G单元 立体几何
(第三个解答题)立体几何

垂直关系 垂直关系 3.面面垂直的判断定理 .
β l α
l⊥α, l⊂β⇒β⊥α ⊥ ⊂
线面垂直⇒面面垂直
垂直关系 垂直关系 4.面面垂直的性质 .
α l m β
α⊥β,α∩β=m,l⊂β,l⊥m α β ⊂ ⊥ ⇒ l⊥α ⊥
面面垂直⇒线面垂直
要想让我们减轻学习的负担, 要想让我们减轻学习的负担, 只 有一个办法, 有一个办法, 就是提升自己的学习成 提升自己的学习能力。 绩,提升自己的学习能力。
α β n m
α∥β,γ∩α=m, γ∩β=n γ α β ⇒m∥n ∥ 面面平行⇒线线平行
垂直关系 垂直关系 1.线面垂直的判断定理 .
l aP
α
b
l⊥a, l⊥b, ⊥ ⊥ a∩b=P, ⇒l⊥α ⊥ a⊂α,b⊂α ⊂ ⊂ 线线垂直⇒线面垂直
垂直关系 垂直关系 2.线面垂直的性质(1) .线面垂直的在空间四边形 ABCD 中,E、F、G、 .如图, 、 、 、 H 分别是 AB、BC、CD、DA 上的中点, 上的中 、 、 、 求证: 为平行四边形. 求证:四边形 EFGH 为平行四边形
A E B F C G H D
一、定理的熟悉
变式 1:如图,在空间四边形 ABCD 中,E、F、 :如图, 、 、 G、H 分别是 AB、BC、CD、DA 上的点,若四 上的点, 、 、 、 、 为平行四边形, 边形 EFGH 为平行四边形, l 求证: 求证:AC//平面 EFGH. 平面
A
O B
C
l⊥a, ,l⊥b, ⇒ l⊥a ⊥α⊥ α l⊥ a⊂ ⊥ ⊂ ⊥ a∩b=P, ⇒l⊥α ⊥ a⊂α,b⊂α ⊂ ⊂
一、定理的熟悉
5.已知平面α⊥ 平面γ,平面β⊥平面γ , . 平面γ 平面γ 平面α∩平面β=l,求证:l⊥平面γ. ,求证: ⊥平面γ l α
高中数学:第一章(立体几何初步)学案(新人教版B版必修2) 学案

数学:第一章《立体几何初步》学案(新人教版B 版必修2)第一章《立体几何初步》单元小结导航知识链接点击考点(1)了解柱,锥,台,球及简单组合体的结构特征。
(2) 能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用斜二测法画出它们的直观图。
(3) 通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。
(4) 理解柱,锥,台,球的表面积及体积公式。
(5) 理解平面的基本性质及确定平面的条件。
(6) 掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。
(7) 掌握空间直线与平面,平面与平面垂直的判定及性质。
名师导航1.学习方法指导 (1) 空间几何体①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。
②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。
③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。
④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。
由1()2S c c h ''=+正棱台侧和()3hV s s '=正棱台,就可看出它们的侧面积与体积公式的联系。
(2) 点,线,面之间的位置关系①“确定平面”是将空间图形问题转化为平面图形问题来解决的重要条件,这种转化最基本的就是三个公理。
②空间中平行关系之间的转化:直线与直线平行 直线与平面平行平面与平面平行。
③空间中垂直关系之间的转化:直线与直线垂直 直线与平面垂直平面与平面垂直。
2.思想方法小结在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。
主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。
3.综合例题分析例1:如图,P 是∆ABC 所在平面外一点,A ',B ',C '分别是PBC ∆,PCA ∆,PAB ∆的重心。
第八章立体几何初步单元测试 2020-2021学年高一下学期数学人教A版(2019)必修第二册

第八章 立体几何初步考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中真命题的个数是( ) A .0 B .1 C .2D .32.以长为8 cm ,宽为6 cm 的矩形的一边为旋转轴旋转而成的圆柱的底面面积为( ) A .64π cm 2B .36π cm 2C .64π cm 2或36π cm 2D .48π cm 23.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )A .平行B .平行或异面C .平行或相交D .异面或相交4.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线5.如图所示,正方形ABCD 中,E ,F 分别是AB ,AD 的中点,将此正方形沿EF 折成直二面角后,异面直线AF 与BE 所成角的余弦值为( )A .22 B .3 C .12D .326.E ,F ,G 分别是空间四边形ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是( )A .0B .1C .2D .37.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .81π4 B .16π C .9πD .27π48.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30°B .45°C .60°D .90°二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.以下关于空间几何体特征性质的描述,错误的是( )A .以直角三角形一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥B .有两个面互相平行,其余各面都是四边形的几何体是棱柱C .有一个面是多边形,其余各面都是三角形的几何体是棱锥D .两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台 10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则下列说法正确的是( )A .A 1M ∥D 1PB .A 1M ∥B 1QC .A 1M ∥平面DCC 1D 1 D .A 1M ∥平面D 1PQB 111.如图,在四面体ABCD 中,截面PQMN 是正方形,则在下列命题中,一定正确的为( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45°12.正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 与点G 到平面AEF 的距离相等三、填空题(本大题共4小题,每小题5分,共20分)13.一个圆柱的侧面展开图是一个边长为1的正方形,则该圆柱的体积是___.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为____厘米.15.已知a ,b 表示直线,α,β,γ表示平面.①若α∩β=a ,b ⊂α,a ⊥b ,则α⊥β;②若a ⊂α,a 垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩β=a ,α∩γ=b ,则a ⊥b ;④若a ⊥α,b ⊥β,a ∥b ,则α∥β.上述命题中,正确命题的序号是____.16.(2020·全国Ⅰ卷理)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = ____.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.长方体的长、宽、高分别是40 cm、40 cm、20 cm,正四棱锥P-EFGH的高为60 cm.(1)求该安全标识墩的体积;(2)求该安全标识墩的侧面积.18.(本小题满分12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.19.(本小题满分12分)如图所示,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面PAB⊥平面PCD.20.(本小题满分12分)(2020·江苏卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.21.(本小题满分12分)在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC 且分别交AC,SC于D,E,又SA=AB,SB=BC.(1)求证:BD⊥平面SAC;(2)求二面角E-BD-C的大小.22.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,AB =2A1A=4,以AB,BC为邻边作平行四边形ABCD,连接A1D,DC1.(1)求证:DC1∥平面A1ABB1;(2)若二面角A1-DC-A为45°.①求证:平面A1C1D⊥平面A1AD;②求直线AB1与平面A1AD所成角的正切值.第八章立体几何初步考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中真命题的个数是(A)A.0B.1C.2D.3[解析]①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图所示;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.以长为8 cm ,宽为6 cm 的矩形的一边为旋转轴旋转而成的圆柱的底面面积为( C ) A .64π cm 2B .36π cm 2C .64π cm 2或36π cm 2D .48π cm 2[解析] 分别以长为8 cm ,宽为6 cm 的边所在的直线为旋转轴,即可得到两种不同大小的圆柱,显然C 选项正确.3.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( B )A .平行B .平行或异面C .平行或相交D .异面或相交[解析] 由直线与平面平行的判定定理,可知CD ∥α,所以CD 与平面α内的直线没有公共点.4.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( B ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线[解析] ∵A ,B ,C ,D 共面而不共线,这四点可能有三点共线,也可能任意三点不共线,A 错.如果四点中没有三点不共线,则四点共线,矛盾,B 正确.当任意三点不共线时,也满足条件,C 错.当其中三点共线,第四个点不共线时,也满足条件,D 错.5.如图所示,正方形ABCD 中,E ,F 分别是AB ,AD 的中点,将此正方形沿EF 折成直二面角后,异面直线AF 与BE 所成角的余弦值为( C )A .22 B .3 C .12D .32[解析] 过点F 作FH ∥DC ,交BC 于H ,过点A 作AG ⊥EF ,交EF 于G ,连接GH ,AH ,则∠AFH 为异面直线AF 与BE 所成的角.设正方形ABCD 的边长为2,在△AGH 中,AH =52+24=3,在△AFH 中,AF =1,FH =2,AH =3,∴cos ∠AFH =12.6.E ,F ,G 分别是空间四边形ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是( C )A .0B .1C .2D .3[解析] 在△ACD 中,∵G ,F 分别为AD 与CD 的中点,∴GF ∥AC .而GF ⊂平面EFG ,AC ⊄平面EFG ,∴AC ∥平面EFG .同理,BD ∥平面EFG .故选C .7.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( A )A .81π4 B .16π C .9πD .27π4[解析] 如图所示,设球的半径为R ,球心为O ,正四棱锥的底面中心为O ′.∵正四棱锥P -ABCD 中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4,故选A .8.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( C )A .30°B .45°C .60°D .90°[解析] 如图,取B 1C 1的中点E ,连接BE ,DE ,则AC ∥A 1C 1∥DE ,则∠BDE 即为异面直线BD 与AC 所成的角.由条件可知BD =DE =EB =5,所以∠BDE =60°,故选C .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.以下关于空间几何体特征性质的描述,错误的是(ABC)A.以直角三角形一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥B.有两个面互相平行,其余各面都是四边形的几何体是棱柱C.有一个面是多边形,其余各面都是三角形的几何体是棱锥D.两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台[解析]以直角三角形的一个直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥,可得A错误;有两个面互相平行,其余各面都是四边形的几何体可能是棱台,不一定是棱柱,故B错误;有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故C错误;根据棱台的定义,可得D正确.故选ABC.10.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则下列说法正确的是(ACD)A.A1M∥D1P B.A1M∥B1QC.A1M∥平面DCC1D1D.A1M∥平面D1PQB1[解析]连接PM,因为M、P为AB、CD的中点,故PM平行且等于AD.由题意知AD 平行且等于A1D1,故PM平行且等于A1D1,所以PMA1D1为平行四边形,所以A1M∥D1P.故A正确;显然A1M与B1Q为异面直线,故B错误;由A知A1M∥D1P,由于D1P既在平面DCC1D1内,又在平面D1PQB1内,且A1M即不在平面DCC1D1内,又不在平面D1PQB1内,故C、D正确.故选ACD.11.