线性代数同济第三版答案
同济大学线性代数教案第三章向量空间与线性方程组解的结构

线性代数教学教案第三章 向量组及其线性组合授课序号01,n a 组成的有序数组称为2n a ⎪⎪⎪⎭维向量写成),,n a个分量,其中T,…来表示,n a 是复数时,维复向量,当12,,,n a a a 是实数时,本书所讨论的向量都是实向量0⎪⎪⎪⎭或()0,0,,00=.2n a ⎪⎪⎪⎭称为向量2n a ⎪⎪⎪⎭的负向量,记为α. 向量的运算:由于向量可看成行矩阵或列矩阵,因此我们可用矩阵的运算来定义向量的运算,也就是:122,n n a a b ⎛⎫⎛⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭β,k ∈,则有1122n n a b a b a b +⎛⎫ ⎪+ ⎪= ⎪ ⎪+⎝⎭β; (2)2n k ka ⎪⎪⎪⎭α;我们称这两种运算为向量的线性运算)1221122,,n n n n b ba a ab a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪⎝⎭;()111212212221212,,,n n n n n n n n a b a b a b a b a ba b b b b a a b a b a b ⎛⎫⎪⎪ ⎪=⎪ ⎪⎪⎪⎭⎝⎭. 二、向量组及其线性组合::由若干个维数相同的向量构成的集合,称为向量组. :给定n 维向量组,,,n ααα,对于任意一组数,,,n k k k ,表达式+n n k k α,n α和一个,n k ,使得++n n k =βα,,,n α线性表示,或者说向量β是向量组,n α的一个线性组合量组12,,,n ααα(唯一)线性表分必要条件是+n n x =α有(唯一)解.三、向量组的等价:由向量组B 线性表示:,,m αα是m ,,s β是s 维向量组成的向量组. 中每一个向量,)s β均可由向量组,m α线性表,s β可由向量组:A 12,,,m ααα线性表示.A 与向量组可以相互线性表示,则称向量组A 与向量组2,,,m αα与向量组:B 2,,,s βββ. 令矩阵),m A α,),s β,则向量组B 可由向量组线性表示的充分必要条件是矩阵方程=B向量组A 与向量组等价的充分必要条件是矩阵方程=BY A四、主要例题:1211222221122n n n n m m mn n ma x a x a x a x a xb +++++=中第()121,2,,i i i mi a ai n a ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭α,维列向量2m b ⎪⎪⎪⎭, n n x β+=α12122212n n m m mn a a a a a ⎫⎪⎪⎪⎪⎭,将矩阵A 与列向量组和行向量组对应2100010,,,001n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭e e ,将任一向量2n a ⎪⎪⎪⎭由12,,n e e e 线性表示536⎫⎪⎪⎪-⎭及向量组123101,2,11⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭βββ,试问α能否由12,ββ123-⎫⎛⎫⎛⎫授课序号02,m α,如果存在一组不全为零的数,m k ,使得m m k +α,则称向量组,m α线性相关.线性无关:若当且仅当0m k ==时,才有112m m k k k ++=0ααα,m α线性无关.m 个n 维向量构成的向量组12,,,m ααα线性相关的充分必要条件是齐次线性方程组1122m m k k k +++=0ααα有非零解;线性无关的充分必要条件是上述齐次线性方程组只有零解0m k k k ===(,m m α线性相关的充分必要条件是存在某一个向量(1j ≤α2线性相关的充分必要条件是它们的分量对应成比例是向量组A 的部分组线性无关,则其部分组,m α是m 个,m α线性无关,而向量组,,m αβ线性相关,则向量,m α线性表示,且表示式是唯一的如果向量组1,,s ααα可由向量组,t β线性表示,并且s >,s α线性如果向量组12,,,s ααα可由向量组2,,t β线性表示,并且向量组,s α线性无关,则2,,s α与向量组,t β均线性无关,并且这两个向量组等价,则s t =.2322,2⎛⎫ ⎪= ⎪ ⎪α,存在一组不全为零的数20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e ,对任意一组数12120001001n n n n k k k k k k k ⎛⎫⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭e ,0n k ==时,才有1122n n k k k +++=0e e e ,所以向量组1,,n e e e 线性无关证明:任一含有零向量的向量组必定线性相关.221,11⎫⎛⎫⎛⎫⎪ =⎪ ⎪ -⎭⎝α,判断向量组12,,αα授课序号03,r α满足条件:)向量组1,,r ααα线性无关;)对于A 中任意的向量β,向量组,,r αβ线性相关,则称向量组12,,r ααα为向量组的一个极大线性无关组,简称极大无关组向量组A 的任意一个极大无关组所含向量的个数,称为这个向量组的秩,记为等价的向量组有相同的秩二、矩阵秩的概念及求法:rB ,则RA B ,n α为列构作矩阵),,n α,对矩阵的阶梯数给出矩阵的秩,从而给出向量组1,,n ααα的秩),n β,,n α与向量组,n β有相同的线性相关性,从而可以根据向量组,n β的极大无关组给出向量组12,,,n ααα的极大无关组,并给出不属于极大无关组的向量由极大无关组线性表示的表示20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e 线性无关,所以该向量组的极大无关组就是它3145,1227⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭α,向量1α与2α的分量不对应成比例,。
同济大学 高等数学(本科少学时)第三版第一章

例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
o
例如,x2 y2 a2.
