体外预应力加固梁的受力性能分析

体外预应力加固梁的受力性能分析
体外预应力加固梁的受力性能分析

体外预应力加固梁的受力性能分析

体外预应力多应用于桥梁和建筑结构以及结构加固补强之中。本文对体外预应力加固混凝土梁的研究概况及加固机理进行了阐述,为以后的加固设计提供理论参考。

标签:体外预应力;加固机理;等效荷载

现行《混凝土结构加固技术规范》(CECS 2590)中列出了加大截面加固法、外包钢加固法、改变结构传力途径加固法、外部粘钢加固法、预应力加固法等多种结构加固方法。其中体外预应力加固法已愈来愈受到人们的关注,它克服了采用其他方法加固时加固材料中普遍存在的应力效应滞后的缺陷,保证了新旧材料和结构的整体性与协同工作,是一种有效的主动加固方法。工程实践表明:采用体外预应力法加固桥梁和房屋结构,不仅能提高其承载力,还可以减小挠度和裂缝宽度,提高结构的弹性恢复能力,并且具有施工简便、不占用空间等特点[1]。

1、体外预应力加固梁研究概况

体外预应力是后张预应力体系的重要分支之一。传统的后张预应力结构中,预应力筋总是埋放布置在混凝土截面之内,而体外预应力混凝土结构是将预应力筋布置于混凝土截面以外施加预应力的一种结构体系。

我国于1996年10月首次采用体外预应力技术对一孔跨度为27.7m的预应力混凝土梁进行了加固[2]。90年前后,东南大学以吕志涛为首的课题组,运用试验方法对体外预应力加固梁进行了研究,通过梁的正截面抗弯加固、梁的抗剪加固的试验研究和分析计算,对预应力加固梁进行了较为系统的研究,提出了预应力加固的设计计算方法[3]。1991年,杜世生、叶见曙、赖国麟等[4]提出了体外预应力加固钢筋混凝土简支梁的抗弯极限强度的计算方法。

1999年北京建筑工程技术研究中心刘航[5]等人做了“体外预应力加固混凝土框架梁的试验研究”。其结论是钢筋混凝土框架结构采用按其弯矩图布置的折线体外预应力筋进行加固时,在正常使用极限状态下,可以显著减小梁的跨中挠度和裂缝宽度;在承载力极限状态下,可以显著提高原结构的抗弯极限承载力,效果好于直线体外预应力筋。2000年奉龙成和赵人达通过对12片体外预应力加固试验梁的己有试验结果的分析,认为其等效塑性区长度与破坏截面中性轴高度之比是基本接近一常数,在确定这一常数数值后,给出体外预应力筋的极限应力计算公式以及正截面强度的计算方法,公式对样本试验数据精度较高,但其他学者的试验数据表明其等效塑性区长度与破坏截面中性轴高度之比浮动较大。

2、体外预应力加固原理及特点

体外预应力加固技术的基本原理是充分利用了混凝土抗压性能,通过体外

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

桥梁体外预应力施工技术.

桥梁体外预应力加固技术 1体外预应力技术介绍 1.1概述 随着我国路网及交通运输业的快速发展,发现大量的桥梁经过一段时间的营运后,梁体出现裂缝、下扰等不同程度的病害,造成桥梁承载力明显下降,必须进行桥梁加固,提高桥梁承载力才能满足日益增大的交通量的需要。旧桥加固成为一项迫在眉睫的新时期建设任务。 体外预应力体系是后张预应力体系的重要的分支之一,是指将布置于承载结构主体之外的预应力筋施加预应力所形成的预应力结构体系。桥梁体外预应力加固技术是一种主动的加固技术,通过预应力材料对桥梁结构受拉区施加预应力,消除部分荷载产生的不利内力,提供结构的承载力。体外预应力成为桥梁加固中最有效的加固技术之一,具有良好广泛的应用前景。 1.2体外预应力的特点 1.2.1体外预应力的优点 1、锚固构件尺寸小,自重增加少,但可有效的大幅提高承载能力。 2、简化预应力筋曲线,预应力筋仅在锚固处和转向处与结构相连,减小摩阻损失,提高预应力使用效率。 3、对原结构损伤小,不影响桥下净空。 4、预应力布置灵活,可以根据桥梁病害进行全桥加固也可以进行局部加固。 5、与混凝土无粘结,由荷载产生的应力变化分散在预应力筋全长上,应力变化值小,对结构受力有利。 6、索力根据情况可以进行调整,预应力索可以更换,便于使用期间进行维护。 1.2.2体外预应力的缺点 1、体外索布置在截面外,防腐、保护相对较困难,易受外界影响。 2、锚固及转向区域容易产生应力集中,局部应力大,锚固施工要求高。 3、体外索张拉力较小,不能充分发挥体外索强度高的优点,对锚具及夹片的要求很高。

