教学内容师生互动设计过程意图创设问题1:空间中直线和直线有几生 1:平行、相交、异复习9教师备课系统──多媒体教案情境种位置关系?面;回顾,导入问题 2:一支笔所在的直线和一生 2:有三种位置关系:激发新课个作业本所在平面有几种位置关(1)直线在平面内;学习系?(2)直线与平面相交;兴趣 .(3)直线与平面平行.师肯定并板书,点出主题 .1.直线与平面的位置关系 .师:有谁能讲出这三种( 1)直线在平面内——有无数位置有什么特点吗?个公共点 .生:直线在平面内时二( 2)直线与平面相交——有且者有无数个公共点 .仅有一个公共点 .直线与平面相交时,二( 3)直线在平面平行——没有者有且仅有一个公共点 .公共点 .直线与平面平行时,三其中直线与平面相交或平行的者没有公共点(师板书).情况,统称为直线在平面外,记作师:我们把直线与平面加强a.相交或直线与平面平行的对知直线 a 在面内的符号语言是情况统称为直线在平面外 .识的a. 图形语言是:师:直线与平面的三种理解位置关系的图形语言、符号培养,主题语言各是怎样的?谁来画自觉探究图表示一个和书写一下 .钻研合作学生上台画图表示 .的学交流直线 a 与面相交的 a∩ = A.师;好 . 应该注意:画习习图形语言是符号语言是:直线在平面内时,要把直线惯,数画在表示平面的平行四边形结形内;画直线在平面外时,合,加应把直线或它的一部分画深理在表示平面的平行四边形解 .外 .直线 a 与面平行的符号语言是a∥. 图形语言是:10人教版新课标普通高中◎数学 2 必修(A 版)续上表2.平面与平面的位置关系师:下面请同学们思考以( 1)问题 1:拿出两本书,看下两个问题(投影).作两个平面,上下、左右移动和翻生:平行、相交 .转,它们之间的位置关系有几种?师:它们有什么特点?( 2)问题 2:如图所示,围成生:两个平面平行时二者长方体 ABCD –没有公共点,两个平面相交A′B′C′D′的六个时,二者有且仅有一条公共直通过面,两两之间的线(师板书).类比位置关系有几师:下面请同学们用图形探索,种?和符号把平面和平面的位置培养主题关系表示出来⋯⋯学生( 3)平面与平面的位置关系探究——没有公师:下面我们来看几个例知识平面与平面平行合作子(投影例 1).迁移共点 .交流能力 .平面与平面相交——有且只有一条公共直线 .加强平面与平面平行的符号语言知识是∥ . 图形语言是:的系统性 .11教师备课系统──多媒体教案续上表拓展创新应用提高例 1 下列命题中正确的个数是( B ).①若直线 l 上有无数个点不在平面内,则 l∥ .②若直线l 与平面平行,则l与平面内的任意一条直线都平行 .③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行 .④若直线 l 与平面平行,则 l 与平面内的任意一条直线没有公共点 .A . 0B . 1 C. 2 D. 3例 2 已知平面∥,直线a,求证 a∥ .证明:假设 a 不平行,则 a在内或 a 与相交 .∴ a 与有公共点 .又 a.∴ a与有公共点,与面∥面矛盾 .∴∥ .学生先独立完成,然后讨例 1 通论、共同研究,得出答案. 教师过示范利用投影仪给出示范 .传授学师:如图,我们借助长方体生一个模型,棱 AA 1所在直线有无数点通过模在平型来研面究问题ABCD的方外,但法,加棱 AA 1深对概所在直线与平面ABCD 相交,所念的理以命题①不正确; A1B1所在直线解. 例 2平行于平面 ABCD ,A1B1显然不目标训平行于 BD,所以命题②不正确;练学生A1 B1∥AB,A1B1所在直线平行于思维的平面 ABCD ,但直线 AB平灵活,面 ABCD ,所以命题③不正确;并加深l 与平面平行,则 l 与无公对面面共点, l与平面内所有直线都平行、没有公共点,所以命题④正确,线面平应选 B .行的理师:投影例2,并读题,先解.让学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解 .1.直线与平面、平面与平培养学面的位置关系 .生整合2.“正难到反”数学思想知识能与反证法解题步骤 .学生归纳总结、教师给予点力,以小结拨、完善并板书 .及思维3. “分类讨论”数学思想.的灵活性与严谨性 . 12人教版新课标普通高中◎数学 2 必修(A 版)课堂作业1.直线与平面平行的充要条件是这条直线与平面内的().A .一条直线不相交B.两条直线不相交C.任意一条直线都不相交 D .无数条直线都不相交【解析】直线与平面平行,则直线与平面内的任意直线都不相交,反之亦然;故应选C.2. “平面内有无穷条直线都和直线l 平行”是“l //”的().A.充分而不必要条件 B .必要而不充分条件C.充分必要条件 D .即不充分也不必要条件【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选 B.3.如图,试根据下列要求,把被遮挡的部分改为虚线:( 1)AB 没有被平面遮挡;( 2)AB 被平面遮挡.答案:略4.已知,,直线a,b,且∥,a,b,则直线 a 与直线 b 具有怎样的位置关系?【解析】平行或异面.5.如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.【解析】三个平面两两相交,它们的交线有一条或三条.6.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内 .已知: l ∥,点P∈,P∈ m,m∥ l,求证: m.证明:设 l 与 P 确定的平面为,且= m′,则 l ∥ m′.又知 l ∥ m, m m P ,由平行公理可知,m 与 m′重合 .所以 m.13教师备课系统──多媒体教案教案 B第 1 课时教学内容: 2. 1. 1 平面教学目标1.了解平面的概念,掌握平面的画法、表示法及两个平面相交的画法;2.理解公理一、二、三,并能运用它们解决一些简单的问题;3.通过实践活动,感知数学图形及符号的作用,从而由感性认识提升为理性认识,注意区别空间几何与平面几何的不同,多方面培养学生的空间想象力.教学重点:公理一、二、三,实践活动感知空间图形.教学难点:公理三,由抽象图形认识空间模型.学法指导:动手实践操作,由模型到图形,由图形到模型不断感知.教学过程一、引入在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进行,请同学谈谈到底平面是什么样子的?