(x, y)
x
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
o
X
x 无界
-M
-M
(2)函数的单调性:
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点 x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
则称函数 f ( x)在区间I上是单调增加的 ;
y
y f (x)
f (x2 )
1 2
3 x 2 2 x 1
故 D f :[3,1]
2、函数的特性
(1).函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
y M
y M
y=f(x)
o
x
有界 X
x0
阶梯曲线
(3) 狄利克雷函数
y
D(
x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
线性代数(同济大学第五版)课后习题答案 (大二所学)

第一百二十一页,共222页。
第一百二十二页,共222页。
第一百二十三页,共222页。
第一百二十四页,共222页。
第四章
第一百二十五页,共222页。
第一百二十六页,共222页。
第一百二十七页,共222页。
第一百二十八页,共222页。
第一百二十九页,共222页。
第一百三十页,共222页。
第一百六十四页,共222页。
第一百六十五页,共222页。
第五章
第一百六十六页,共222页。
第一百六十七页,共222页。
第一百六十八页,共222页。
第一百六十九页,共222页。
第一百七十页,共222页。
第一百七十一页,共222页。
第一百七十二页,共222页。
第一百七十三页,共222页。
第一百一十页,共222页。
第一百一十一页,共222页。
第一百一十二页,共222页。
第一百一十三页,共222页。
第一百一十四页,共222页。
第一百一十五页,共222页。
第一百一十六页,共222页。
第一百一十七页,共222页。
第一百一十八页,共222页。
第一百一十九页,共222页。
第一百二十页,共222页。
第十四页,共222页。
第十五页,共222页。
第十六页,共222页。
第十七页,共222页。
第十八页,共222页。
第十九页,共222页。
第二十页,共222页。
第二十一页,共222页。
第二十二页,共222页。
第二十三页,共222页。
第二十四页,共222页。
第二十五页,共222页。
第二十六页,共222页。
第一百四十二页,共222页。
高等数学(同济大学版)第三章练习(含答案)

第三章 微分中值定理与导数的应用一、要求:1、罗尔定理,拉格朗日定理应用;2、洛必达法则;3、函数单调性、极值、最值、凹凸性、拐点的判断,函数图形的描绘;4、简单不等式证明;5、最值在实际问题中的应用。
二、练习1. 在区间 [ 1,1] 上满足罗尔定理条件的函数是 ().A.1 B.f ( x ) | x | C. f ( x) 1 x 2D. f ( x ) x22 x 1.f ( x)x 22. 函数 f ( x) arctan x 在 [ 0 ,1] 上满足拉格郎日中值定理的值是 ().A.4B.41C. 1D. 4.11 3.4设函数 f ( x ) ( x 1)( x2)( x 3),则方程 f ( x )0 有个零点,这些零点所在的范围是;.3. 设函数 f ( x ) ( x 1)( x 2)( x 3),则方程 f ( x )0 有个零点,这些零点所在的范围是.4. 函数 f ( x ) ln xx2在(0,) 内的零点的个数为.e5. 曲线6. 函数yxe x 的拐点 ,凹区间,凸区间.yln x1x 2的单调区间.7. 曲线 f ( x) e x的渐近线为.x 18. 计算:5 x 4x11(12(2) lim (cos x )(1) limx 1xx) (3) limtan 2 xx1xe 1x 0arctan x x(1 x 2 )1 / 31 ;1( 4) lim ;(5) lim(6) lim (cscx ) ;x 0x ln(1 2 x 2 )xcosx1x 0x( 7) lim x 3 (sin 11 sin2 ) ;( ) lim (tanx )2 x;( 9) limx;exx2x8x ln xx29. 证明 2 arctanxarcsin2 xx1 .21 x10. 证明方程x5x10 在区间( 1, 0)内有且只有一个实根.11. 证明多项式f x3 3 x a 在0,1上不可能有两个零点 .x12. 证明:当0x时, x sin x 22x13.证明:当x0时,1x2arctan x xx14. 设 f x32bx在 x 1 处有极值-2,试确定系数 a , b ,并求x axy f x 的所有极值点与拐点.15. 求内接于椭圆x2y2221 而面积最大的矩形的各边之长.a b16.由直线 y0,x8及抛物线 y x2围成一个曲边三角形 ,在曲边 y x2上求一点 , 使曲线在该点处的切线与直线y0 及 x 8 所围成的三角形面积最大.17.描绘 (1)y 3 x2,(2) y21的图形 .2( x1) ( x 1) 2( x 1)18.要做一个容积为 2 的密闭圆柱形罐头筒,问半径和筒高如何确定才能使所用材料最省?19.要造一个长方体无盖蓄水池,其容积为500 立方米,底面为正方形。
同济大学线性代数B期末试卷-含参考答案

同济大学课程考核试卷(B 卷)2009—2010学年第一学期命题教师签名: 审核教师签名:课号:122010 课名:线性代数B 考试考查:考试此卷选为:期中考试( )、期终考试( )、重考( √ )试卷(注意:本试卷共七大题,三大张,满分100分.考试时间为 分钟.要求写出解题过程,否则不予计分) 一、填空题(每空3分,共24分)1.已知4阶方阵为()2131,,,A αααβ=, ()1232,2,,B αααβ=, 且 4A =-,2B =-,则行列式 =+B A 6 。
2. 设行列式1131100021034512D =,j i A 是D 中元素j i a 的代数余子式,则=+2414A A -9 .3. 已知矩阵222222a A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,伴随矩阵0≠*A ,且0=*x A 有非零解,则 C .(A) 2=a ; (B ) 2=a 或4-=a ; (C) 4-=a ; (D) 2≠a 且4-≠a .4. 向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线性表示, 则以下结论中不能成立的是 B(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α(1)j s ≤≤,向量组s j ββα,,,2线性相关; (C) 向量组s ααα,,,21与向量组s βββ,,, 21等价. 5. 已知3阶矩阵A 与B 相似且010100001A -⎛⎫⎪= ⎪⎪-⎝⎭, 则201222B A -=300030001⎛⎫- ⎪ ⎪ ⎪⎝⎭. 6. 设0η是非齐次线性方程组Ax b =的特解,12,,,s ξξξ是齐次方程组0Ax =的基础解系,则以下命题中错误的是 B(A) 001020,,,,s ηηξηξηξ---是Ax b =的一组线性无关解向量;(B) 0122s ηξξξ++++是Ax b =的解;(C) Ax b =的每个解均可表为001020,,,,s ηηξηξηξ+++的线性组合.7. 设4阶矩阵A 有一个特征值为2-且满足5T AA E =,||0A >,则其伴随矩阵*A 的一个特征值为 _________8. 已知实二次型2221,231231323(,)2624f x x x x x x ax x x x =++++正定,则常数a 的取值范围为22a -<<.二、(10分)设矩阵A 的伴随矩阵*110011102A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,且0A >, E BA ABA 311+=--。
高等数学同济第三版教材

高等数学同济第三版教材高等数学是大学数学中的一门重要课程,对于理工类专业的学生来说尤为关键。
同济大学的高等数学第三版教材是在前两版基础上进一步改进和完善的,本文将对该教材进行全面介绍和评价。
第一部分:教材概述高等数学同济第三版教材共分为七个章节,内容涵盖了微积分、多元函数微分学、级数、曲线积分、曲面积分、常微分方程和矢量代数。
每个章节都以实例引入概念、理论和方法,并配有大量的例题和习题供学生练习。
第二部分:教材特点1. 结构合理:教材按照知识递进的方式组织,从基础的微积分开始,逐步引入更复杂的概念和方法,确保学生能够渐进地掌握知识。
2. 内容详尽:教材对每个概念都进行了详细的解释和推导,给出了充分的例题和习题,帮助学生加深理解和掌握。
3. 理论与实践结合:教材在理论部分注重给出具体的实例,将抽象概念与实际问题相结合,帮助学生理解数学的实际应用价值。
4. 清晰的图示和表格:教材配有清晰的图示和表格,以帮助学生更好地理解和记忆概念、定理和公式。
第三部分:教材优点1. 完善的练习题:教材除了提供例题外,还给出了大量的习题供学生练习。
习题的难度和类型有所变化,以帮助学生巩固和拓展相关知识。
2. 精选典型例题:教材中选取了一些典型的例题,这些例题既能展示出数学方法的美妙之处,又能培养学生的分析和解决问题的能力。
3. 知识扩展和延伸:教材在每个章节的末尾都给出了一些扩展和延伸内容,旨在培养学生的创新思维和能力。
第四部分:教材改进意见尽管高等数学同济第三版教材在很多方面都有突出的优点,但也有一些可以改进的地方。
比如,在一些较为复杂的定理和推导过程中,可以增加更多的步骤和解析,以帮助学生更好地理解。
此外,可以增加一些与实际应用相关的例题和思考题,以更好地激发学生对数学的兴趣。
总结高等数学同济第三版教材是一本经典而优秀的教材,它系统地讲解了高等数学的基本概念和方法,并通过大量的例题和习题帮助学生巩固和应用所学知识。
高等数学 课后答案 - 高等教育出版社(同济大学数学系)