4、体外预应力筋的变形和混凝土的变形不一致,容易造成预应力损失。 1.3体外预应力的组成 体外预应力系统由锚固块、转向块、体外索、锚具、减振装置等主要5部分组成。 1.3.1锚具 体外预应力体系仅靠锚固端传力,因此体外预应力锚固体系的可靠性和安全性比一般体内预应力锚固体系要高,需使用专用的体外索锚具和夹片。体外预应力的锚具的外观尺寸较普通锚具更大,且还增加了一些辅助配件,如密封装置、防松装置、防护装置等。 1.3.2体外索 体外索主要有光面钢绞线、无粘结钢绞线、平行钢丝、成品索等类型。体外索较多采用无粘结钢绞线,环氧喷涂带PE的单根钢绞线具有良好的耐腐蚀性能,不需要再进行防护,具有很好的适用性。 1.3.3锚固块及转向块 体外预应力体系仅靠锚固块及转向块传力,锚固块和转向块必须和原结构有效连接,传递应力,锚固块及转向块一般采用钢筋混凝土结构和钢结构。 钢筋混凝土结构锚固块采用在原桥结构上钻孔、种植钢筋、浇筑混凝土成型。钢筋混凝土锚固块的外形及尺寸可以作的足够大,保证和原结构能够有效的连接,均匀的将应力传递到原结构,但是对混凝土浇筑质量要求严格,在部分位置混凝土浇筑困难。张拉力大的锚固块均采用钢筋混凝土形式。 钢结构锚固块采用种植锚栓和灌注结构胶的方式将钢锚箱固定在原结构上。钢结构锚固块具有施工快捷的优点,锚固块能够工厂化加工。但钢锚固块安装受原结构施工空间及自身重量的影响,在很多位置不能采用;钢锚固块仅靠锚栓和胶粘剂连接,传力较为集中,结合面容易产生裂缝,且安装很困难。钢锚固块比较适合施工空间开阔且应力较小的小型锚固块。 1.3.4施工机具 体外索的张拉机具根据张拉的要求分单孔千斤顶和整体千斤顶。单孔千斤顶用于施工空间狭小或分丝单孔张拉的体外索,整体千斤顶用于整体张拉的体外