可以举实例说明.在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的?那么你认为平面是否有边界?你又认为如何去表示平面呢?二、新课以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由?教师暂不作评判,继续往下进行 .实践活动:1.仔细观察教室,举出空间的点、线、面的实例.2.只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都相同的八块.3.请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形.以上这些问题已经走出了平面的限制,是空间问题. 今后我们将研究空间中的点、线、面之间的关系.图 1问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体?至此我们应感受到画几何体与我们的视角有一定的关系.练习一:试画出下列各种位置的平面.1.水平放置的平面2.竖直放置的平面14人教版新课标普通高中◎数学 2 必修(A 版)图 2( 1)图2(2)3.倾斜放置的平面图 34.请将以下四图中,看得见的部分用实线描出.图 4(1)图4(2)图4(3)图4(4)小结:平面的画法和表示法.我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图 5.平行四边形的锐角通常画成45o,且横边长等于其邻边长的 2 倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图 6.βFA DA DααB E CB C图 5图 6图 7平面常用希腊字母, ,等表示(写在代表平面的平行四边形的一个角上),如平面、平面;也可以用代表平面的平行四边形的四个顶点,或相对的两个顶点的大写英文字母作为平面的名称,图 5 的平面,也可表示为平面ABCD ,平面 AC 或平面BD .前面我们感受了空间中面与面的关系及画法,现在让我们研究一下点、线与一个平面会有怎样的关系?15教师备课系统──多媒体教案显然,一个点与一个平面有两种位置关系:点在平面内和点在平面外.我们知道平面内有无数个点,可以认为平面是由它内部的所有的点组成的点集,因此点和平面的位置关系可以引用集合与元素之间关系.从集合的角度,点 A 在平面内,记为A;点B在平面外,记为B (如图 7).再来研究一下直线与平面的位置关系.将学生分成小组,并动手实践操作后讨论:把一把直尺边缘上的任意两点放在桌面上,直尺的整个边缘就落在桌面上吗?请同学们再试着想一下,如何用图形表示直线与平面的这些空间关系?由“两点确定一条直线”这一公理,我们不难理解如下结论:公理 1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内 .A l ,B l , 且 A, B,l.A l Bα图8例1 分别用符号语言、文字语言描述下列图形.AA aa图 9( 1)图 9( 2)图 9( 3)例 2 识图填空(在空格内分别填上, , ,).A____ a;A____ α,B____ a; B____ α,Aa____ α;a____ α = B,B bb____ α;B____ b.a图 10图 11问题情景:制作一张桌子,至少需要多少条腿?为什么?公理 2 经过不在同一条直线上的三点,有且只有一个平A面 .CB实践活动:取出两张纸演示两个平面会有怎样的位置关α图 12系,并试着用图画出来 .图 12试问:如图13 是两个平面的另一种关系吗?(相对于同学们得出的关系)由平面的无限延展性,不难理解如下结论:公理 3如果两个不重合平面有一个公共点,那么它们有且只有一条过这个公共点16人教版新课标普通高中◎数学 2 必修(A 版)的直线 .βP l 且P l.αP l图 13例 3如图14用符号表示下列图形中点、直线、平面之间的位置关系.l【分析】根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.【解析】在(1)中,l , a A , a B .l , a, b, a l P , B l P .在( 2)中,三、巩固练习教材 P43 练习 1— 4.四、课堂小结(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?(3)判断共面的方法 .五、布置作业P51 习题 A 组 1, 2.第 2 课时教学内容: 2. 1. 2 空间中直线与直线之间的位置关系教学目标:一、知识目标1.了解空间中两条直线的位置关系;2.理解异面直线的概念、画法,培养学生的空间想象能力;3.理解并掌握公理 4.二、能力目标1.让学生在观察中培养自主思考的能力;17教师备课系统──多媒体教案2.通过师生的共同讨论培养合作学习的能力.三、情感、态度与价值观让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.教学重点、难点教学重点: 1.异面直线的概念; 2.公理 4.教学难点:异面直线的概念.学法与教学用具1.学法:学生通过观察、思考与教师交流、概括,从而较好地完成本节课的教学目标;2.教学用具:多媒体、长方体模型、三角板.教学过程一、复习引入1.平面内两条直线的位置关系有(相交直线、平行直线).相交直线(有一个公共点);平行直线(无公共点).2.实例 . 十字路口——立交桥.立交桥中,两条路线 AB , CD 既不平行,又不相交(非平面问题).六角螺母DCA B二、新课讲解1.异面直线的定义不同在任何一个平面内的两条直线叫做异面直线.练习:在教室里找出几对异面直线的例子.注1:两直线异面的判别一 : 两条直线既不相交、又不平行.两直线异面的判别二 : 两条直线不同在任何一个平面内.合作探究一:分别在两个平面内的两条直线是否一定异面?答:不一定,它们可能异面,可能相交,也可能平行.空间两直线的位置关系:按平面基本性质分(1)同在一个平面内:相交直线、平行直线;( 2)不同在任何一个平面内:异面直线.按公共点个数分( 1)有一个公共点 : 相交直线;( 2)无公共点:平行直线、异面直线.2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点,常借助一个或两个平面来衬托. 18。