高等数学 高等教育出版社--同济大学数学系习题一1、(4)⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-254876131210131311412 (5)原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++333232131323222121313212111321)(x a x a x a x a x a x a x a x a x a x x x233332323131322322222121311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++= =j i ij j i x x a ∑=31,2、(1)T B A 23-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡165654111202022242363636333 (2)B AB T -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101012111101011121121212111 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101441300101012111202431211 (3)T BA A -2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121211121101012111121212111121212111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡414645233242031211656676444 3、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎪⎪⎭⎫ ⎝⎛321321321220011112y y y B y y y z z z ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321111110011x x x A x x x y y y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=552121023111110011230011112BA ⎪⎩⎪⎨⎧++=--=-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛∴32133212211321321321321552223552121023xx x z x x x z x x z x x x x x x BA y y y B z z z 或 4、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5.14.4251482041015620105B A 则4321414.118562.1515114355158A A A A AB ←←←←⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 即1A 工厂总收入158万元,利润55万元,其他类似. 5、设现有人口用矩阵表示为(单位:万人):)50,80(=A转移矩形⎪⎪⎭⎫ ⎝⎛=∆9.01.02.08.0B , 则三年后人口可表示为[]3)(AB B B AB = )09.74,91.55(781.0219.0438.0562.0)50,80(=⎪⎪⎭⎫⎝⎛= 即三年后市区,郊区人口分别为55.91,74.09万人.注:也可以先乘AB ,再计算(AB )B ,最后算[]B B AB )(.用AB 3计算时,B ,B 2,B 3的每行两数之和为1,最终结果两数之和为130,否则结果错误. 6、记⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7.015.110506230157182010B A则 T AB )150,5.46,6.47(=即此人每天摄入蛋白质,脂肪,碳水化合物分别为47.6,46.5,150克. 7、⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------=22222200002000020000240040000400004111111111*********11111111111111A⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==44442242222)(A A 猜想⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn nn nA 222222222 (*) 用数学归纳法证明①当1=n 时,显然由2A 的表达式知猜想成立. ②设k n =时成立,即{}K K K K k diag A 222222,2,2,2=.当1+=k n 时,22)1(2A A A k k ⋅=+={}k k k k diag 22222,2,2,2{}22222,2,2,2diag =diag{)1(2)1(2)1(2)1(22,2,2,2++++k k k k }. 因此,1+=k n 时,猜想也成立综上:(*)式成立,因此⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==+111111*********120000200002000022222212nn n n n n A A A ()A nn nnn n n n nn n n n n n n n 2222222222222222222222222222222222=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------------=. 注:简洁算法是()A A E A A n n n 22222==.8、 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=121557331233122A222200003003151551012155735)(x O E A A A f =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=+-=∴ 9、(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+521123241302111120221032121T T B A 注:也可用T B A )(+,更易求! (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=54651360556410630201232121311012210)(TTT BA (3)B B A T )(-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=921116521031101221010334100110、设33)(⨯=ij a B ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000000100010000000100010333231232221333231232221131211323122211211333231232221131211a a a a a a a a a a a a a a a AB a a a a a a a a a a a a a a a BA由AB=BA 可得:,0,,,0,,0323133223221312312221121========a a a a a a a a a a a a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∴111211131211a a a a a a B 即任意形如),,(000R c b a a b a c b a∈∀⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡的矩阵都可以和A 相交换. 11、(1)T TT T A A A A A A +∴+=+)(对称T T T T T A A A A A A A A -∴--=-=-)()(反对称(2))(21)(21T T A A A A A -++=12、AB B B A B AB B T T T T T ==)(13、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n n a a a a a a A ΛΛΛ1221111,考虑T AA 的对角线上的元素,由nxn T AA 0=可得 0,,2,1,0),(0)2,2(0)1,1(0222212222222121212211=∴==∴∈⎪⎪⎩⎪⎪⎨⎧=+++=++=+++A nj i a Ra n n AA a a a AA a a a AA a a a ij ij T nn n n T n T n ΛΘΛΛΛΛΛ元的第元的第元的第14、注意到:n k n n E A A E A E =+++--))((1Λ及n n k n E A E A A E =-+++-))((1Λ(利用0=k A ).A E n -∴可逆,且11)(--+++=-k n n A A E A E Λ.15、0672=--n E A A⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛+-+⇒-=-+=-⇒=-⇒nn n n n n n n n n E E A E A E E A E A E E A A E E A A 129121)2(12)9)(2()6761(6)7(再验证:nn n n n E E A E A E A E A =+⋅⎪⎭⎫⎝⎛+-=⋅⎪⎭⎫⎝⎛-)2(1291216761于是可说E A A 2,+均可逆,且 n n n E A E A E A A 43121)2(,676111+-=+-=-- 说明:对于数a而言,当0672=--a a 时,可以得到12)9)(2(,6)7(-=-+=-a a a a ,矩阵的乘法可类比.16、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==345123101)(ij b B ,易求出AB. 