路桥施工中体外预应力加固技术

路桥施工中体外预应力加固技术 发表时间:2016-03-10T15:29:05.280Z 来源:《基层建设》2015年22期供稿作者:温义顺 [导读] 广东盛安建设工程有限公司在本篇论文中,选取的实例是红棉路线路中的调整路段,作为城市中交通的主干运行。 温义顺 广东盛安建设工程有限公司 摘要:预应力的主要效果是使得建筑的坚固程度得以最大的保障。工作的原理是对结构或者是构件部分的力量的解除,这个过程追求永久性的加固,从而对公路和桥梁的坚固程度有很大的支撑力度,使得整个工程的安全有所保障。 1、工程概况 在本篇论文中,选取的实例是红棉路线路中的调整路段,作为城市中交通的主干运行。公路的建设方面,当地政府以重资支持,不但在桥梁、道路灯交通方面有所成就,而且在排水和电力等生活方面也有所建树。这些举措使得城市的发展得到了一个更加稳定和谐的环境。同时,最为得到重视的是混凝土工程的实施,并在以下文字中表明了自身的总结。 2、预应力技术的实践应用 在对工程进行施工时会,预应力技术的应用是必须的,通常是运用张拉作用的理论,在夹紧须应力筋的锚具上用做功的方式将其完成。而在实际的应用中,预应力施工的具体操作有两种方式,分别是外部和内部的施工手段,而两者之间又是具有显著区别的。前者中主要利用的是机械设施操作,以外部施力中的反力作用为主加以调整,从而完全把握混凝土结构施力的效果,不断满足建设中对施工的需求;后者虽然也是使用的机械设备,但是操作中使用的理论是筋的张拉,以此途径最终达到事先对其标准。 这里对于内部预应力有更详尽的叙述。区别于外部施力,内部施力的办法并不唯一。除了可以使用机械设备达到效果,预应力的施工还可以通过电热法来实现,与此较为相似的是白张法,是可以达到目的的另外一种途径。在一系列的预应力施工过程中,可以施以巨大拉力的大型工具得到了最广泛的应用,例如千斤顶之类的,不仅是由于机械设备在预应力工程中的强大能力,更是由于对此类工程实施的有效促进。当然,这些机械设备的使用并不是一概而论的,在操作中要依据具体情况来决定,一方面分清施工的顺序,另一方面则是据此施以具体的工艺技术。 3、桥梁加固 在工程建设中,对桥梁的加固是十分必要的,为了使得其承载方面的能力和耐持久度的性能可以有大幅度的提高,通常会不断补充加固桥梁中的部分结构物。随着我国经济的不断发展,道路的使用也更加频繁,由此造成一定的损耗,因此在加固方面加注了更多的投资,最经常使用的方法有上部和下部的结构补强加固两种。而前者又有更加具体的分类,主要是依据是否将结构受力体系加以变动。如果变换一下角度,主动和被动则是多被应用在补强材料的情况下。 3.1桥梁主动加固原理 这一措施主要应用在受拉区,以直接增设补强材料的方式进行,运用这一方式进行操作的工程有很多,比如对钢筋的补焊以及对钢板盒和高强复合纤维材料的粘贴等。自理论上来说,完全在被动加固的范畴,但是在实际的设计措施中,需要顾虑到两个特点,分别是带载加固和受力阶段性。 3.2桥梁被动加固原理 桥梁经过后加补强材料容易产生“应变滞后”的现象,为了避免这类现象的发生,并且极大程度的对材料的可利用度,则需要对其加以预应力,同时推动加固补强的进行。预应力的加固自作用原理上来说是集聚主动性的。 就我国现今的情况而言,预应力得以使用的范围主要有以下几种体系,包括体外预应力、高强复合纤维预应力、有粘结预应力三种。 4、体外预应力加固常用方法 4.1横向收紧张拉法 在施工过程中,会出现一些明显的问题,比如钢筋混凝土间的缝非常小的情况,这个时候存在于两端的张力会非常显著,为了减弱甚至避免这种张力,在工程中通常采取横向收紧张拉法来进行操作,这一操作方法也适用于同样情况的预应力混凝土梁。这种方式的操作是通过对梁的下缘对称梁中线的安装预应力筋来实现的,实施的位置是梁端,但要保持一定的距离,首先要弯起,之后则是以支点锚作为途径将其固定。为了使得支点的作用得到充分的发挥,需要将预应力筋在水平范围内分段支撑。为了使得预应力得出更好的结果,需要将分段中的中点部分确定,采用拉紧螺栓的方式将对称筋不断收紧,促进钢板部分的与压力以及预应力筋产出的负弯矩作用在梁上,只是通常情况下弯曲的程度很小,所以这种方式通常被应用在对小梁中正弯矩的减弱上,而对于对端顶剪力的降低上则是基本没有效果的。 4.2纵向张拉法 这一方式主要是依附于预应用力筋的轴线而得以实施的。在进行具体操作时,需要在梁底的位置安装预应力筋,弯起处则需要安装在梁的两个端点,其在腹板和顶板都是可以良好将锚进行固定的位置,为了有效降低梁在顶端处的剪力,可以在梁的底部和顶部实施纵向张拉的方式。由此可见,对于张拉实行,在位置的选择上是比较宽松的,顶底部都可以,而且除了可以水平方向,亦可以斜线方向,不过要注意,进行此类张拉根据具体的构造来决定。 4.3竖向顶撑张拉法 一般情况下,打造为U性的钢锚固板被安置在梁中位置的最底层,同时通过将拉杆在端点的固定,并且安装好张紧夹具,从而在此进行拉杆作用。在预应力的一系列技术中,钢丝束加固法得到了很大的认可,这是由其自身效果所决定的,在对其进行设置的过程中,要沿着梁肋的特定曲线来确定形态,同时放置定位的圆圈将其箍紧,以达到完好保证曲线和限定钢束位置的目的。 5、预应力加固体系中对高强复合纤维的有效利用 根据我国现今的实际情况,纤维在我国工程中得到了大范围的使用,其中最为受到追捧的是高强复合纤维的芳纶和碳纤,经过长期的研究和实践经验总结,在对此应有的技术方面也有一定的先进性,依据此,本文认为碳纤维预应力加固更应该得到推崇和使用。 5.1问题提出 在工程的加固方面不止一种,有很多可行的方式,但是在社会上得到反响而且得到广泛应用的则是直接纤维加固法,这种方式的应用