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,一定正确的为(ABD)A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45°[解析] ∵QM ∥PN ,∴QM ∥平面ABD ,∴QM ∥BD ,同理可得AC ∥MN ,∵QM ∥BD ,AC ∥MN ,MN ⊥QM ,∴AC ⊥BD ,A 正确;∵AC ∥MN ,∴AC ∥截面PQMN ,B 正确;∵QM ∥BD ,AC ∥MN ,∴MN AC +QMBD =1,C 不一定正确;∵QM ∥BD ,∴异面直线PM 与BD 所成的角为∠PMQ =45°,D 正确.故选ABD .12.正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( BC )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98 D .点C 与点G 到平面AEF 的距离相等[解析] 取DD 1中点M ,则AM 为AF 在平面AA 1D 1D 上的射影,∵AM 与DD 1不垂直,∴AF 与DD 1不垂直,故A 选项错误;∵A 1G ∥D 1F ,A 1G ⊄平面AEFD 1,∴A 1G ∥平面AEFD 1,故B 选项正确;平面AEF 截正方体所得截面为等腰梯形AEFD 1,易知梯形面积为98,故C 选项正确;假设C 与G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 中点,连接CG 交EF 于H ,而H 不是CG 中点,则假设不成立.故D 选项错误.故选BC .三、填空题(本大题共4小题,每小题5分,共20分)13.一个圆柱的侧面展开图是一个边长为1的正方形,则该圆柱的体积是__14π__. [解析] ∵圆柱的侧面展开图是边长为1的正方形, ∴该圆柱的高h =1,底面周长2πr =1,∴底面半径r =12π, ∴该圆柱的体积V =π×14π2×1=14π.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为__12__厘米.[解析] V =Sh =πr 2h =43πR 3,R =364×27=12(cm).15.已知a ,b 表示直线,α,β,γ表示平面.①若α∩β=a ,b ⊂α,a ⊥b ,则α⊥β;②若a ⊂α,a 垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩β=a ,α∩γ=b ,则a ⊥b ;④若a ⊥α,b ⊥β,a ∥b ,则α∥β.上述命题中,正确命题的序号是__②④__.[解析] 对①可举反例,如图,需b ⊥β才能推出α⊥β;对③可举反例说明,当γ不与α,β的交线垂直时,即可知a ,b 不垂直;根据面面、线面垂直的定义与判定知②④正确.16.(2020·全国Ⅰ卷理)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = __-14__.[解析] ∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD =6,在△ACE 中,AC =1,AE =AD =3,∠CAE =30°, 由余弦定理得CE 2=AC 2+AE 2-2AC ·AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1,在△BCF 中,BC =2,BF =6,CF =1, 由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ·BC=1+4-62×1×2=-14. 四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P -EFGH ,下半部分是长方体ABCD -EFGH .长方体的长、宽、高分别是40 cm 、40 cm 、20 cm ,正四棱锥P -EFGH 的高为60 cm.(1)求该安全标识墩的体积; (2)求该安全标识墩的侧面积.[解析] (1)该安全标识墩的体积V =V P -EFGH +V ABCD -EFGH =13×402×60+402×20=64 000(cm 3).(2)如图,连接EG ,HF 交于点O ,连接PO ,结合三视图可知OP =60 cm ,OG =12EG =20 2 cm ,可得PG =602+(202)2=2011(cm).于是四棱锥P -EFGH 的侧面积S 1=4×12×40×(2011)2-202=1 60010(cm 2), 四棱柱EFGH -ABCD 的侧面积S 2=4×40×20=3 200(cm 2), 故该安全标识墩的侧面积S =S 1+S 2=1 600(10+2)(cm 2).18.(本小题满分12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.[解析] 不会溢出杯子.理由如下:由题图可知半球的半径为4 cm ,所以V 半球=12×43πR 3=12×43π×43=1283π(cm 3),V 圆锥=13πr 2h =13π×42×12=64π(c m 3).因为V 半球<V 圆锥,所以如果冰淇淋融化了,不会溢出杯子.19.(本小题满分12分)如图所示,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面PAB⊥平面PCD.[解析](1)∵CD∥平面PBO,CD⊂平面ABCD,且平面ABCD∩平面PBO=BO,∴BO∥CD.又BC∥AD,∴四边形BCDO为平行四边形,则BC=DO,而AD=3BC,∴AD=3OD,即点O是靠近点D的线段AD的一个三等分点.(2)证明:∵侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AB⊂底面ABCD,且AB⊥AD,∴AB⊥平面PAD.又PD⊂平面PAD,∴AB⊥PD.又PA⊥PD,AB∩PA=A,AB,PA⊂平面PAB,∴PD⊥平面PAB.又PD⊂平面PCD,∴平面PAB⊥平面PCD.20.(本小题满分12分)(2020·江苏卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.[解析](1)因为E,F分别是AC,B1C的中点,所以EF∥AB1.又EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB.又AB⊥AC,B1C⊂平面AB1C1,AC⊂平面AB1C,B1C∩AC=C,所以AB⊥平面AB1C.又因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.21.(本小题满分12分)在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC 且分别交AC,SC于D,E,又SA=AB,SB=BC.(1)求证:BD⊥平面SAC;(2)求二面角E-BD-C的大小.[解析](1)证明:如图,∵DE⊥SC,且E为SC的中点,又SB=BC,∴BE⊥SC.又DE∩BE=E,根据直线与平面垂直的判定定理知SC⊥平面BDE,∵BD⊂平面BDE,∴SC⊥BD.又SA⊥平面ABC,BD⊂平面ABC,∴SA⊥BD.又SA∩SC=S,∴BD⊥平面SAC.(2)由(1)知∠EDC为二面角E-BD-C的平面角,又△SAC∽△DEC,∴∠EDC=∠ASC.在Rt△SAB中,∠SAB=90°,设SA=AB=1,则SB= 2.由SA⊥BC,AB⊥BC,AB∩SA=A,∴BC⊥平面SAB,SB⊂平面SAB,∴BC⊥SB.在Rt △SBC 中,SB =BC =2,∠SBC =90°,则SC =2. 在Rt △SAC 中,∠SAC =90°,SA =1,SC =2. ∴cos ∠ASC =SA SC =12,∴∠ASC =60°,即二面角E -BD -C 的大小为60°. 22.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AC =BC ,AB =2A 1A =4,以AB ,BC 为邻边作平行四边形ABCD ,连接A 1D ,DC 1.(1)求证:DC 1∥平面A 1ABB 1; (2)若二面角A 1-DC -A 为45°. ①求证:平面A 1C 1D ⊥平面A 1AD ; ②求直线AB 1与平面A 1AD 所成角的正切值. [解析] (1)证明:连接AB 1, ∵AD ∥BC ∥B 1C 1且AD =BC =B 1C 1, ∴四边形ADC 1B 1为平行四边形, ∴AB 1∥DC 1,又∵AB 1⊂平面A 1ABB 1,DC 1⊄平面A 1ABB 1. ∴DC 1∥平面A 1ABB 1.(2)①证明:如图,取DC 的中点M ,连接A 1M ,AM .易知Rt △A 1AD ≌Rt △A 1AC , ∴A 1D =A 1C ,∴A 1M ⊥DC , 又AM ⊥DC ,∴∠A 1MA 为二面角A 1-DC -A 的平面角, ∴∠A 1MA =45°. ∴在Rt △A 1AM 中,AA 1=AM =2, ∴AD =AC =22,∴AC 2+AD 2=DC 2,∴AC ⊥AD ,又∵AC ⊥AA 1,AD ∩AA 1=A ,∴AC ⊥平面A 1AD . 又∵AC ∥A 1C 1,∴A 1C 1⊥平面A 1AD .∵A 1C 1⊂平面A 1C 1D , ∴平面A 1C 1D ⊥平面A 1AD . ②∵AB 1∥DC 1,∴DC 1与平面A 1AD 所成角等于AB 1与平面A 1AD 所成角. 由①知A 1C 1⊥平面A 1AD ,∴A 1D 为DC 1在平面A 1AD 内的射影, 故∠A 1DC 1为直线DC 1与平面A 1AD 所成角, 在Rt △A 1DC 1中,tan ∠A 1DC 1=A 1C 1A 1D =63, ∴直线AB 1与平面A 1AD 所成角的正切值为63.。
立体几何公式总结

立体几何公式总结立体几何是数学的一个分支,专门研究立体形状的三度空间的几何知识。
与平面几何相比,立体几何复杂得多,因此,在理解立体几何公式之前,必须有几何学知识的基础。
立体几何最常用的公式有以下几种:1. 体积公式:体积是指三维物体或体积内容物的总容积,它的计算公式为V=Ah,其中A是体积的面积,h是体积的高度。
2.影公式:投影是指物体在某个平面上的影像,它的计算公式为S=GF,其中G是投影的大小,F是顶点到投影平面的距离。
3. 体积加法公式:体积加法是指将两个体积合并时得到的总体积,它的计算公式为V=V1+V2,其中V1和V2分别为两个体积的大小。
4. POV公式:POV是指从某一点出发到另一点时所有可能的路径数量,它的计算公式为P=Vxn,其中V是点的位置坐标,n是路径的数量。
5.体体积公式:锥体体积是指将两个不同半径的圆扁平成半锥体时所形成的体积,它的计算公式为V=1/3π(hR1+R2^2+R1R2),其中h 是高度,R1和R2分别表示两个圆的半径。
6.柱体积公式:圆柱体积是指两个圆形底面之间的空白部分,它的计算公式为V=πr^2h,其中r是圆柱半径,h是圆柱高度。
7.体体积公式:球体体积是指围绕球形表面的空间,它的计算公式为V=4/3πr^3,其中r是球的半径。
上述就是常见的立体几何公式概括,其中每一种公式都可以根据实际情况进行计算,以解决实际问题。
但是,在使用这些公式之前,必须要充分的理解每种公式的意义,并熟练运用,从而发挥其最大的作用。
当我们应用立体几何的原理和公式来解决问题时,首先必须要明确问题,确定什么是体积,什么是顶点,什么是投影,什么是路径等,以便正确地使用立体几何公式来解决问题。
然后,在遵循严格的流程后,便可以正确运用立体几何公式来解决问题。
立体几何不仅在数学领域有着广泛的应用,而且在计算机视觉、机器人控制、测量学、机械设计、建筑设计、航空航天和动力学等领域也有广泛应用。
立体几何基本概念

1基本概念数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。
立体几何一般作为平面几何的后续课程,暂时在人教版数学必修二中出现。
立体测绘(Stereometry)是处理不同形体的体积的测量问题。
如:圆柱,圆锥,圆台,球,棱柱,棱锥等等。
立体几何空间图形毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。
立体几何形戒指尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
2基本课题课题内容包括:各种各样的几何立体图形(10张)- 面和线的重合- 二面角和立体角- 方块, 长方体, 平行六面体- 四面体和其他棱锥- 棱柱- 八面体, 十二面体, 二十面体- 圆锥,圆柱- 球- 其他二次曲面: 回转椭球, 椭球,抛物面,双曲面公理立体几何中有4个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线平行。
各种立体图形表面积和体积一览表注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。
学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。
三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定理的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即几何模型第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直.注:1.定理中四条线均针对同一平面而言2.应用定理关键是找"基准面"这个参照系用向量证明三垂线定理已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b 垂直OA,求证:b垂直PA证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以b)加(向量OA 乘以b )=O,所以PA垂直b。
单元复习01 第一章 空间向量与立体几何【过知识】

) D.4 个
2 重点题型
(2)已知正四棱锥 P-ABCD,O 是正方形 ABCD 的中心,Q 是 CD 的中点,求下列各式中 x,y,z 的值.
①O→Q=P→Q+yP→C+zP→A; ②P→A=xP→O+yP→Q+P→D.
2 重点题型
[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及 在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的 和.如A→C1=A→B+A→D+A→A1.
2 重点题型
在几何体中求空间向量的数量积的步骤 1首先将各向量分解成已知模和夹角的向量的组合形式. 2利用向量的运算律将数量积展开,转化成已知模和夹角的向 量的数量积. 3根据向量的方向,正确求出向量的夹角及向量的模. 4代入公式a·b=|a||b|cos〈a,b〉求解.