17、⎪⎪⎭⎫⎝⎛-=αααα2cos 2sin 2sin 2cos 2A猜想 ⎪⎪⎭⎫⎝⎛-=ααααn n n n A n cos sin sin cos (*)用数学归纳法证:① 1=n 时成立.② 设1-n 时成立,则n 时,⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-----=⋅=-ααααααααcos sin sin cos )1cos()1sin()1sin()1cos(1n n n n A AA n n ⎪⎪⎭⎫⎝⎛-=ααααn n n n cos sin sin cos 故(*)式成立19、(1)原式T T T T n u u u u uu uu E )(λμμλ+--= T T n uu u u E )(λμμλ-+-=(2)当1≠u u T λ时,由0=-+u u T λμμλ可解出,1uu T λλμ--=则由(1)结果可知此时n T n T n E uu E u E =--))((μμλ,从而T n uu E λ-可逆. 22、22))((B BA AB A B A B A -+-=-+.当BA=AB 即A 、B 可交换时,22))((B A B A B A -=-+. 23、设,),,(),(1T n ij x x x a A Λ==由0=Ax 得⎪⎪⎩⎪⎪⎨⎧=++=++=++)(0)2(0)1(01121211111m x a x a x a x a x a x a n mn m n n n n ΛM ΛΛΛΛ由于n R x ∈是任意的(x 是任意n 维列向量),分别取),,2,1(,)0,,1,,.0(n j e x T j ΛΛΛ===,则,0),,,(21==T mj j j j a a a Ae Λ得到),,,1.(0m i a ij Λ==又j 分别取n ,,2,1Λ时,可得 ),,1;,,1(,0n j m i a ij ΛΛ===,故 .0=A24、设T j ij i e y a A x )0,,1,,0(),(),0,,1,,0()(ΛΛΛΛ====则由⇒=0xAy ,0010)0,,1,,0(111111==⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ijnn nj n in ij i n j a a a aa a a a a a M M ΛΛM M M ΛΛM M MΛΛΛΛ).,,1;,,1(n j m i ΛΛ== 故 .0=A 25、(1) T ij x a A )1,,1,1(),(Λ==则 11111111111nx nn n n nn n n a a a a a a a a Ax ⎪⎪⎪⎭⎫ ⎝⎛++++=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ΛΛΛΛM ΛΛΛΛ (2)A 的每行元素之和为常数a ,即是ax Ax =.,)()(111x aA x ax A Ax A ---=⇒=∴又0≠a (否则00=⇒=x Ax ,矛盾)x a x A 11=∴-,即A -1每行元素之和皆为a1.27、设),,(1n a a diag A Λ=,)(ij b B =,),(),(ij ij d BA c AB ==则 ,001ij i nj ij i j ij b a b b a b c =⋅+++⋅=ΛΛ(A c ij =Θ的第i 行元素与B 的第j 列对应元素乘积之和)j ij in j ij i ij a b b a b b d =⋅+++⋅=001ΛΛ,令BA AB =得ij ij d c =.即 j ij ij i a b b a =0)(=-⇒ij j i b a an a a ΛΘ1两两不等,即)(j i a a j i ≠≠ B j i b ij ∴≠=∴)(0为对角矩阵.习题二1、按第3行展开00000000051412524232115141311325242252423221514131231a a a a a a a a a a a a a a a a a a a a a a D -=25242315141341322524231514134231a a a a a a a a a a a a a a a a ⋅-⋅==0. 2、(1)第2列减去第3列,提出公因数100; (2)化阶梯形;(3)第一行展开,再化阶梯形;(4)第2,3,4列加到第1列提出公因数10.(5)yxx y x y x y y x yx yx x y x yx y x y yx D 111)22(222222+++=+++++= xy x y xx y y x ---+=001)22().(2)]([)22()22(332y x y x y x y x xy x yxy x +-=-+-⋅+=---⋅+=(7)原式 .0221222122212221252321252321252321252321222222222=++++=++++++++++++=d d c c b b a a d d d d c c c cb b b b a a a a3、(1)按第一行展开,再把第2个1-n 阶行列式按最后一行展开000)1(1⋅⋅⋅⋅-+⋅⋅⋅=+ΛΛy xx yxx xD n1121)1()1(-++--+=n n n y x xxO.22--=n n x y x(2)按第一行展开111)1(-+-⋅=n n n b b b D O )()1(11n n b b Λ+-=.(3)原式=.)1(!)1(!221)1)(1()1(121)1(2)2)(1(12)1(1111++++++++-++-=-==----=--n n n n n n n n n n n n n n ΛΛNN(4)第1,3至n 行分别减去第2行,再按第1列展开.)!.2(220000100222000012000010022220001--=--=--=n n n D ΛM M M M M ΛΛΛΛM M M M M ΛΛΛ(5)212---=n n n D D D ⇒211----=-n n n n D D D D12312=-=-D D⇒)2(11≥=--n D D n n∴1)2(2⋅-+=n D D n (等差数列)123+=-+=n n 4、(1)略(2)4阶范德蒙行列式的变形. 5、(1)用归纳法.当 2=n 时,,11112121212a a a a a a D ++=++=等式成立.设当k n =时等式成立,即k k k k k k a a a a a a a a a a a a a D ΛΛΛΛΛ3222112121++++=--.当1+=k n 时,1212112111101101111111111111101110111++++++++=+++++=k k k a a a a a a a a D ΛM M M M ΛΛΛM M M M ΛΛΛM M M M ΛΛ,1321121211211211211110000++-+++++++=+=+=k k k k k k k k k k k k a a a a a a a a a a a a a a a D a a a a D a a a ΛΛΛΛΛΛΛM O M M ΛΛ等式得证.(2)归纳法. 当3=n 时,,)()(11))((0011113132121132321122213123133313213123133313231131213332313213∏≤<≤-++=++++--=----=----==i j j ia aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a D结论成立.假设当1-n 时结论成立. 当n 时,n nn n n n nn n n n n a a a a a a a a a a a a D ΛΛM M M MΛΛ32122322213211111----=211231132211233331122111)()(---------+++--=n nn n n n n n n nn n n a a a a a a a a a a a a a a a a ΛΛMMMΛΛ)111111)(()(21231221333311312333311222------------+--=n nn n n n n n n nn n n n n n n aa aa a a aa a aaa a a a a a a a ΛΛM M M ΛΛΛM M M ΛΛ)111)(()(223223333111122-------+--=n nn n n n n n n n aaa a a a a D a a a a ΛΛM M MΛΛ))()())((()(2122112∏∏≤<≤≤<≤-+-++--=ni j j ini j j in n a aa a aa a a a a a ΛΛ.)()(121∏≤<≤-+++=ni j j in a aa a a Λ另一证法参见《 学习指导》.6、利用范德蒙行列式,可得∏-≤<≤---------==11111111111)()().(111)(n i j j i n n n n n n a a x a x a a a x a a xx D ΛΛM M M MΛΛ由于),11(,-≤<≤≠n i j a a j i 故上式为x 的1-n 次多项式,其根分别为.,,,121-n a a a Λ8、用初等变换化为阶梯形即可得秩.9、利用行初等变换化 )()(1-→→A E E A ΛΛ得到1-A .注:(2)E A 4442=⎪⎪⎪⎭⎫ ⎝⎛=O ⇒ 441AA E A A =⇒=⋅-.11、⇒+=⋅B A B A 2A B E A =-)2(⎪⎪⎪⎭⎫⎝⎛-----=-=⇒-9122692683)2(1A E A B 注意左、右乘的区别!12、设.)