两条直线位置关系以及点到直线距离公式

行()1112222220A B CA B CA B CÛ=¹¹。

3) 对于特殊情况(直线平行于x 轴或垂直于x 轴时需要单独讨论)轴时需要单独讨论) 3.相交:如果两条直线斜率不同那么必然相交与一点。

相交:如果两条直线斜率不同那么必然相交与一点。

1)斜截式:111:l y k x b =+与直线222:l y k x b =+相交12k k Û¹2)一般式:直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=相交1221A B A B Û¹ 3)对于特殊情况(如果一条直线有斜率,而另一条直线没有斜率,那么这两条直线相交)。

例1:已知直线()212:260,:110l ax y l x a y a ++=+-+-=,求适合下列条件的a的取值范围。

的取值范围。

1)1l 与2l 相交;相交; 2)12//l l ; 3)1l 与2l 重合。

重合。

两条直线位置关系以及点到直线距离公式两条直线位置关系以及点到直线距离公式一、两条直线相交、平行、重合条件一、两条直线相交、平行、重合条件1. 重合:如何两条直线重合,那么化简之后的重合:如何两条直线重合,那么化简之后的方程方程是相同的,具体为:是相同的,具体为:1) 斜截式:直线111:l y k x b =+与直线222:l y k x b =+重合1212,k k b b Û==。

2) 一般式:直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=重合()1112222220A B C A B C A B C Û==¹。

3) 对于特殊情况(直线平行于x 轴或垂直于x 轴时需要单独讨论)。

2.平行:如果两条.平行:如果两条直线斜率直线斜率相同或垂直于x 轴,并且不重合,那么这两条直线就是平行的。

【新教材】高中数学 新人教A版必修第二册 第八章 8.4.2 空间点、直线、平面之间的位置关系 课件


(3)判断两直线为异面直线的方法 ①定义法;②两直线既不平行也不相交.
2.空间两条直线的三种位置关系 ①从是否有公共点的角度来分: 没有有且公仅共有点一个__平异__公__行面__共点——相___交_
②从是否共面的角度来分: 在同一平面内__平相______行交 不同在任何一个平面内——异___面_
_α__∩_β__=__l_
无__数__个__点___(共___线_ )
常考题型
一、两直线位置关系的判定
例 如图所示,在长方体ABCD-A1B1C1D1中,判断下列直线的位置关系: ①直线A1B与直线D1C的位置关系是_______; ②直线A1B与直线B1C的位置关系是_______; ③直线D1D与直线D1C的位置关系是_______; ④直线AB与直线B1C的位置关系是_________.
A.l至少与l1,l2中的一条相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l与l1,l2都不相交 (2)若a和b是异面直线,b和c是异面直线,则a和c的位置关系是( D )
A.异面或平行
B.异面或相交
C.异面
D.相交、平行或异面
11
2.[2019·安徽蚌埠高一检测]空间中有三条线段AB,BC,CD,且 ∠ABC=∠BCD,那么直线AB与CD的位置关系是( D ) A.平行 B.异面 C.相交或平行 D.平行或异面或相交
A.0
B.1
C.2
D.3
13
【解析】如图,借助长方体模型来判断说法是否正确, 说法①不正确,相交时也符合;说法②不正确,图中, A′B与平面DCC′D′平行,但它与CD不平行;说法③不 正确,另一条直线有可能在平面内,如AB∥CD,AB 与平面DCC′D′平行,但直线CD在平面DCC′D′内;说 法④正确,l与平面α平行,则l与平面α无公共点,l与 平面α内所有直线都没有公共点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档