2 重点题型
跟踪训练 如图所示,在平行六面体ABCD-A1B1C1D1中,以顶 点A为端点的三条棱长度都为1,且两两夹角为60°. ①求—AC→1 的长; 解 记A→B=a,A→D=b,—AA→1 =c,则|a|=|b|=|c|=1,
2 重点题型
1.空间向量加法、减法运算的两个技巧 (1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、 减法的关键,灵活运用相反向量可使向量首尾相接. (2)巧用平移:利用三角形法则和平行四边形法则进行向量加、 减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向 量的自由平移获得运算结果.
A.-2 B.2 C.-2 3 D.2 3
(2)在四面体OABC中,棱OA,OB,OC两两垂直,且OA=1, OB=2,OC=3,G为△ABC的重心,求O→G·(O→A+O→B+O→C)的值.
2 重点题型
(1)A [∵C→D=A→D-A→C,∴A→B·C→D=A→B·(A→D-A→C)=A→B·A→D- A→B·A→C=0-2×2×cos 60°=-2.]
立体几何期末复习(含详细答案)
立体几何单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.3.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.4.已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为________cm.5.(2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。
(容器壁的厚度忽略不计,结果保留π)6.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.7.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.8.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________ m.9.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________.10.已知直三棱柱ABC -A 1 B 1 C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1 =12,则球O 的半径为( ) A.3172 B .210 C.132D .310 11.(2017·江苏高考)如图,在圆柱O1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.12.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为( )A.52B.3-1C.12D.2-113.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.14.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛16.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为_______.17.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.18.在三棱锥A -BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为22,32,62,则该三棱锥外接球的表面积为()A.2πB.6πC.46πD.24π19.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(1)求证:PC⊥AB;(2)求点C到平面APB的距离.20.如图所示,在正方体ABCD-A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.立体几何单元复习卷(二)21.到空间不共面的四点距离相等的平面的个数为()A.1 B.4C.7 D.822.如图,平面α∥平面β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.23.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.24.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n25.已知m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若m⊥α,n⊥β,m⊥n,则α⊥βB.若m∥α,n∥β,m⊥n,则α∥βC.若m⊥α,n∥β,m⊥n,则α∥βD.若m⊥α,n∥β,α∥β,则m∥n26.如图,在直三棱柱ABC-A′B′C′中,△ABC是边长为2的等边三角形,AA′=4,E,F,G,H,M分别是边AA′,AB,BB′,A′B′,BC的中点,动点P在四边形EFGH内部运动,并且始终有MP∥平面ACC′A′,则动点P的轨迹长度为()A.2 B.2πC.2 3 D.427.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若m⊂β,α⊥β,则m⊥αB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n28.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.29.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( )A.12B .1 C.32 D .230.如图,在Rt △ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P -ABC 中直角三角形的个数为( )A .4B .3C .2D .131.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF32.如图,PA ⊥⊙O 所在平面,AB 是⊙O 的直径,C 是⊙O 上一点,AE ⊥PC ,AF ⊥PB ,给出下列结论:①AE ⊥BC ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC ,其中真命题的序号是________.33.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .34.(2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.35.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.36.如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积.37.如图1,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图2所示的三棱锥A -BCF ,其中BC =22. (1)求证:DE ∥平面BCF ;(2)求证:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积.立体几何 单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A .圆柱B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体.2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD -A 1B 1C 1D 1中的三棱锥C 1-ABC ,四个面都是直角三角形.答案:②③④3.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图.从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64. 答案:644.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________cm.解析:S 表=πr2+πrl =πr2+πr ·2r =3πr2=12π,∴r2=4,∴r =2 cm.6. (2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。
《第一章 空间向量与立体几何》单元检测试卷与答案解析(共三套)
《第一章 空间向量与立体几何》单元检测试卷(一)第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为( )A .1-B .1CD .732.已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A .9B .﹣9C .﹣3D .33.下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等4.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( ) A .l α⊂B .//l αC .l α⊥D .l 与α相交5.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-6.已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .3C .3D .137.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB .2C D 8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫ ⎪⎝⎭B .133,,224⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .447,,333⎛⎫ ⎪⎝⎭二、多选题(每题不止一个正确的选项,5分/题,共20分)9.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥ B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π 10.正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π 11.设a ,b ,c 是空间一个基底,则( ) A .若a ⊥b ,b ⊥c ,则a ⊥cB .则a ,b ,c 两两共面,但a ,b ,c 不可能共面C .对空间任一向量p ,总存在有序实数组(x ,y ,z),使p xa yb zc =++D .则a +b ,b +c ,c +a 一定能构成空间的一个基底12.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90时,PC =D .存在某个位置,使得B 到平面PDC第II 卷(非选择题)三、填空题(每题5分,共20分)13.若(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =,则()a b c +=___________.14.已知平面α的一个法向量10,,2n ⎛=- ⎝,A α∈,P α∉,且122PA ⎛=- ⎝,则直线PA 与平面α所成的角为______.15.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =________.16.如图,棱长为3的正方体的顶点A 在平面α上,三条棱,,AB AC AD 都在平面α的同侧,若顶点,B C 到平面α,则顶点D 到平面α的距离是_____.四、解答题(17题10分,其余题目12分每题,共70分)17.如图,2BC =,原点O 是BC 的中点,点A 的坐标为(2,12,0),点D 在平面yOz 上,且90BDC ∠=︒,30DCB ∠=︒.(1)求向量CD 的坐标.(2)求AD 与BC 的夹角的余弦值.18.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ︒∠=∠=.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值.19.如图所示,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点.(1)求证:NM ∥平面11A ADD ; (2)求证:NM ⊥平面11A B M .20.如图,在直棱柱1111ABCD A B C D -中,//AD BC ,90BAD ∠=︒,AC BD ⊥,1BC =,14A D A A ==.(1)证明:面1ACD ⊥面1BB D ; (2)求二面角11B AC D --的余弦值.21.如图,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB DC ,E 为线段PD 的中点,已知2PA AB AD CD ====,120PAD ∠=︒.(1)证明:直线//PB 平面ACE ;(2)求直线PB 与平面PCD 所成角的正弦值.22.如图,已知梯形ABCD 中,//AD BC ,90DAB ∠=︒,22AB BC AD ===,四边形EDCF 为矩形,2DE =,平面EDCF ⊥平面ABCD . (1)求证://DF 平面ABE ;(2)求平面ABE 与平面BEF 所成二面角的正弦值;(3)若点P 在线段EF 上,且直线AP 与平面BEF ,求线段AP 的长.答案解析第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为( )A .1-B .1CD .73【答案】A 【解析】如图所示由正四面体的性质可得:PA BC ⊥ 可得:0PA BC ⋅=E 是棱AB 中点12PEPA PB 111122cos12012222PE BC PA PB BCPA BC PB BC 故选:A【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.2.已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A .9 B .﹣9C .﹣3D .3【答案】B【解析】由P ,A ,B ,C 四点共面,可得,,PA PB PC 共面,(2,2,33)(7,6,)xPA yPB x y x y C y P x λ∴=+=-+-+=,272633x y x y x y λ-=⎧⎪+=⎨⎪-+=⎩,解得419x y λ=⎧⎪=⎨⎪=-⎩. 