(1110--+++=n n x c x c c x f Λ由⇒=i i b a f )(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----n n O n n n n n b b c c c a a a a a a AC M M M ΛM M M M ΛΛ1111122111111由范德蒙行列式,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⇒≠-=-≤<≤∏n n n i j j i b b A c c a a A M M 11010)(det即n c c ,,0Λ唯一存在,从而)(x f 唯一存在. 13、 当0det ≠A 时, 1)(det *-=A A A())det()(det )(det det *det 11--==⇒A A A A A n ⎪⎭⎫ ⎝⎛==⇒--A A A A n det 1det )(det *det 11Θ.当0det =A 时,0*=AA . 设r A rank =)(,则11000000--⎪⎪⎭⎫ ⎝⎛=⇒⎪⎪⎭⎫ ⎝⎛=Q Er P A Er PAQ *000*11A Q Er P AA --⎪⎪⎭⎫ ⎝⎛=⇒ 0000211=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-C C Er P ,(记)*211⎪⎪⎭⎫ ⎝⎛=-C C A Q000021=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇒C C Er (1-P Θ可逆) O C O O C =⇒=⎪⎪⎭⎫ ⎝⎛⇒11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=∴⎪⎪⎭⎫⎝⎛=∴-222100*0*QC C Q A C A Q0*det =∴A (*A Θ中至少有r 行为0行).14、(1) rank(A)=.)(0||||0||*1*n A rank A A A n n =⇒≠=⇒≠⇒-(2) ,1)(-<n A rank 则A 的1-n 阶子式全为0,从而*A 的任一元素为0,故.0)(*=A rank(3) 当,1)(-=n A rank 则A 中至少有一个1-n 阶子式不为0,即*A 至少有一个元素不为0,故.1)(*≥A rank 反之,.0||0||1)(*==⇒=⇒-=E A AA A n A rank 又存在n 阶可逆矩阵,,Q P 使.0001⎪⎪⎭⎫ ⎝⎛=-n E PAQ 又,0**1==-PAA A PAQQ 记⎪⎪⎭⎫ ⎝⎛=-21*1B B A Q ,其中2B 为*1A Q -的最后一行,则由,00.0001211=⇒=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-B B B E n 于是,10)()(2*1*≤⎪⎪⎭⎫ ⎝⎛==-B rank A Q rank A rank 故.1)(*=A rank15、由已知条件知,T A A )(*=,于是||||*A A =.0||||||||||**=⇒=⇒=A A A A E A AA n或.1||±=A 但∑=>=ni ij a A 12,0||(某个),0≠ij a 故.1||=A16、利用⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=---12111212212111112100A A A A A A E A A E A r n r 及例2.21的结论.习题四6、设313322211,,ααβααβααβ+=+=+=,321,,βββ线性无关3),,(321=⇔βββr ,而321,,ααα线性无关3),,(321=⇒αααr ,故只须证:),,(),,(321321αααβββr r =或:),,(),,(321321βββααα→列初等变换.事实上:),,(),,(322132121ααααααα+→+C C),,(),,()2,,()2,,(),,(3211332213213221332212332212313332βββααααααααααααααααααααααα=+++++++++++→→→→-++C C C C C C C3)(),,(321321==∴αααβββr r 321,,βββ∴线性无关.方法2 设 =+++++)()()(133322211ααααααx x x 0 (1) 下证 0321===x x x(1)式332221131)()()(αααx x x x x x +++++⇒=0由321,,ααα线性无关⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧=+=+=+∴000000321322131x x x x x x x x x 从而133221,,αααααα+++线性无关. 方法3:,110011101),,(),,(321133221⎪⎪⎪⎭⎫⎝⎛=+++ααααααααα 记 .110011101⎪⎪⎪⎭⎫ ⎝⎛=AA A ∴≠=02det Θ可逆线性无关321321133221,,3),,(),,(ααααααααααααΘ↑==+++∴r r7、(1)432,,αααΘ 线性无关32,αα∴ 线性无关(整体线性无关,则部分也是) 又321ααα,,Θ线性相关1α∴可由32αα,唯一线性表示(定理4.5) (2)反证法,设4α可由321,,ααα线性表示,则),,(),,,(3214321αααααααr r = ①又321,,αααΘ线性相关3),,(321<r ααα∴ ② 又432,,αααΘ线性无关,有 3),,(432=αααr3),,(),,,(4324321=≥∴αααααααr r ③由①②③知⎩⎨⎧<≥3),,,(3),,,(43214321ααααααααr r 矛盾.10、设),,(),,,(11n n B A ββααΛΛ== 则),,(11n n B A βαβα++=+Λ设r i i αα,,1Λ是A 的一个最大线性无关组,s j j ββ,,1Λ是B 的一个最大线性无关组则s B r r A r ==)(,)(,由于k α可由r i i αα,,1Λ线性表示,k β可由s j j ββ,,1Λ线性表示,)(n k ,,1⋯⋯=n n βαβα+⋯⋯+∴,11可由r i i αα,,1Λ,s j j ββ,,1Λ线性表示,从而),,,(),(1111s r n n r r ββααβαβα⋯⋯⋯⋯≤+⋯⋯+s r +≤ 即).()()(B r A r B A r +≤+12、假设r n -⋯⋯ξξξη,,,,21线性相关r n -⋯⋯ξξξ,,,21Θ线性无关η∴可由r n -⋯⋯ξξ,,1线性表示设 i i rn i k ξη∑-==1),,1(r n i i -=ΛΘξ是0=AX 的解 η∴也是0=AX 的解,从而0=ηA ,但η却是B AX =的解,从而0≠=B A η矛盾. 13、112211)1(+------++++=r n r n r n r n k k k k k x ηηηηΛΛ11122111)()()(+-+---+-+-+-++-+-=r n r n r n r n r n r n k k k ηηηηηηηΛ 令1122111,,+---+-+--=-=-=r n r n r n r n r n ηηαηηαηηαΛ 则0)(1=-=-=+-B B A A r n i i ηηαr n -⋯⋯∴αα,1是0=AX 的解 ①下证:r n -⋯⋯αα,1线性无关02211=+++--r n r n x x x αααΛ0)()(1111=-++-⇔+---+-r n r n r n r n x x ηηηηΛ 0)(1111=---+++⇔+----r n r n r n r n x x x x ηηηΛΛ 11,,,+--r n r n ηηηΛΘ线性无关, .021====∴-r n x x x Λr n -∴αααΛ,,21线性无关. ②由①,②知r n -αααΛ,,21是0=Ax 的基础解系.又1+-r n η是B Ax =的解(非齐次方程的一个特解!)∴111+---+++r n r n r n k k ηααΛ11)1(11+-------+++=r n r n r n r n k k k k ηηηΛΛ是=AX B 的通解.14、032321=+-x x x 的基础解系为,203,02121⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ηη它们就是V 的一组基.注:分别取⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛20,0232x x 得1η,2η. 17、充分性:设),,(,),,(11n T m b b a a ⋯⋯=⋯⋯=βα αβ=A ,则1)()(≤≤αr A r ① 因0,≠βα,不妨设i a ,0≠j b 则A 的第i 行第j 列的元素为i a 0≠j b∴ 1)(≥A r (至少有一个一阶子式不为0) ② ∴ 1)(=A r (由①与②得)必要性:设),,,(21n A αααΛ=, ),,,()(121n r A r αααΛ==, 则n ααΛ1的最大线性无关组只含1个向量,设它为α,)0(≠αΘ α为n αα⋯⋯,1的最大线性无关组 ∴ n αα⋯⋯,1可由α线性表示设ααααααn n k k k ===,,,2211Λ,令),,,(21n k k k Λ=β 则0≠β (否则,由1)(021=====A r n 与αααΛ矛盾.)则),(1n A ααΛ=),,(1ααn k k ⋯=)(21n k ,,k k ⋯=ααβ=. 