无粘结钢绞线体外预应力加固法

8 无粘结钢绞线体外预应力加固法(征求意见稿) 8.1 设计规定 8.1.1 本方法适用于对钢筋混凝土受弯、受拉和偏心受拉构件的加固,不适用于素混凝土构件的加固。 8.1.2 被加固的混凝土结构构件,其现场实测混凝土强度等级不得低于C10。 8.1.3 采用本方法加固的混凝土结构,其长期使用的环境温度不应高于60℃。 8.1.4 当被加固构件的表面有防火要求时,应按现行国家标准《建筑防火设计规范》GBJ 16规定的耐火等级及耐火极限要求,对加固材料进行防护。 8.1.5 在预应力钢绞线端部锚具的支承垫板不小于100×100mm的情况下,当端部锚固区的砼强度不低于C15时,端部锚固区混凝土的局部承压强度可不作验算。 8.2 无粘结钢绞线体外预应力加固钢筋混凝土梁 8.2.1 当采用无粘结钢绞线体外预应力对梁进行加固时,应按下列规定计算: 1 梁的正截面强度按偏心受压构件进行计算; 2 在作构件强度计算时,应先确定构件达到极限状态时钢绞线的应力值;该应力值等于钢绞线的有效预应力值加钢绞线在构件达到极限状态时的应力增量值。计算中,可假定达到极限状态时钢绞线的应力即为施加预应力时的张拉控制应力,即假定钢绞线的应力增量值与预应力损失值相等。 当采用一端张拉,而连续跨的跨数超过二跨;或当采用两端张拉,而连续跨的跨数超过四跨时,距张拉端二跨以上的梁,其由摩擦力引起的预应力损失有可能大于钢绞线的应力增量。此时可采用以下二种方法加以弥补:方法一:在跨中设置拉紧螺栓,采用手工横向张拉的方法补足预应力损失值; 方法二:将钢绞线的张拉预应力提高至0.75fptk,计算时仍按0.70fptk取值。