故选:B.3.下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等 【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底, 所以A 错.B 项,空间基底有无数个, 所以B 错.D 项中因为基底不唯一,所以D 错.故选C .4.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( ) A .l α⊂ B .//l αC .l α⊥D .l 与α相交【答案】C【解析】∵直线l 的方向向量为()1,2,3a =-, 平面α的法向量为()3,6,9n =--,∴13a n =-,∴a n , ∴l α⊥. 故选C .5.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-【答案】A【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则1111cos ,66MN OD MN OD MN OD ⋅===. ∴异面直线MN 与1OD 所成角的余弦值为16,故选A .6.已知正四棱柱1111ABCD A B C D -中,12AAAB =,则CD 与平面1BDC 所成角的正弦值等于() A .23B C.3D .13【答案】A【解析】设1AB =11BD BCDC ∴===,1BDC ∆面积为3211C BDC C BCD V V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴== 7.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB.2CD【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1), 1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=||2||5EM n n ⋅==,N 为EM 中点,所以N到该面的故选:D .8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭【答案】C【解析】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=, 即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选:C.二、多选题(每题不止一个正确的选项,5分/题,共20分)9.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.10.正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π 【答案】BC【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG , 则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点, 可知11////EF BC AD ,所以AEF ∆⊂平面1AD EF , 则平面AEF平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴, 则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=,设平面AEF 的法向量为(),,n x y z =,则00n AF n EF ⎧⋅=⎨⋅=⎩,即20x y x z -+=⎧⎨-=⎩,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =,所以10A H n ⋅=,所以1//A H 平面AEF ,则C 选项正确; 由图可知,1AA ⊥平面AFC ,所以1AA 是平面AFC 的法向量, 则1112cos ,3AA n AA n AA n⋅<>===⋅. 得知二面角E AF C --的大小不是4π,所以D 不正确. 故选:BC.11.设a ,b ,c 是空间一个基底,则( ) A .若a ⊥b ,b ⊥c ,则a ⊥cB .则a ,b ,c 两两共面,但a ,b ,c 不可能共面C .对空间任一向量p ,总存在有序实数组(x ,y ,z),使p xa yb zc =++D .则a +b ,b +c ,c +a 一定能构成空间的一个基底 【答案】BCD【解析】对于A 选项,b 与,a c 都垂直,,a c 夹角不一定是π2,所以A 选项错误. 对于B选项,根据基底的概念可知a ,b ,c 两两共面,但a ,b ,c 不可能共面.对于C 选项,根据空间向量的基本定理可知,C 选项正确.对于D 选项,由于a ,b ,c 是空间一个基底,所以a ,b ,c 不共面.假设a +b ,b +c ,c +a 共面,设()()()1a b x b c x c a +=++-+,化简得()1x a x b c ⋅=-+,即()1c x a x b =⋅+-,所以a ,b ,c 共面,这与已知矛盾,所以a +b ,b +c ,c +a 不共面,可以作为基底.所以D 选项正确. 故选:BCD12.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90时,PC =D .存在某个位置,使得B 到平面PDC 【答案】BC【解析】如图所示:A 项:取BD 的中点O ,连结OP 、OC , 因为四边形ABCD 是菱形,O 是线段BD 的中点, 所以,,OP BD OC BD OPOC O ⊥⊥=,BD ⊥平面POC ,BD ⊂平面BCD ,所以POC ⊥平面BCD ,所以POC 平面BCDOC ,所以PC 在平面BCD 的射影为OC ,PCO ∠即PC 与平面BCD 所成角,PO OC ,三角形POC 是等腰三角形,当60POC ∠=时,PC 与平面BCD 所成角为60,故A 错误; B 项:当PD PC =时,取CD 的中点N ,可得CD PN ⊥,CD BN ⊥,故CD ⊥平面PBN ,PB CD ⊥,故B 正确; C 项:因为四边形ABCD 是菱形,O 是线段BD 的中点, 所以PO BD ⊥,CO BD ⊥,因为BD 是平面PBD 与平面CBD 的交线, 所以POC ∠即平面PBD 与平面CBD 所成角,因为二面角P BD C --的大小为90,所以90POC ∠=,因为PO OC ==PC =C 正确;D 项:因为BN =B 到平面PDC则BN ⊥平面PCD ,2PB =,BN =1PN =,1DN =,则PD =D 错误,故选:BC.第II 卷(非选择题)三、填空题(每题5分,共20分)13.若(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =,则()a b c +=________. 【答案】3.【解析】因为(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =所以()5,4,5b c += 所以()()2534153a b c +=⨯+-⨯+⨯=故答案为:314.已知平面α的一个法向量10,,2n ⎛=- ⎝,A α∈,P α∉,且122PA ⎛=- ⎝,则直线PA 与平面α所成的角为______. 【答案】π3【解析】设直线PA 与平面α所成的角为θ,则s 0in cos n PA n PAθθ===⋅=⋅, ∴直线PA 与平面α所成的角为π3.故答案为:π3.15.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =________. 【答案】60︒【解析】由条件,知0CA AB ⋅=,0AB BD ⋅=,CD CA AB BD =++.2222222CD CA AB BD CAAB AB BD CA BD=+++⋅+⋅+⋅(2222648268cos ,CA BD =+++⨯⨯=.∴1cos ,2CA BD =-,又∵0,180CA BD ︒≤≤︒,∴,120CABD =︒,∴二面角的大小为60︒. 故答案为:60︒.16.如图,棱长为3的正方体的顶点A 在平面α上,三条棱,,AB AC AD 都在平面α的同侧,若顶点,B C 到平面α,则顶点D 到平面α的距离是______.【解析】如图,以O 为坐标原点,建立空间直角坐标系, 则(0,0,0),(3,0,0),(0,3,0),(3,3,0),(3,3,3)O C B A D , 所以(3,0,0),(0,3,0),(0,0,3)BA CA AD ===, 设平面α的一个法向量为(,,)n x y z =, 则点B 到平面α距离为12||||BA n d n x ⋅===点C 到平面α距离为12||||CA n d n x ⋅===由①②可得||||,|||y x zx==, 所以D 到平面α的距离为2|||||AD n n x x ⋅===故答案为四、解答题(17题10分,其余题目12分每题,共70分) 17.如图,2BC =,原点O 是BC的中点,点A 的坐标为(2,12,0),点D 在平面yOz 上,且90BDC ∠=︒,30DCB ∠=︒.(1)求向量CD 的坐标.(2)求AD 与BC 的夹角的余弦值.【答案】(1)3(0,2-;(2).【解析】(1)过D 作DE BC ⊥于E ,则sin302DE CD =⋅︒=,11cos60122OE OB BD =-︒=-=,所以D 的坐标为1(0,2D -,又因为(0,1,0)C ,所以3(0,2CD =-.(2)依题设有A 点坐标为1,0)2A ,所以(2AD =--,(0,2,0)BC =,则AD 与BC 的夹角的余弦值为·cos ,·AD BC AD BC AD BC==-.18.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ︒∠=∠=.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值. 【答案】(1)1BC a c b =+-;12BC =(2【解析】(1)1111111111BC BB BC BB AC A B AA AC AB a c b =+=+-=+-=+-, 因为11||||cos 11cos602a b a b BAA ︒⋅=⋅∠=⨯⨯=,同理可得12a cbc ⋅=⋅=,所以22221()2221111BC a c b a c b a c a b c b =+-=+++⋅-⋅-⋅=+++-=.(2)因为1AB a b =+,所以2221()2111AB a b a b a b =+=++⋅=++=因为2211()1111111222)2(AB BC a b a c b a a ca b b a c b b ⋅=+⋅+-=+⋅+-⋅+⋅+⋅=+-+=--,所以111111cos ,62AB BC AB BC AB BC ⋅<>===所以异面直线1AB 与1BC 所成角的余弦值为619.如图所示,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点.(1)求证:NM ∥平面11A ADD ; (2)求证:NM ⊥平面11A B M .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点,(0M ∴,1,1),(1N ,1,0),(1=MN ,0,1)-,平面11A ADD 的法向量可设为(0n =,1,0),∴0=MN n ,MN ⊂/平面11A ADD ,MN ∴平面11A ADD .(2)1(1A ,0,2),1(1B ,2,2),11(0A B =,2,0),1(1A M =-,1,1)-, 11·0MN AB ∴=,1·0MN AM =, 11MN A B ∴⊥,1MN A M ⊥, 1111A B A M A ⋂=,NM ∴⊥平面11A B M .20.如图,在直棱柱1111ABCD A B C D -中,//AD BC ,90BAD ∠=︒,AC BD ⊥,1BC =,14A D A A ==.(1)证明:面1ACD ⊥面1BB D ; (2)求二面角11B AC D --的余弦值.【答案】(1)证明见解析;(2)63. 【解析】(1)证明:1BB ⊥平面ABCD ,AC ⊂平面ABCD ,∴1AC BB ⊥. 又∵AC BD ⊥,且1BB BD B ⋂=,1,BD BB ⊂平面1BB D , ∴AC ⊥平面1BB D . 又∵AC ⊂平面1ACD , ∴面1ACD ⊥面1BB D .(2)易知AB 、AD 、1AA 两两垂直,以A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 轴、y 轴、z 轴建立如图的空间直角坐标系,设AB t =,则相关各点的坐标为()0,0,0A ,(),0,0B t ,()1,0,4B t ,(),1,0C t , ()1,1,4C t ,()0,4,0D ,()10,4,4D .从而(),1,0AC t =,(),4,0BD t =-. ∵AC BD ⊥,∴2400AC BD t ⋅=-++= 解之得2t =或2t =-(舍去).()10,4,4AD =,()2,1,0AC =设()1,,n x y z =是平面1ACD 的一个法向量, 则11100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即20440x y y z +=⎧⎨+=⎩令1x =,则()11,2,2n =-.同理可求面1ACB 的法向量为()22,4,1n =-.∴12122cos 63||||3n n n n θ⋅-===⋅.又∵二面角11B AC D --是锐二面角, ∴二面角11B AC D --21.如图,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB DC ,E 为线段PD 的中点,已知2PA AB AD CD ====,120PAD ∠=︒.(1)证明:直线//PB 平面ACE ;(2)求直线PB 与平面PCD 所成角的正弦值.【答案】(1)证明见解析;(2【解析】(1)证明:连接BD 交AC 于点H ,连接HE//AB DC ,AB CD =,四边形ABCD 是平行四边形,H ∴是AC 中点,又E 为线段PD 的中点,//B HE P ,又HE ⊂平面ACE ,PB ⊄平面ACE∴ 直线//PB 平面ACE(2)AB ⊥平面PAD ,作Ax AP ⊥,建立如图所示空间直角坐标系A xyz -由已知2PA AB AD CD ====,120PAD ∠=︒ 得(0,0,2)B ,(0,2,0)P,1,0)D -,1,2)C -(0,2,2)PB =-- , (3,3,0)PD =- (0,0,2)CD =-设平面PCD 的法向量(,,)n x y z =·0·0n CD n PD ⎧=⎨=⎩ , 200Z y -=⎧⎪-=,不妨取(1,3,0)n =2cos ,422PB n PBn PB n-∴<>===⨯所以直线PB 与平面PCD 所成角的正弦值为422.