其中α为1⨯m 向量,β为n ⨯1向量. 18、令⎪⎪⎪⎭⎫⎝⎛=T m T A ααM 1, ,1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T m T B βααM则0=Ax 的解都是0=Bx 的解(条件) 显然0=Bx 的解都是0=Ax 的解 (后者比前者少一个方程))()(B r A r =∴(结构定理4.11))()(T T B r A r =∴⇒),,(),,(11βααααm m r r ΛΛ= ∴β可由m αα,,1Λ线性表示19、令),,(),,,(11p n B A ββααΛΛ==,则矩阵方程B AX =有解∃⇔矩阵B AP P p n =⨯使得,∃⇔矩阵),(),(,11p n p n P a P ββαΛΛ=⨯使得⇔ 存在矩阵使得,)(p n ij p P ⨯=⎪⎩⎪⎨⎧++=++=n np p pn n p p p p ααβααβΛΛΛΛΛΛΛ1111111 p ββ,,1Λ⇔能由n ααΛ,1线性表示⇔ )()(A rank B A rank =M20、这里A 是实矩阵(否则未必成立,如⎪⎪⎭⎫⎝⎛=1i A )考虑0=AX 与0)(=X A A T 的解由===⇒=0)()(0T T T A AX A X A A AX 0知0=AX 的解一定是0)(=X A A T 的解.下证:0=AX A T 的解也是0=AX 的解,设0=AX A T 则0=AX A X T T .AX 是实向量,记⎪⎪⎪⎭⎫ ⎝⎛=n a a AX M 1,则0),,()()(22111=+=⎪⎪⎪⎭⎫ ⎝⎛=n n n T a a a a a a AX AX ΛM Λ.0),,(1==∴T n a a AX Λ,即X 是0=AX 的解,从而0)(=X A A T 的解也是0=AX 的解∴ 0)(=X A A T 与0=AX 同解 ∴ )()(A rank A A rank T =(定理4.11)21、有结论,对线性无关组k ββΛ,1,若k <n ,则可以从n αα,,1Λ中取一个向量j α,记作1+k β,使11,,+⋯⋯k k βββ线性无关(*),现用该结论证明本题:r Θ<n ,可以取{}n j αααΛ,1∈ 使j r αββ,1Λ,线性无关 记j r αβ=+1,如果n r =+1,则证毕!如果1+r <n ,上述结论(*),可再从n αα,,1Λ中找k α使11+r ββΛ,,k α线性无关,如此进行下去,直到得到n ββΛ,1线性无关,此时从n αα,,1Λ中取了r n -个向量n r ββΛ,1+加入r ββΛ,1,使得n ββΛ,1线性无关(作为n R 的一组基). P.S .证明结论(*)向量组n αα,,1Λ不能用r ββΛ,1线性表示,否则由于n r <导致n ααΛ,1线性相关,矛盾∴存在某个j α不能用r ββΛ,1线性表示而k ββΛ,1,j α线性无关,记1+=r j βα即可.22、A 可由1A 线性表示,又1A 可由A 线性表示,于是1A 与A 等价,从而r A rank A rank ==)()(1,由定理4.7 知1A 为A 的最大线性无关组.23.(1)取11,,-m ααΛ的一个最大无关组)(,1个r ir i ααΛ,则r r m m m ==--),,,(),,(1111αααααΛΛ从而ir i ααΛ,1也是m ααΛ,1的最大无关组,显然它不包含m α(ir i αα,1ΛΘ是从11,,-m ααΛ中取出的!)(2)假设结论不成立,则A 有一个最大线性无关组ir i αα,1Λ,不包含m α,则包含在11,,-m ααΛ中,从而m α能表示为ir i αα,1Λ的线性组合,也能表示为11,,-m ααΛ的线性组合,矛盾.习题五2、若λ为A 的特征值,X 为相应的特征向量,即X AX λ=,于是X AX X A 22λλ==,又E A =2,则0)1(22=-⇒=X X X λλ,由于0≠X ,则1012±=⇒=-λλ.5、(反证)若21X X +为A 的属于λ的特征向量,则212121)()(AX AX X X A X X +=+=+λ0)()(22112211=-+-⇒+=X X X X λλλλλλ,由于21,X X 线性无关,则21λλλ==,矛盾. 7、X AX A x A X AX i i λλ==⇒=Λ(i 为自然数).)()()(101010X f X a X a X a X A a AX a X a X A a A a E a X A f mm m m m m λλλ=++=++=++=⇒ΛΛΛ8、(1))5)(5)(1(34430241-+-=----=-λλλλλλλE A ,A 的特征值为5,5,1321-===λλλ.(1.1)若求)det(100A ,由上题知A 100的特征值为:1 , 5100, (-5)100,于是2001001001005)5(51)det(=-⨯⨯=A .(1.2)若求A 100,先将A 对角化:对11=λ,0)(0010011024440240=-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011X ; 对52=λ,0)5(0021101012404802445=-⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2122X ; 对53-=λ,0)5(00210101844202465=+⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213X .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==120210121),,(321X X X P ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-120210505511P ,11110011551551551551500050001-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⋅⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=P P P P P P A P P A AP P Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=--100100100110010011005000501501551551P P P P .16、设n 阶正交阵A (n 为奇数)有特征值λ及相应特征向量X ,即X AX λ=,0)1()()(22=-⇒=⋅===X X X X X X AX AX AX A X X X T T T T T T T λλλλ,由于022221≠+++=n T x x x X X Λ,故,112±=⇒=λλ设A 的所有特征值为n λλλ,,,21Λ,则1det 21==A n λλλΛ,由于)1(1n i i ≤≤±=λ且n 为奇数,故必有某个,1=k λ又A E -的特征值为),,2,1(,1n i i Λ=-λ,从而0)1()1()1()det(1=---=-n k A E λλλΛΛ.17、设n n ββααΛΛ,,,11为n R 中两组单位正交基,从n αα,,1Λ到n ββ,,1Λ的过渡矩阵P=B A n n 1111),,(),,(--=记ββααΛΛ,由于A ,B 为正交阵,由正交阵性质知B A P 1-=为正交矩阵.20、(2)A 可逆,由AB BA AB BA BA A A A AB A ,~)()(11⇒==--与BA 有相同特征值.21、由16题证明知A 的特征值为1或-1,由于A 为上三角矩阵,其对角线上元素为特征值,即1±,再利用A 的任两列正交可得A 为对角阵. 另一证法可参见《学习指导》.22、存在正交矩阵Q ,使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T AQ Q λλλO 21,令QY X =,则:22111)(n n n T T T T y y Y Y Y AQ Q Y AX X λλλλ++=⎪⎪⎪⎭⎫⎝⎛==ΛO ,取{}n c λλ,,max 1Λ=,则X cX X Q X Q c Y cY y y c AX X T T T n T ===+≤--11221)()(Λ注:题目中)det(AX X T 应改为AX X T .24.由X AX ⋅==00知21,ξξ为A 的属于0的特征向量,且它们正交.由A 对称知A 的属于3的特征向量3ξ必与21,ξξ正交.现求3ξ.由于021222132132121=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛x x x x x x T T ξξ, ⎥⎦⎤⎢⎣⎡-→⎪⎪⎭⎫ ⎝⎛-210201212221得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎪⎪⎭⎫ ⎝⎛1223321x x x x ,取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1223ξ,则21,ξξ,3ξ为A 的两两正交的三个特征向量,单位化:⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=313232,323132,323231321ηηη,得正交阵[]321,,ηηη=Q , 且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300AQ Q T ,于是 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122244244313112221222130012221222131300T Q Q A . 26、设λ为A 的特征值,X 为相应特征向量,则X AX λ=,X AX A X A 22)(λ==,由A A =2得000)(22=⇒=-⇒=-λλλλλX 或1,即A 的特征值为0或1,E+A 的特征值为1或2,故E+A 的所有特征值之积不为0,即0≠+A E ,从而E+A 可逆,或由A E A E E A A E A E A E 21)(2121)21)((12-=+⇒=-+=-+- 27、若B 与A 相似,即存在可逆阵P ,使AP P B 1-=,从而P A P B k k 1-=,因而01==-P A P B m m ,但对角阵Λ不满足0=Λm ,故A 不与对角阵Λ相似. 