如图,已知梯形ABCD 中,//AD BC ,90DAB ∠=︒,22AB BC AD ===,四边形EDCF 为矩形,2DE =,平面EDCF ⊥平面ABCD . (1)求证://DF 平面ABE ;(2)求平面ABE与平面BEF 所成二面角的正弦值;(3)若点P 在线段EF 上,且直线AP 与平面BEF ,求线段AP 的长.【答案】(1)证明见解析;(2;(3)3【解析】(1)证明:四边形EDCF 为矩形,DE CD ∴⊥,又平面EDCF ⊥平面ABCD ,平面EDCF⋂平面ABCD CD =,ED ∴⊥平面ABCD .取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立空间直角坐标系, 如图,则(1A ,0,0),(1B ,2,0),(1C -,2,0),(0E ,0,2),(1F -,2,2), 设平面ABE 的法向量(,,)m x y z =,(1,2,2)BE =--,(0,2,0)AB =,由·220·20m BE x y z m AB y ⎧=--+=⎨==⎩,取1z =,得(2,0,1)m =,又(1,2,2)DF =-,∴2020DF m =-++=,则DF m ⊥, 又DF ⊂/平面ABE ,//DF ∴平面ABE ;(2)解:设平面BEF 的法向量111(,,)n x y z =,(1,2,2)BE =--,(1,2,0)EF =-,由11111·220·20n BE x y z n EF x y ⎧=--+=⎪⎨=-+=⎪⎩,取11y =,可得(2,1,2)n =,42cos ,||||35m n m n m n +∴<>===,5sin ,5m n ∴<>=, 即平面ABE 与平面BEF ;(3)解:点P 在线段EF 上,设EP EF λ=,[0λ∈,1],∴(1AP AE EF λ=+=-,0,2)(1λ+-,2,0)(1λ=--,2λ,2),又平面BEF 的法向量(2,1,2)n =,设直线AP 与平面BEF 所成角为θ,∴|||2(1sin |cos ,|||||3(AP n AP n AP n θλ-=<>===-,24518110λλ∴+-=,即(31)(1511)0λλ-+=,[0λ∈,1],∴13λ=.∴4(3AP =-,23,2),则||(AP =-,AP ∴.《第一章 空间向量与立体几何》单元检测试卷(二)一、选择题1.在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )323向量()()(,1,1,b 1,,1,c 2,4,2a x y ===-且,//c a c b ⊥,则b a +=( )3.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )4.空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( )5.(多选题)在四面体P ABC -中,以上说法正确的有( ).若1233AD AC AB =+,则可知3BC BD = 的重心,则111333PQ PA PB PC =++C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=1MN = 6.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥二、填空题7.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,则直线1D E 与1A D 所成角的大小是__________,若1D E EC ⊥,则AE =__________.8.已知四棱柱1111ABCD A B C D -的底面是边长为2的正方形,侧棱与底面垂直.若点C 到9.在正方体1111ABCD A B C D -中,E ,F 分别为线段11A B ,AB 的中点,O 为四棱锥11E C D DC -的外接球的球心,点M ,N 分别是直线1DD ,EF 上的动点,记直线OC 与MN 所成的角为θ,则当θ最小时,tan θ=__________.10.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点.给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定题序号都填上)三、解答题, ,为的中点,为的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题: (1)证明:直线;(2)求异面直线AB 与MD 所成角的大小; (3)求点B 到平面OCD 的距离.为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;答案解析一、选择题1.在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )A .1223EF AC AB AD →→→→=+-B .112223EF AC AB AD →→→→=--+OA ABCD ⊥底面2OA =M OA N BC MN OCD平面‖C .112223EF AC AB AD →→→→=-+D .112223EF AC AB AD →→→→=-+-【答案】B【解析】在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,所以EF EB BA AF →→→→=++1223AB AC AB AD →→→→⎛⎫=--+ ⎪⎝⎭112223AC AB AD →→→=--+,即112223EF AC AB AD →→→→=--+.故选:B.2.设,x y R ∈,向量()()(),1,1,b 1,,1,c 2,4,2,a x y ===-且,//c a c b ⊥,则b a +=( )A .BC .3D .4【答案】D 【解析】(),241,2,1,21b c y y b ∴=-⨯∴=-∴=-,,,a b ⊥()214+20,a b x ∴⋅=+⋅-=1x ∴=,()()1,112,1,2a a b ∴=∴+=-,(223a b ∴+=+=,故选C. 3.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A B .2C .3λ D 【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1), 1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则1·20·20n ED x z n EF y ⎧=-+=⎨==⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=255EM nn==,N 为EM 中点,所以N 到该面的距,选D .4.空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( ) A .2γβα≤≤B .2γβα≤≤ C .2γαβ≤≤D .2γαβ≤≤【答案】A【解析】因为空间线段AC AB ⊥,BD AB ⊥,所以可将其放在矩形中进行研究,如图,绘出一个矩形,并以A 点为原点构建空间直角坐标系:因为::1:3:1AC AB BD =,所以可设AC x =,3AB x =,BD x =,则()0,0,0A ,0,3,0B x ,0,0,C x ,,3,0D x x ,,3,CD x x x ,0,3,0AB x ,0,3,CBx x ,故CD 与AB 所成的角α的余弦值229311cos α11113CD AB x CD ABx x, 因为根据矩形的性质易知平面ABD ⊥平面ABC ,BD ⊥平面ABC ,所以二面角C ABD --的平面角为γ90,γ452,γ2cos22,所以BCD ∠即CD 与面ABC 所成的角β,故110cos β11CD CB CD CB,因为311211112,所以2γβα≤≤,故选:A.5.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为ABC ∆的重心,则111333PQ PA PB PC =++C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若四面体P ABC -各棱长都为2,M ,N 分别为PA ,BC 的中点,则1MN = 【答案】ABC【解析】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- ,2BD DC ∴=,3BD BD DC ∴=+即3BD BC =,故A 正确;对于B ,若Q 为ABC ∆的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=,3PQ PA PB PC ∴=++即111333PQ PA PB PC =++,故B 正确;对于C ,若0PA BC ⋅=,0PC AB ⋅=,则PA BC PC AB ⋅=⋅,0PA BC PC AB ∴⋅+⋅=,()0PA BC PC AC CB ∴⋅+⋅+= 0PA BC PC AC PC CB ∴⋅+⋅+⋅=,0PA BC PC AC PC BC ∴⋅+⋅-⋅=()0PA PC BC PC AC ∴-⋅+⋅=,0CA BC PC AC ∴⋅+⋅=0AC CB PC AC ∴⋅+⋅=,()0AC CB PC ∴⋅+=0AC PB ∴⋅=故C 正确;对于D ,()()111222MN PN PM PB PC PA PB PC PA =-=+-=+-12MN PA PB PC ∴=--,222222PA PB PC PA PB PC PA PB PA PC PB PC --=++-⋅-⋅+⋅===2MN ∴=,故D 错误.故选:ABC6.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90︒时,PC =D .存在某个位置,使得B 到平面PDC 【答案】BC 【解析】如图所示:对A ,取BD 的中点O ,连结OP ,OC ,则当60POC ∠=时,PC 与平面BCD 所成的最大角为60︒,故A 错误;对B ,当PD PC =时,取CD 的中点N ,可得,,CD PN CD BN ⊥⊥所以CD ⊥平面PBN ,所以PB CD ⊥,故B 正确;对C ,当二面角P BD C --的大小为90时,所以90∠=POC ,所以PO OC ==所以PC =故C 正确;对D ,因为BN =所以如果B 到平面PDC ,则BN ⊥平面PCD ,则2,1,1PB BN PN DN ====,所以PD =D 错误;故选:BC.二、填空题7.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,则直线1D E 与1A D 所成角的大小是__________,若1D E EC ⊥,则AE =__________.【答案】90; 1【解析】长方体ABCD ﹣A 1B 1C 1D 1中以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,又11AD AA ==,2AB =,点E 在棱AB 上移动则D (0,0,0),D 1(0,0,1),A (1,0,0),A 1(1,0,1),C (0,2,0), 设E (1,m ,0),0≤m≤2,则1D E =(1,m ,﹣1),1A D =(﹣1,0,﹣1), ∴1D E •1A D =﹣1+0+1=0,∴直线D 1E 与A 1D 所成角的大小是90°. ∵1D E =(1,m ,﹣1),EC =(﹣1,2﹣m ,0),D 1E ⊥EC ,∴1D EEC =﹣1+m (2﹣m )+0=0,解得m=1,∴AE=1.故答案为900,1.8.已知四棱柱1111ABCD A B C D -的底面是边长为2的正方形,侧棱与底面垂直.若点C 到平面11AB D,则直线1B D 与平面11AB D 所成角的余弦值为______.【解析】如图,连接11A C 交11B D 于O 点,过点C 作CH AO ⊥于H ,则CH ⊥平面11AB D ,则CH =,设1AA a =,则AO CO ==AC =得1122AOC S AO CH AC ∆=⨯⨯=⨯a =以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -.则(A ,()12,0,0B ,()10,2,0D,(D ,(10,2,AD =-,(12,0,AB =-,(1B D =-,设平面11AB D 的法向量为(),,n x y z =,则1100n AD n AB ⎧⋅=⎪⎨⋅=⎪⎩,即20220y x ⎧-=⎪⎨-=⎪⎩,令x,得()2,2,1n =.11110cos ,10B D n B D n B D n⋅==1B D 与平面1111D C B A所成的角的余弦值为.9.在正方体1111ABCD A B C D -中,E ,F 分别为线段11A B ,AB 的中点,O 为四棱锥11E C D DC -的外接球的球心,点M ,N 分别是直线1DD ,EF 上的动点,记直线OC 与MN 所成的角为θ,则当θ最小时,tan θ=__________. 【答案】42【解析】如图,设,P Q 分别为棱CD 和11C D 的中点,则四棱锥11E C D DC -的外接球即为三棱柱11DFC D EC -的外接球,因为三棱柱11DFC D EC -为直三棱柱,所以其外接球球心O 为上、下底面三角形外心G 和H 连线的中点,由题意,MN 是平面1DD EF 内的一条动直线,所以θ最小是直线OC 与平面1DD EF 所成角,即问题转化为求直线OC 与平面1DD EF 所成角的正切值,不妨设正方体的棱长为2,2EQ =,1ED =,因为11EC D △为等腰三角形,所以11EC D △外接圆的直径为11152sin 2ED GE EC D ===∠,则54GE =,从而53244GQ PH =-==,如图,以D 为原点,以1,,DA DC DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系D xyz -,则()0,0,0D ,()10,0,2D ,()0,2,0C ,()2,1,0F ,3,1,14O ⎛⎫⎪⎝⎭,()10,0,2DD ∴=,()2,1,0DF =,设平面1DD EF 的一个法向量为(),,n x y z =,则12020n DD z n DF x y ⎧⋅==⎨⋅=+=⎩,令1x =,则()1,2,0n =-,因为3,1,14OC ⎛⎫=-- ⎪⎝⎭,所以sin cos ,n OC θ===10.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点.给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为其中正确命题的序号是__________.(将你认为正确的命题序号都填上)【答案】①③④【解析】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则()0,0,1P ,()1,0,0B ,()1,2,0C ,()0,,0E y ,则()1,0,1BP =-,()1,2,0CE y =--,cos ,2BP CE BP CE BP CE⋅==≤⋅2y =时等号成立, 此时,4BP CE π=,故直线PB 与直线CE 所成的角中最小的角为45,①正确;()()1,,01,2,121BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点,1111112323226BCE E BCO OBCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D , 则''CE PE C E PE PC +=+≥=='PEC 共线时等号成立,④正确.故答案为:①③④.三、解答题11.如图,在四棱锥中,底面是边长为1的菱形,,, ,为的中点,为的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题: (1)证明:直线;(2)求异面直线AB 与MD 所成角的大小;O ABCD -ABCD 4ABC π∠=OA ABCD ⊥底面2OA =M OA N BC MN OCD平面‖(3)求点B 到平面OCD 的距离.【解析】作于点P,如图,分别以AB,AP,AO 所在直线为轴建立坐标系, (1)设平面OCD 的法向量为,则即 取解得(2)设与所成的角为, , 与所成角的大小为(3)设点B 到平面OCD 的距离为,则为在向量上的投影的绝对值,AP CD ⊥,,x yz (0,0,0),(1,0,0),(0,((0,0,2),(0,0,1),(122244A B P D O M N -2222(1,,1),(0,,2),(2)44222MN OP OD =--=-=--(,,)n x y z =0,0n OP n OD ==2022022y z x y z -=⎪⎪⎨⎪-+-=⎪⎩z =(0,4,2)n =22(1,,1)(0,4,2)044MN n =--=∵MN OCD ∴平面‖AB MD θ(1,0,0),(1)2AB MD ==--∵1cos ,23AB MDAB MD πθθ===⋅∴∴AB MD 3πd d OB (0,4,2)n =由 , 得.所以点B 到平面OCD 的距离为12.在三棱锥A —BCD 中,已知,BD=2,O 为BD 的中点,AO ⊥平面BCD ,AO=2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF=14BC ,设二面角F —DE —C 的大小为θ,求sinθ的值. 【解析】(1)连,CO BC CD BO OD CO BD ==∴⊥以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -∴(1,0,2),(1,1,1)cos ,15AB DE AB DE ∴=-=∴<>==- 从而直线AB 与DE 所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z =(1,0,2)OB =-23OB n d n⋅==2311200(1,2,0),00x y n DC DC x y z n DE ⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩令112,1(2,1,1)y x z n =∴=-=∴=- 设平面DEF 一个法向量为2111(,,),n x y z =11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩令111272,5(2,7,5)yx z n =-∴==∴=-12cos ,n n ∴<>==,因此sin 13θ==.《第一章 空间向量与立体几何》单元检测试卷(三)一、单选题1.空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( ) A .平行 B .垂直 C .相交但不垂直D .无法确定2.如图,在平行六面体中,为与的交点若,,,则下列向量中与相等的向量是( )111ABCD A B C D -M AC BD 11A B a =11A D b =1A A c =1B MA .B .C .D . 3.已知向量,.若向量与向量平行,则实数的值是( ) A .2B .C .10D .4.如图,已知正方体ABCD ﹣A'B'C'D'中,E 是CC'的中点,,,,x y z ,则( )A .x =1,y =2,z =3B .x ,y =1,z =1C .x =1,y =2,z =2D .x ,y =1,z5.正方体不在同一侧面上的两顶点,,则正方体外接球体积是( ) A .B .C .D .6.已知,若点D 是AC 中点,则( ) A .2B .C .-3D .67.平行六面体中,,则实数x ,y ,z 的值分别为( ) A . B .C .D .8.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为( )1122a b c -++1122a b c ++1122a b c -+1122a b c --+()0,1,1a =()1,2,1b =-a b +()2,,4c m =--m2-10-1'2a AA =12b AB =13c AD =AE =a +b +c 12=12=32=(1,2,1)A--(1,0,1)B323π4π(1,2,3),OA =(2,2,1),OB =-(1,1,2)OC =BC OD ⋅=32-1111ABCD A B C D -12,AM MC =1AM xAB yAD zAA =++1,32,3232,31,3232,32,3132,31,223111ABC A B C -1160BAA CAA ︒∠=∠=1AB 1BCABCD .9.如图,在三棱柱中,底面,,,则与平面所成角的大小为A .B .C .D .10.在一直角坐标系中,已知,现沿轴将坐标平面折成的二面角,则折叠后两点间的距离为( )A .BCD .二、多选题11.已知点P 是平行四边形ABCD 所在的平面外一点,如果,,,下列结论正确的有( )A .B .C .是平面ABCD 的一个法向量D .12.在正方体中,,分别是和的中点,则下列结论正确的是( )6111ABC A B C -1AA ⊥ABC 13AA =2AB AC BC ===1AA 11AB C 3045︒60︒90︒(1,6),(3,8)A B --x 60︒,A B ()2,4,1AB =--()4,2,0AD =()1,2,1AP =--AP AB ⊥⊥AP AD AP //AP BD 1111ABCD A B C D -E F 11A D 11C DA .平面B .平面C .D .点与点到平面的距离相等 13.在正三棱柱中,所有棱长为1,又与交于点,则( )A .=B .C .三棱锥的体积为D .与平面BB′C′C 所成的角为三、填空题14.已知向量2,,x ,,且,则x 的值为______. 15.若向量,,且与的夹角为钝角,则实数的取值范围为________.16.如图所示,在正方体中,M 为棱的中点,则异面线与AM 所成角的余弦值为________.17.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.11//A C CEF 1B D ⊥CEF 112DA DD C DC E =+-D 1B CEF ABC A B C '''-BC 'B C 'O AO 111222AB AC AA '++AO B C '⊥A BB O '-24AO π6(3,a =-5)(1,b =1)-8a b ⋅=(2,1,2)a =-(4,2,)b m =-a b m 1111ABCD A B C D -1CC 1BD ABCD ADPQ ,,M E F ,,PQ AB BC ME ABCD EMAF四、解答题18.如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值; (2)求直线AE 和平面OBC 的所成角.19.如图,在长方体中,,,点、分别为、的中点.(1)证明:平面; (2)求二面角的余弦值.20.如下图所示,在四棱锥中,底面四边形,四边形是直角梯形,且,,点是棱的中点,是上的点,且.O ABC -OA OB OC ,,1OA =2OB OC ==EOC BEAC S OABC -SO ⊥OABC OABC 90COA OAB ∠=∠=︒1,4OA OS AB OC ====M SB N OC :1:3ON NC =(1)求异面直线与所成的角的余弦值; (2)求与平面所成的角的正弦值.21.如图,在正方体中,分别是的中点。
立体几何——两条直线之间的位置关系(一)
立体几何——两条直线之间的位置关系(一)一、知识导学1.平面的基本性质. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.空间两条直线的位置关系,包括:相交、平行、异面.3.公理4:平行于同一条直线的两条直线平行. 定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4.异面直线. 异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.5.反证法.会用反证法证明一些简单的问题.二、疑难知识导析1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b,A且A,a,则a与b异面.三、经典例题导讲[例1]在正方体ABCD-A B C D中,O是底面ABCD的中心,M、N分别是棱DD、D C的中点,则直线OM( ).A .是AC和MN的公垂线.B .垂直于AC但不垂直于MN.C .垂直于MN,但不垂直于AC.D .与AC、MN都不垂直.错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影.正解:A.[例2]如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且,求证:直线EG,FH,AC相交于一点.错解:证明:、F分别是AB,AD的中点,∥BD,EF=BD,又, GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,,F分别是AD.AC与FH交于一点.直线EG,FH,AC相交于一点正解:证明:、F分别是AB,AD的中点,∥BD,EF=BD, 又,GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,平面ABC,FH平面ACD,T面ABC,且T面ACD,又平面ABC平面ACD=AC,,直线EG,FH,AC相交于一点T.[例3]判断:若a,b是两条异面直线,P为空间任意一点,则过P点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P在其中一条线上,或a与P确定平面恰好与b平行,此时就不能过P作平面与a平行.正解:假命题.[例4]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线(在同一条直线上).分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线.证明∵ AB//CD, AB,CD确定一个平面β.又∵AB ∩α=E,ABβ, Eα,Eβ,即 E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴ E,F,G,H四点必定共线.点评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.[例5]如图,已知平面α,β,且α∩β=.设梯形ABCD中,AD∥BC,且ABα,CDβ,求证:AB,CD,共点(相交于一点).分析:AB,CD是梯形ABCD的两条腰,必定相交于一点M,只要证明M在上,而是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴ AB,CD必定相交于一点,设 AB ∩CD=M.又∵ ABα,CDβ,∴ M∈α,且M∈β.∴ M∈α∩β.又∵α∩β=,∴ M∈,即 AB,CD,共点.点评:证明多条直线共点时,与证明多点共线是一样的.[例6]已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明 1?若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点 A ∴直线d和A确定一个平面α.又设直线d与a,b,c分别相交于E,F,G,则 A,E,F,G∈α.∵ A,E∈α,A,E∈a,∴ aα.同理可证 bα,cα.∴ a,b,c,d在同一平面α内.2?当四条直线中任何三条都不共点时,如图.∵这四条直线两两相交,则设相交直线a,b确定一个平面α.设直线c与a,b分别交于点H,K,则 H,K∈α.又∵ H,K∈c,∴ cα.同理可证 dα.∴ a,b,c,d四条直线在同一平面α内.点评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.[例7]在立方体ABCD-A1B1C1D1中,(1)找出平面AC的斜线BD1在平面AC内的射影;(2)直线BD1和直线AC的位置关系如何?(3)直线BD1和直线AC所成的角是多少度?解:(1)连结BD, 交AC于点O .(2)BD1和AC是异面直线.(3)过O作BD1的平行线交DD1于点M,连结MA、MC,则∠MOA或其补角即为异面直线AC和BD1所成的角.不难得到MA=MC,而O为AC的中点,因此MO⊥AC,即∠MOA=90°,∴异面直线BD1与AC所成的角为90°.[例8] 已知:在直角三角形ABC中,A为直角,PA⊥平面ABC,BD⊥PC,垂足为D,求证:AD⊥PC证明:∵PA ⊥平面ABC∴PA⊥BA又∵BA⊥AC ∴BA⊥平面PAC∴AD是BD在平面PAC内的射影又∵BD⊥PC∴AD⊥PC.(三垂线定理的逆定理)四、典型习题导练1.如图, P是△ABC所在平面外一点,连结PA、PB、PC后,在包括AB、BC、CA的六条棱所在的直线中,异面直线的对数为( )A.2对B.3对C.4对D.6对2. 两个正方形ABCD、ABEF所在的平面互相垂直,则异面直线AC和BF所成角的大小为.3. 在棱长为a的正方体ABCD-A1B1C1D1中,体对角线DB1与面对角线BC1所成的角是,它们的距离是 .4.长方体中,则所成角的大小为_ ___.5.关于直角AOB在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).6.在空间四边形ABCD中,AB⊥CD,AH⊥平面BCD,求证:BH⊥CD7.如图正四面体中,D、E是棱PC上不重合的两点;F、H分别是棱PA、PB上的点,且与P 点不重合.求证:EF和DH是异面直线.。