28、记),,,(21n diag B λλλΛ=则存在可逆阵,P 使k k B P A P B AP P =⇒=--11.设n n A a A a E a A f Λ++=10)(,则))(),(()(111101110111011101n n n nn nn n n nn f f diag a a a a a a a a E a p A P a AP P a E a P A f P λλλλλλλλλλΛΛO ΛO ΛO Λ=⎪⎪⎪⎭⎫⎝⎛++++++=⎪⎪⎪⎭⎫⎝⎛++⎪⎪⎪⎭⎫ ⎝⎛+=+++=---)(A f ⇒相似于)(),((1n f f diag λλΛ.29、由已知条件,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0112011A ,⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1103110A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-300211002100111010303210230321021001110101A A30、由于A 为实对称阵,必与对角阵相似,要使A 与B 相似,只要A 与B 有相同特征值即可,B 的特征值为0,1,2,也为A 的特征值,A 的特征多项式为:λλλλλ---=-=11111)(yy x xE A f ,于是有0)2()1()0(===f f f ,即y x y x y y xx f =⇒=--==0)(11111)0(2 00201010)1(=⇒===x xy y y xx f 或0=y y x y x y y xx f -=⇒=+=---=0)(11111)2(2 31、用21,x x 分别表示市区,郊区居民数量,依题意有3:2:9.015.01.085.0212121=⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡x x x x x x习题六3、存在正交矩阵Q ,变换QY X =将二次型f 化为标准型,即:2222211)(n n T T T y y y Y AQ Q Y AX X f λλλ+++===Λ,取),2,1(n i e Y i Λ==则0==i f λ ),2,1(n i Λ=,(即此时取i Qe X =).00011=⋅⋅=⇒=⎪⎪⎪⎭⎫⎝⎛=⇒-Q Q A AQ Q n T λλO6、二次型3231212322212245x x x x x x ax x x f --+++=的矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=a A 11112125,A 正定⇔A 的各阶顺序主子式).3,2,1(,0=>∆k k即,20211112125,011225,05321>⇒>-=----=∆>==∆>=∆a a a故当2>a 时,二次型f 正定.7、设n 阶实对称阵A 的n 个特征值为n λλλΛ,,21,则存在正交矩阵Q ,使T n n T Q Q A AQ Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλλλO O 2121 A正定⇒A 的n 个特征值nλλλ,,,21Λ全为正T n n Q Q A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⇒λλλλλλO O 2121B B A T =⇒,其中Tn Q B ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=λλλO 21为满秩阵. 反之,若有n 阶满秩矩阵B ,使B B A T =.令BX Y =,则:22221)()())((n T T T T T y y y Y Y BX BX BX B X AX X f +++=====Λ,从而对任一0≠X ,有,00>⇒≠=f BX Y 所以f 正定.8、(1))0(,0≠>=X AX X f T 取i e X =,则).,21(0010)010()(11111,n i a a a a a a a a e f ii nn n in ii i n i ΛM M ΛΛΛΛΛΛΛΛΛΛ,=>=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(2)与(1)类似可证.9、(1)对B A BX X AX X X B A X x f X T T T +⇒>+=+=≠0)()(,0正定(2)K K K T T K A A A A ⇒==)()(对称A 正定A ⇒的特征值n λλλΛΛ,,21全为正k A ⇒的特征值k n k k λλλΛΛ,,21全为正k A ⇒正定(3)设A 的n 个特征值为n λλλΛΛ,,21,则aE A +的n 个特征值为),2,1(,n i a i Λ=+λ,取{}i a λmax >,则),2,1(0n i a i Λ=>+λ即aE A +的n 个特征值全为正aE A +⇒正定.10、f 的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3030002aa A ,由标准型23222152y y y f ++=知A 的三个特征值为1,2,5. 由0)3)(3)(2(33002=---+-=--=-λλλλλλa a aa E A 知A 的三个特征值为a a -+3,3,2.于是2=a 或2-,不妨取2=a ,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=320230002A 对⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=00011000122220001,11E A λ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1101ξ,单位化,212101⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=η 对22=λ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-300210001202100002E A ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0012ξ,取22ξη=; 对53=λ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-0001100012202200035E A ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103ξ,单位化⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=212103η,于是所用正交变换矩阵为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=2102121021010Q . 11、二次型f 的标准矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=λλλ111111A ,要f 正定,即要求A 正定,必须A 的各阶主子式:0>∆k ,)3,2,1(=k 即01>=∆λ,011122>-==∆λλλ,10)2()1(11111123>⇔>-+=--=∆λλλλλλ且202>⇔>-λλ. 故当2>λ时,二次型f 为正定. 12、A为正定矩阵,则A为对称矩阵,即,ij ji a a =因此ij j ij i i ji j ji b c a c c a c b ===,从而B 也为对称矩阵.⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛===n n n nn n n n n n j iji ij c c c A c c c c c c a a a a a a a a a c c c c a c b B OO O ΛΛΛΛΛΛO21212121222211121121)()(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⇒n n n n n n n n T x c x c x c A x c x c x c x x x c c c A c c c x x x BX X M ΛM O O Λ2211221121212121),,(),( (1)由于n c c c Λ,,21为非零实数,对021≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X M ,有02211≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n x c x c x c M ,又A 为正定矩阵,则(1)式右端大于0,从而对0≠X ,有0>BX X T ,故B 为正定矩阵.。
同济大学线性代数习题

用加边法计算
例 计算 a x1 a
a Dn
a x2
a a .
a
解
1
0
a a xn
0
0
1
D1 1 1
a x1
a a
a
a
a x n1
a
a a xn
1 a
1 x1 D1
1 1
n
1
a
x i1 i
a
x1
a a 1 a a
xn
1 x1
x n1 xn
1 0
a a
x n1 xn
aa
x1x2
1 a2 a3 x
将第1列的( a1)倍加到第2列,将第1列的
( a2)倍加到第3列,,将第1列的( an)倍加到最 后一列,得
10
00
1 x a1 0 0
n
Dn1 (x ai)1
a2 a1
x a2
0
i1
1 a2 a1 a3 a2 x an
n
n
( x ai) ( x ai).
解 将测得的数据分别代入h(t ),得方程组
a0 13.6,
a0 10a1 100a2 1000a3 13.57,
a0
20 a1
400 a 28000 a 313.55,(1)
a0 30a1 900a2 27000a3 13.52.