第八章 立体几何初步 单元测试-2022-2023学年高一下学期数学人教A版(2019)必修第二册
2022-2023学年高一第二学期第八章《立体几何初步》单元测试(新人教A 版必修第二册)一、单项选择题(每小题5分,共40分)1、下列说法中正确的是 A .若一个平面内有3个不共线的点到另一个平面的距离相等,则这两个平面平行B .以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .有两个面平行,其余各面都是四边形的几何体是棱柱D .过直线外一点有且仅有一条直线与该直线平行2、已知正三角形的边长为2,那么的直观图△的面积为 ABCD3、已知S 为圆锥的顶点,O为底面圆心,圆锥的体积为 ABCD4、如图:已知正四面体中E 在棱上,,G 为的重心,则异面直线与所成角为( )A. B. C. D. 5.已知直线,与平面,,,则能使成立的充分条件是 A .,B .,C .,D .,,6、如图,正方体的棱长为1,则下列四个命题错误的是 ()ABC ABC ∆A B C '''()SO =()ABCD CD 2EC DE =ABC V EG BD 30°45︒60︒90︒m n αβγαβ⊥()αγ⊥βγ⊥//m α//m β//m αm β⊥m n ⊥m αβ= n β⊂1111ABCD A B C D -()A .直线与平面所成的角等于B .点到面C .两条异面直线和所成的角为D .三棱柱7、端午佳节,人们有包粽子和吃粽子的习俗. 粽子主要分为南北两大派系,地方细分特色鲜明, 且形状各异. 裹蒸粽是广东肇庆地区最为出名的粽子, 是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子. 现将裹蒸粽看作一个正四面体, 其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为时,该裹蒸粽的高的最小值为A. B. C. D. 8、已知三棱锥中,,,三点在以为球心的球面上,若,,且三棱锥的半径为 A .2B.5C .13D 二、多项选择题(每小题5分,共20分,有多项符合要求,全部选对得5分,部分选对得2分,有选错得0分)9、高空走钢丝是杂技的一种,渊源于古代百戏的走索,演员手拿一根平衡杆,在一根两头拴住的钢丝上来回走动,并表演各种动作.在表演时,假定演员手中的平衡杆是笔直的,水平地面内一定存在直线与演员手中的平衡杆所在直线 A .垂直B .相交C .异面D .平行10、设,,表示不同的点,,表示不同的直线,,表示不同的平面,下列说法错误的是 A .若,,,则B .若,,,,则C .若,,,,,,则D .若,,,则11、如图,在菱形中,,,将沿折起,使到,点不落在底面内,若为线段的中点,则在翻折过程中,以下命题中正确的是 BC 11ABC D 4πC 11ABCD 1D C 1BC 4π1111AA D BB C -43π46810O ABC -A B C O 2AB BC ==120ABC ∠=︒O ABC -O ()()A B C n l αβ()l αβ= //n α//n β//n l A B l ∈A B α∉//l αA B α∈A B C β∈l αβ= C l ∈//αβl α⊂n β⊂//l n ABCD 2AB =3BAD π∠=ABD ∆BD A A 'A 'BCD M A C 'ABD ∆()A .四面体的体积的最大值为1B .存在某一位置,使得C .异面直线,所成的角为定值D .当二面角的余弦值为时,四面体12、四面体的四个顶点都在球的球面上,,,点,,分别为棱,,的中点,则下列说法正确的是 A .过点,,做四面体的截面,则该截面的面积为2B .四面体C .与的公垂线段的长为D .过作球的截面,则截面面积的最大值与最小值的比为二、填空题(每小题5分,共20分)13、将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为 .14、在正方体中,为的中点,则直线与所成的角为 .15、某校高一级学生进行创客活动,利用3D 打印技术制作模型.如图,该模型为长方体挖去正四棱台后所得的几何体,其中,为增强其观赏性和耐用性,现对该模型表面镀上一层金属膜,每平方厘米需要金属,不考虑损耗,所需金属膜的质量为____________.A BCD '-BM CD ⊥BM A D 'A BD C '--13A BCD '-ABCD O 4AB BC CD DA ====AC BD ==EFG BC CD AD ()E F G ABCD ABCD AC BD E O 5:41111ABCD A B C D -P 11B D PB 1AD 1111ABCD A B C D -ABCD EFGH -122,6cm,4cm AB EF BF AB BC AA =====2mg mg16、如图,在长方体中,四边形是边长为4的正方形,,为棱的中点,为棱(包括端点)上的动点,则三棱锥外接球表面积的最小值是 .三 解答题(共6小题,共计70分)17、(10分)如图,在三棱锥中,平面,是直角三角形,,.,分别是棱,的中点.(1)证明:平面平面.(2)求三棱锥的体积.18.(12分)如图,在三棱锥中,,底面.1111ABCD A B C D -ABCD 13AA =E CD F 11C D A DEF -P ABC -PA ⊥ABC ABC ∆AC BC =6PA AB ==D E PB PC PAC ⊥ADE P ADE -P ABC -90ACB ∠=︒PA ⊥ABC(1)求证:平面平面;(2)若,,求与平面所成角的正弦值.19.(12分)如图,在直四棱柱中,四边形是平行四边形,是的中点,点是线段上,且.(1)证明:直线平面.(2)若,,,求点到平面的距离.20、(12分)如图,在四棱锥中,,,,分别为,的中点底面四边形是边长为2的菱形,且,交于点.(1)求证:平面;(2)二面角的平面角为,若.①求与底面所成角的大小;②求点到平面的距离.21、(12分)如图在直三棱柱中,,,,是上的一点,且,、、分别是、、的中点,与相交于.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;PAC ⊥PBC 2AC PA ==3BC =AB PBC 1111ABCD A B C D -ABCD F 1BD E 1CD 12D E CE =//AF BDE 13AA AB ==2AD =60BAD ∠=︒F BDE P ABCD -PB PD =PA PC ⊥M N PA BC ABCD 60DAB ∠=︒AC BD O //MN PCD B PC D --θ1cos 7θ=-PA ABCD N CDP 111ABC A B C -90ABC ∠=︒2BC =14CC =E 1BB 11EB =D F G 1CC 11B C 11A C EF 1B D H 1B D ⊥ABD //EFG ABD(Ⅲ)求平面与平面的距离.22、(12分)如图,在四棱锥,底面为梯形,且,,等边三角形所在的平面垂直于底面,.(1)求证:平面;(2)若直线与平面,求二面角的余弦值.参考答案1、D2、D3、B4、A5、C6、C7、A8、D 8、【解析】设的外接圆的圆心为,半径为,在中,,,由余弦定理可得,由正弦定理可得,解得,所以又三棱锥所以EGF ABD P ABCD -ABCD 12BC AD =//BC AD PCD ABCD BC PD ⊥BC ⊥PCD PB ABCD P AB D --ABC ∆1O r ABC ∆2AB BC ==120ABC ∠=︒222cos AC AB BC AB BC ABC =+-⋅⋅∠=24sin AC r ABC ===∠2r =11sin 2222ABC S AB BC ABC ∆=⋅⋅⋅∠=⨯⨯=O ABC -111133O ABC ABC V S OO OO -∆=⋅⋅==故三棱锥的高,所以球.9、AC10、BCD 11、ABD 12、ACD9、【解析】根据题意可得:对直线与平面的任何位置关系,平面内均存在直线与直线垂直,A 正确;平衡杆所在直线与水平地面的位置关系:平行或相交,根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面,若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面,C 正确,B 、D 错误;【答案】AC11、【解析】连接交于,连接,取的中点,连接,,对于A ,当平面平面时,四面体的体积最大,点到平面的距离最大,此时在菱形中,,则,都是等边三角形,则,此时四面体的体积为,所以四面体的体积的最大值为1,故A 正确;对于B ,因为,分别为,的中点,所以,且,由题意,则,当时,,因为,O ABC -13OO =O =l l AC BD O OA 'CD N MN BN A BD '⊥BCD A BCD '-A 'BCD ABCD 2AB =3BAD π∠=ABD ∆BCD ∆OA OA OC '===A BCD '-112132⨯⨯=A BCD '-M N C 'CD BN CD ⊥//MN A D '112MN A D ='=2(0,)3A DC π∠'∈2(0,3MNC π∠∈2MNC π∠=MN CD ⊥MN BN N =所以当时,平面,又平面,所以,所以存在某一位置,使得,故B正确;对于C,因为,所以异面直线,所成的角即为或其补角,,因为不为定值,所以不为定值,即异面直线,,所成的角不为定值,故C错误;对于D,因为,,所以即为二面角的平面角,则,所以,所以四面体为正四面体,如图,补全正四面体,即四面体的D正确.【答案】ABD12、【解析】如图所示:取中点,连结、,则有:,且,同理可得,且所以,且为平行四边形,2MNCπ∠=CD⊥BMNBM⊂BMN CD BM⊥BM CD⊥//MN A D'BM A D'BMN∠2131cos22BM BMBMNBM BM+-∠==-BM cos BMN∠BM A D'OC BD⊥OA BD'⊥A OC∠'A BD C'--26163A CA OC-'∠'==2A C'=A BCD'-A BCD'-=A BCD'-AB H EH HG//HG BD12GH BD==//EF BD12EF BD== //HG EF HG EF==EFGH同理可得,且,所以平行四边形的菱形;取中点,连结、,因为,所以,同理,所以平面,所以,又因为,,所以,所以菱形的正方形,所以,故A 正确;因为,,,所以,同理可得,在中,,所以边上的高,又因为平面,为中点,所以,故B 错;因为平面,平面,所以,又因为,所以是与的公垂线,由选项可知,故C 正确;取中点,则为球心,理由如下:因为平面,,所以,同理,,所以,所以即为球心,所以,又因为,所以过所作的面积最小的截面是以为圆心,为半径的圆;面积最大的截面是过,的大圆,//HE GF HE GF ==EFGH BD Q AQ CQ AB AD =AQ BD ⊥CQ BD ⊥BD ⊥ACQ BD AC ⊥//HG BD //HE AC HG HE ⊥EFGH 2EFGH S =4AB AD ==BD =AQ BD ⊥BQ DQ ==AQ =CQ =ACQ ∆AQ CQ ==AC =AC QM ==12ACQ S AC QM ∆=⋅⋅=BD ⊥ACQ Q BD 1122233A BCD B ACQ ACQ V V S BQ --∆==⨯⨯=⨯⨯=BD ⊥ACQ QM ⊆ACQ BD QM ⊥QM AC ⊥QM AC BD B QM =QM S S O BD ⊥ACQ BQ DQ =12QS QM ==225SB SD ==12MS QM ==225SA SC ==SA SB SC SD ====S O R =OE BC ⊥E E 2BE =O E所以,故D 正确.13、 14、15、16、15、【详解】由题意,该几何体侧面4个面的面积和为,底面积,正方形面积.考虑梯形,高为,故正四棱台的侧面积为,故该模型表面积为,故所需金属膜的质量为16、【解析】如图,取的中点,过作平面的垂线,与平面交于点,过作的垂线,垂足为,则三棱锥外接球的球心在上,设,,则,设球的半径为,则,即,所以.因为,所以,则.()()22::5:4S S R BE ππ==大小2π6π282+2449π244696cm ⨯⨯=26636cm ⨯=EFGH 2339cm ⨯=ABFE =()214362⨯+=(296369141cm +++=+((2141282mg⨯+=+AE 1O 1O ABCD 1111A B C D M M 11C D N E ADF -O 1MO 1OO m =NF n =03n ……O R 222R OE OF ==22222225(3)4R m OM MN NF m n =+=++=-++286n m +=03n ......41736m (2261)59R m =+…故三棱锥外接球的表面积.17、(1)证明:因为是直角三角形,且,所以.因为平面,且平面,所以.因为平面,平面,且,所以平面.因为,分别是棱,的中点,所以,,因为平面,所以平面.因为平面,所以平面平面.(2)解:因为,所以因为平面,且,所以三棱锥的体积.连接,因为是棱的中点,所以三棱锥的体积.因为是棱的中点,所以三棱锥的体积.因为三棱锥与三棱锥是同一个三棱锥,所以的体积为.18.(1)证明:底面.,又,,又,平面,又平面,平面平面;(2)解:取的中点,连接、,,,又平面平面且交线为,平面,A DEF -224449S R ππ=…ABC ∆AC BC =AC BC ⊥PA ⊥ABC BC ⊂ABC PA BC ⊥PA ⊂PAC AC ⊂PAC PA AC A = BC ⊥PAC D E PB PC 12DE BC =//DE BC BC ⊥PAC DE ⊥PAC DE ⊂ADE PAC ⊥ADE 6AB =AC BC ==PA ⊥ABC 6PA =P ABC -1161832V =⨯⨯=CD D PB D PAC -11118922V ==⨯=E PC D PAE -211199222V V ==⨯=P ADE -D PAE -P ADE -92PA ⊥ ABC PA BC ∴⊥90ACB ∠=︒ AC BC ∴⊥PA AC A = BC ∴⊥PAC BC ⊂PBC ∴PBC ⊥PAC PC O AO BO PA AC = AO PC ∴⊥ PBC ⊥PAC PC AO ∴⊥PBC直线在平面中的射影为,为与平面所成的角,在直角中,,,.19.(1)证明:连接,记,连接.取线段的中点,连接,.因为四边形是平行四边形,所以是的中点.因为是的中点,且,所以是的中点,因为,分别是,的中点,所以.因为平面,平面,所以平面.因为,分别是,的中点,所以.因为平面,平面,所以平面.因为平面,平面,且,所以平面平面.因为平面,所以平面.(2)解:由(1)可知平面,则点到平面的距离等于点到平面的距离.因为,,,所以的面积为作,垂足为,连接,则平面.因为,所以,,则.因为,,,所以AB PBC OB ABO ∴∠AB PBC AOB ∆AB =AO =∴sin ABO ∠=AC AC BD O = OE 1D E H AH HF ABCD O AC H 1D E 12D E CE =E HC O E AC HC //OE AH OE ⊂BDE AH ⊂/BDE //AH BDE H F 1D E 1BD //HF BE BE ⊂BDE HF ⊂/BDE //HF BDE AH ⊂AHF HF ⊂AHF AH HF H = //AHF BDE AF ⊂AHF //AF BDE //AF BDE F BDE A BDE 2AD =3AB =60BAD ∠=︒ABD ∆1sin 2AD AB BAD ⋅∠=EG CD ⊥G BG EG ⊥ABCD 12D E CE =1113EG DD ==22DG GC ==DE =3AB =2AD =60BAD ∠=︒BD因为,,,所以,则.在中,由余弦定理可得.故的面积为.设点到平面的距离为,因为三棱锥的体积等于三棱锥的体积,所以,解得到平面20、(1)证明:取得中点,连接,,如图,为的中点,,为的中点且四边形为菱形,,,,四边形为平行四边形,,又平面,平面,平面;(2)解:①连接,过作于,连接,,由,是的中点,,由菱形知,又,平面,平面,平面平面,且交线为,直线在平面上的射影为,即与底面所成角为,平面,,且在平面上的射影为,,又,,是的中点,是的中点,,由知,,,为二面角的平面角,,1CG =2BC =60BCG ∠=︒BG =2BE =BDE ∆cos BED ∠==sin BED ∠=BDE ∆11sin 222BE DE BED ⋅∠=⨯=F BDE h E ABD -A BDE -11133=h =F BDE PD E ME CE M PA ∴1,//2ME AD ME AD =N BC ABCD ∴1//,2NC AD NC AD =//NC ME ∴NC ME =∴MNCE //MN EC ∴MN ⊂/PCD CE ⊂PCD //MN ∴PCD PO B BF PC ⊥F DF OF PB PD =O BD PO BD ∴⊥ABCD AC BD ⊥PO AC O = BD ∴⊥PAC BD ⊂ ABCD ∴PAC ⊥ABCD AC ∴PA ABCD AC PA ABCD PAC ∠BD ⊥ PAC BF PC ⊥BF PAC OF OF PC ∴⊥PA PC ⊥//OF PA ∴O BD F ∴PC 2PB BC ∴==BPC DPC ∆≅∆DF PC ⊥BF DF =BFD ∴∠B PC D --∴2222222162cos 277BD BF DF BF DF BFD BF BF BF =+-⋅∠=+=即,解得,,,,,即与底面所成角的大小为;②连接,过作于,由,平面,平面,平面,点到平面的距离即点到平面的距离,,,,平面,平面平面,且是交线,,平面,在中,,由等积法可得,即,即点到平面.21、(12分)(Ⅰ)证明:由直三棱柱的性质,得平面平面,又,平面,又平面,,,在和△中,,,即,又,平面.(Ⅱ)证明:由题意知,在△中,,又,,平面,不包含于平面,平面,、分别为、的中点,,又,,,不包含平面,平面,平面,平面,,平面平面.(Ⅲ)解:平面,平面平面,平面,为平行平面与之间的距离,21647BF =274BF =∴23PC FC ===∴sin 2PC PC PAC AC AO ∠====090PAC ︒∠︒ ……60PAC ∴∠=︒PA ABCD 60︒ON O OG FD ⊥G //ON CD ON ⊂/PCD CD ⊂PCD //ON ∴PCD ∴N CDP O CDP BF PC ⊥ DF PC ⊥BF DF F = PC ∴⊥BFD ∴PCD ⊥BDF DF OG FD ⊥ OG ∴⊥PCD Rt OFD ∆1,OF OD DF ===OF OD FD OG ⋅=⋅OG =N CDP ABC ⊥11BB C C AB BC ⊥AB ∴⊥11BB C C 1B D ⊂11BB C C 1AB B D ∴⊥1112BC CD DC B C ==== ∴Rt BCD ∆Rt 11DC B 1145BDC B DC ∠=∠=︒190BDB ∴∠=︒1B D BD ⊥AB BD B = 1B D ∴⊥ABD 111EB B F ==∴Rt 1EB F 145FEB ∠=︒145DBB ∠=︒//EF BD ∴BD ⊂ ABD EF ABD //EF ∴ABD G F 11A C 11B C 11//GF A B ∴11//A B AB //GF AB ∴\AB ABD ⊂ 平面GF ABD //GF ∴ABD EF ⊂ EFG GF ⊂EFG EF GF F = ∴//EFG ABD 1B D ⊥ ABD //EGF ABD 1B D ∴⊥EGF HD ∴EFG ABD.22、证明:(1)如图所示,取中点,连接,是正三角形,又平面平面,且平面平面,平面,平面,,,且,平面;如图所示,连接,,过点,作,,分别与交于点,,过点作,交于点,连接,设,,,则,由(1)得平面,即为直线与平面所成角的平面角,平面,,则,解得:,故,,解得又,所以平面,,,,解得所以点为线段的中点,故点也为线段中点,11HD B D B H ∴=-==CD O PO PCD ∆ PO CD∴⊥PCD ⊥ABCD PCD ⋂ABCD CD =PO ∴⊥ABCD BC ⊂ABCD PO BC ∴⊥BC PD ⊥ PO PD P = BC ∴⊥PCD OB BD D P DM AB ⊥PN AB ⊥AB M N M //MQ NP AP Q DQ 22AD BC ==2CD a =0a >OP =OP ⊥ABCD OBP ∴∠PB ABCD BC ⊥PCD BC CP ∴⊥OP PB OBP BP =∠===1a =BD AB ====BM AM =DM //BC AD AD ⊥PCD AD PD ⊥PA ===BN AN PN ===M AN Q AP所以,所以即为二面角的平面角,.12QM PN DQ ===DMQ ∠P AB D --222cos 2DM QM DQ DMQ DM QM +-∠===⋅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学 G单元 立体几何 G1 空间几何体的结构 20.、、[2014·安徽卷] 如图1-5,四棱柱ABCD - A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.
图1-5 (1)证明:Q为BB1的中点; (2)求此四棱柱被平面α所分成上下两部分的体积之比; (3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小. 20.解: (1)证明:因为BQ∥AA1,BC∥AD, BC∩BQ=B,AD∩AA1=A, 所以平面QBC∥平面A1AD, 从而平面A1CD与这两个平面的交线相互平行, 即QC∥A1D. 故△QBC与△A1AD的对应边相互平行, 于是△QBC∽△A1AD,
所以BQBB1=BQAA1=BCAD=12,即Q为BB1的中点. (2)如图1所示,连接QA,QD.设AA1=h,梯形ABCD 的高为d,四棱柱被平面α所分成上下两部分的体积分别为V上和V下,BC=a,则AD=2a.
图1 V三棱锥Q -A1AD=13×12·2a·h·d=13ahd, V四棱锥Q -ABCD=13·a+2a2·d·12h=14ahd, 所以V下=V三棱锥Q -A1AD+V四棱锥Q -ABCD=712ahd. 又V四棱柱A1B1C1D1 ABCD=32ahd, 所以V上=V四棱柱A1B1C1D1 ABCD-V下=32ahd-712ahd=1112ahd,故V上V下=117. (3)方法一:如图1所示,在△ADC中,作AE⊥DC,垂足为E,连接A1E. 又DE⊥AA1,且AA1∩AE=A, 所以DE⊥平面AEA1,所以DE⊥A1E. 所以∠AEA1为平面α与底面ABCD所成二面角的平面角. 因为BC∥AD,AD=2BC,所以S△ADC=2S△BCA. 又因为梯形ABCD的面积为6,DC=2, 所以S△ADC=4,AE=4.
于是tan∠AEA1=AA1AE=1,∠AEA1=π4.
故平面α与底面ABCD所成二面角的大小为π4. 方法二:如图2所示,以D为原点,DA,DD1→分别为x轴和z轴正方向建立空间直角坐标系. 设∠CDA=θ,BC=a,则AD=2a.
因为S四边形ABCD=a+2a2·2sin θ=6,
所以a=2sin θ.
图2 从而可得C(2cos θ,2sin θ,0),A14sin θ,0,4,
所以DC=(2cos θ,2sin θ,0),DA1→=4sin θ,0,4. 设平面A1DC的法向量n=(x,y,1), 由DA1→·n=4sin θ x+4=0,DC→·n=2xcos θ+2ysin θ=0, 得x=-sin θ,y=cos θ, 所以n=(-sin θ,cos θ,1). 又因为平面ABCD的法向量m=(0,0,1),
所以cos〈n,m〉=n·m|n||m|=22,
故平面α与底面ABCD所成二面角的大小为π4. 8.[2014·湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的
近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V
≈275L2h相当于将圆锥体积公式中的π近似取为( ) A.227 B.258 C.15750 D.355113 8.B [解析] 设圆锥的底面圆半径为r,底面积为S,则L=2πr,由题意得136L2h≈13Sh,代入S=πr2化简得π≈3;类比推理,若V=275L2h,则π≈258.故选B. 7.、[2014·辽宁卷] 某几何体三视图如图1-1所示,则该几何体的体积为( ) A.8-2π B.8-π C.8-π2 D.8-π4
图1-1 7.B [解析] 根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分
占圆柱的
1
4后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π.
G2 空间几何体的三视图和直观图 7.[2014·安徽卷] 一个多面体的三视图如图1-2所示,则该多面体的表面积为( ) A.21+3 B.8+2 C.21 D.18 图1-2 7.A [解析] 如图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后
余下的部分,其表面积S=6×4-12×6+2×12×2×62=21+3.
2.[2014·福建卷] 某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体 D.三棱柱 2.A [解析] 由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形. 5.[2014·湖北卷] 在如图1-1所示的空间直角坐标系O xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )
图1-1 A.①和② B.①和③ C.③和② D.④和② 5.D [解析] 由三视图及空间直角坐标系可知,该几何体的正视图显然是一个直角三角形且内有一条虚线(一锐角顶点与其所对直角边中点的连线),故正视图是④;俯视图是一个钝角三角形,故俯视图是②. 故选D. 7.、[2014·湖南卷] 一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( ) 图1-2 A.1 B.2 C.3 D.4 7.B [解析] 由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可
得r=6+8-102=2. 5.[2014·江西卷] 一几何体的直观图如图1-1所示,下列给出的四个俯视图中正确的是( )
图1-1 A B C D 图1-2 5.B [解析] 易知该几何体的俯视图为选项B中的图形. 7.、[2014·辽宁卷] 某几何体三视图如图1-1所示,则该几何体的体积为( )
A.8-2π B.8-π C.8-π2 D.8-π4
图1-1 7.B [解析] 根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分占圆柱的
1
4后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π.
3.[2014·浙江卷] 几何体的三视图(单位:cm)如图1-1所示,则此几何体的表面积是( )
图1-1 A.90 cm2 B.129 cm2 C.132 cm2 D.138 cm2 3.D [解析] 此几何体是由长方体与三棱柱组合而成的,其直观图如图,
所以该几何体的表面积为2(4×3+6×3+6×4)+2×12×3×4+4×3+3×5-3×3=138(cm2),故选D.
12.[2014·新课标全国卷Ⅰ] 如图1-3,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )
图1-3 A.6 2 B.6 C.4 2 D.4 12.B [解析] 该几何体是如图所示的棱长为4的正方体内的三棱锥E- CC1D1(其中E
为BB1的中点),其中最长的棱为D1E=(4 2)2+22=6.
6.[2014·新课标全国卷Ⅱ] 如图1-1,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) 图1-1 A.1727 B.59 C.1027 D.13 6.C [解析] 该零件是一个由两个圆柱组成的组合体,其体积为π×32×2+π×22×4=34π(cm3),原毛坯的体积为π×32×6=54π(cm3),切削掉部分的体积为54π-34π=20
π(cm3),故所求的比值为20π54π=1027. 17.[2014·陕西卷] 四面体ABCD及其三视图如图1-4所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H. (1)证明:四边形EFGH是矩形; (2)求直线AB与平面EFGH夹角θ的正弦值.
图1-4 17.解:(1)证明:由该四面体的三视图可知, BD⊥DC,BD⊥AD,AD⊥DC, BD=DC=2,AD=1. 由题设,BC∥平面EFGH, 平面EFGH∩平面BDC=FG, 平面EFGH∩平面ABC=EH, ∴BC∥FG,BC∥EH,∴FG∥EH. 同理EF∥AD,HG∥AD,∴EF∥HG. ∴四边形EFGH是平行四边形. 又∵AD⊥DC,AD⊥BD,∴AD⊥平面BDC, ∴AD⊥BC,∴EF⊥FG, ∴四边形EFGH是矩形.
(2)方法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0), DA=(0,0,1),BC=(-2,2,0),