将 a0 13.60分别代入其余三个方程,得方程组
x1 x2
xn
评注 本题是利用行列式的性质把所给的n阶
行列式 Dn 用同样形式的 n 1阶行列式表示出来, 建立了Dn 与n 1阶行列式Dn1之间的递推关系.有 时,还可以把给定的n阶行列式Dn 用同样形式的 比 n 1阶更低阶的行列式表示,建立比n 1阶行 列式更低阶行列式之间的递推关系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数同济第三版习题答案 习题一答案(1-16) 习题二答案(17-37) 习题三答案(38-58) 习题四答案(59-86) 1利用对角线法则计算下列三阶行列式 2 0 1 (1) 1 4 1 1 8 3
2 0 1 解 1 4 1
1 8 3
2 ( 4) 3 0 ( 1) ( 1) 1 1 8 0 1 3 2 ( 1) 8 1 ( 4) ( 1) 24 8 16 4 4 a b c (2) b c a cab
a b c 解 b c a
cab
acb bac cba bbb aaa ccc 3abc a3 b3 c3 x y x y (4) y x y x x y x y
x y x y 解 y x y x
x y x y o o o x(x y)y yx(x y) (x y)yx y3 4 (x y)3 x3 3xy(x y) y3 3x2y x3 y3 x3 2(x3 y3) 2按自然数从小到大为标准次序 求下列各排列的逆序
数 (1)1 2 3 4 解逆序数为0
(2)4 1 3 2
3 3 4 2 1 解逆序数为5
4 2 4 1 3
解逆序数为3
(5) 1 3 (2n 1) 2 4 (2n)
2 ba 2 c a 3 2 3 1 4 2 4 1, 2 1
2 1 4 1 4 3
解逆序数为4
41 43 42 32 解逆序数为n(; ° 3 2 (1 个) 5 2 5 4(2 个) 7 2 7 4 7 6(3 个)
(6) 1 3 (2n 1) (2n) (2n 2) 2 解逆序数为n(n 1)
3 2(1 个) 5 2 5 4 (2 个)
(2n 1)2 (2n 1)4 (2n 1)6 4 2(1 个) 6 2 6 4(2 个)
(2n)2 (2n)4 (2n)6 (2n)(2n 2) (n 1 个) 3写出四阶行列式中含有因子 ana23的项
解含因子ana23的项的一般形式为 (1)tana23a3ra4s
其中rs是2和4构成的排列 这种排列共有两个 即24和42
所以含因子ana23的项分别是
(2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n 1 个)
(2n 1)(2n 2) (n 1 个) 3 4
2 1) aiia23a34a42 aiia23a34a42
(1)taiia23a34a42 (
4计算下列各行列式
4207 202 1 1251 41 wo
102M 123 41
o X
—
o 4 1210 2021 1230 41100 q77 42 07
o 024 di d9O17 9
0仃
024 di di 123
1122 4236 1120 2
315 2)
o 2 00 4 2 34 1121 2312 q nr 0 2 02 4236 1120 2315 6 q 1122 4236 1120 2315 角
0200 423 0 1120 2310
aedeef gcdf a c bJJ ad
cc b bb f ad aedeef ac 1 adfbce 1 1 4abcdef
1 ab a (1)( 1)2 1 1 c 0 1
°3 dc21 ab a ad 1 c 1 cd 0 1 0
5证明: a2 ab b2 (1) 2a a b 2b (a b)3; 1 1 1
证明
ax by ay bz az bx (2) ay bz az bx ax by az bx ax by ay bz
证明
OO1 d O1 c 1 1
b1
o o 1 d a1 C1 b ab 1O O1 oo a o
o
(1)( 1)3 21
ab ad
1 1 cd abcd ab cd ad 1
a2 ab b2 2a a b 2b 1 1 1
c2 c3 c1
c1
a 2a 1
ab a2 b a 0 b2 a2 2b 2a 0
a22a b2b(b a)(b a)? b2a (a b)3
x y z (a3 b3)y z x z x y ax by ay bz az bx ay bz az bx ax by az bx ax by ay bz
x y z y z x a3 y z x b3 z x y z x y x y z
x y z x y z a3 y z x b3 y z x z x y z x y
x y z (a3 b3)y z x z x y
x ay bz az bx y az bx ax by bz y bz ay az bz az bx ax by ay x ay bz z y z az bx y az bx x b2 z x ax by z ax by y x y ay bz by ay z ax ax x
a2
abed /
(%
2 2 2 2 x\7 1111 2 2 2
2
ab
ed
cc abed r
—l
abed 2 2 2 2 x\7 x\7 11112 2 2
2
ab
ed a) 1 d b b)(d b a)
1 b a) d(d b a)
8 8 55 55 2a2b2c2d 33 33 2a2b2c2d 1111
ab cd 2 2 2 2 2
2 2a
o 2 22 2 2 22 2 1111 abed 2 22 2
・2
4
1d dd 1 CC2
4C1
b
2 4 1d dd 1 CC24 1bb2b4
1 1 0 b a 1 c a 1 d a
0 b(b a) c(c a) d(d a) 0 b(ba) e (c a ) d(da)
1 1 (b a)(c a)(d a) b c b(b a) c(c a
1 1 (b a)(c a)(d a)0 c b 0 c(c b)(c b a) d(d
(b a)(c a)(d a)(c b)(d b) c(
c
d2(d
=(a b)(a c)(a d)(b c)(b d)(c d)(a bed) 假设对于(n 1)阶行列式命题成立 Dn 1 xn 1 a1 xn 2 则Dn按第一列展开有 xDn 1 an xn a1Xn 1 因此对于n阶行列式命题成立 n(n 1) 证明 D1 D2 ( 1)丁D D3 D 证明因为D det(aij)所以xo ooxn aixn 1 an 1X an 证明 oan oan X2 aT— 用数学归纳法证明 当n 2时 D2 x 1 a2 x a1 x2 a1x a2命题成立 6设n阶行列式D det(aj),把D上下翻转、或逆时针旋转 an1 ann a1n ann ann ain D2 D3 a11 ain a11 an1 an1 ai1 依次得 D1 an 2X an 1
Dn XDn 1 an( 1)n 1 oo an 1X an
90、或依副对角线翻转 同理可证
7计算下列各行列式(Dk为k阶行列式) (1)Dn
a
1 1
a ,其中对角线上元素都是 a未写出的元素
都是0
解 0 a
Dn
0 a (按第n行展开)
0 0 0 a 0 1 0 0 0 a
an1 ann a11
aln
D1 (1)n1 an1 ann
a11 a1n
a21 a2n
al1
a21
an1
a1n
a2n
ann
1)n 2 1)n1(
1)1 2 (n 2) (n 1)D a3n
n(n 1) 丁 D
(1)
D2 ( n(n 1) 1) 2 aii n(n 1) 1) 丁 DT n(n 1) (1) 丁 D
ain ann
D3 ( n(n 1) 1) 丁 D2 n(n 1) 1)丁( n(n 1) 1) 丁 D (1)n(n 1)D D