公路梁桥体外预应力加固设计方法

公路梁桥体外预应力加固设计方法 艾军史丽远 苏州科技学院苏州 215011 摘要:体外预应力技术是加固既有桥梁、提高桥梁现有承载能力切实可行的有效措施。提出体外预应力加固钢筋混凝土简支梁桥的设计计算方法和加固体系的检算方法。 关键词:体外预应力;加固;设计;承载能力 目前,国道、省道公路网已基本形成,交通运输业日益繁荣。据公路管理部门大量调查结果分析,现有公路桥梁存在两大方面的问题.一方面,相当一部分桥梁服务期限已有20年~30年,梁体已出现混凝土破损、剥落、钢筋锈蚀、产生裂缝的现象,桥梁承载能力受到影响。另一方面,由于现在交通量增多,车辆载重增大,部分桥梁承载力明显不足,急需采用加固措施提高其承载力以适应交通需要。加固旧桥将是桥梁工程界一个非常迫切的任务。 体外预应力是一种有效的桥梁加固方法,具有操作简单、对原结构损伤小、不影响交通、节省投资的优点[1][2],能显著提高结构承载力和抗裂度,有效改善结构的应力状态。结合实例验证本论文提出的体外束加固计算方法的正确性及加固效果. 1体外预应力筋的设计内容 1.1 体外束的线形布置 体外束的线形有多种形式,为了满足旧桥加固后承载力的需要,一般采用折线形,梁的跨中部分体外束布置在腹板下缘处,满足正截面抗弯强度要求;在约离支座1/3L~1/4L

处体外束向上弯起,并锚固在梁两端,满足梁的抗剪强度要求。体外束材料一般由无粘结钢绞线、粗钢筋与槽钢组合而成。 1。2 体外束的预应力损失计算 体外束加固旧桥时,其构造与有粘结预应力混凝土梁不同。因此,体外束的预应力各项损失计算与有粘结预应力混凝土梁有较大差异。在桥梁加固施工中,由于张拉力的读数是在梁体发生弹性压缩的情况下测取的,故分批张拉引起的混凝土弹性压缩损失σs4为零,在活载作用下,引起体外束中的拉力增量时,均以考虑了梁体的变形协调及体系的内力平衡,故活载拉力增量也不会引起预应力钢筋中的混凝土弹性压缩损失。对于全桥整体工作的梁来说,后张拉的各片梁会引起先张拉各片梁变形,产生预应力损失。 因旧桥混凝土的收缩、徐变在长期使用中已基本完成,该项损失较小,可近似取为零。 由以上分析可知,体外预应力筋的预应力损失比有粘结预应力混凝土梁预应力筋要小。所以体外束的张拉控制应力应适当降低,以避免体外束长期处于高应力状态下工作,改善加固体系结构的受力状态,建议其张拉控制应力值比公路桥规中规定的限值降低10%左右。 1。3 体外束面积的确定 体外束面积通常根据梁的控制截面的抗弯强度确定。具体方法:①检算旧桥的承载力或通过桥梁静、动载试验评定旧桥的承载力;②确定加固后梁所要达到的承载能力,并计算加固前后梁的承载力的差值;③根据此差值,按结构设计原理初步估算体外束的面积;5按一般原则,确定转向块和锚固端的位置,并进行全梁承载力校核;⑤按正常使用状态验算各项指标[3],直至满足各项要求为止.

体外预应力加固设计

浅析体外预应力加固设计 摘要:对体外预应力加固中体外预应力索、锚固系统、转向装置三个方面在设计时应注意的一些问题进行了分析,并阐述作为主动加固的体外预应力加固技术的特点。 abstract: some issues should pay attention to in designing the external prestressed cable, anchor system, steering device of external prestressed reinforcement are analyzed and the characteristics of external prestressed reinforcement as active reinforcement are described. 关键词:旧桥加固;体外预应力;体外预应力索;锚固系统;转向装置;设计 key words: reinforcement of old bridge;external prestressed;external prestressed cable;anchoring system;steering device;design 中图分类号:tu74 文献标识码:a 文章编号:1006-4311(2013)07-0088-02 0 引言 桥梁一般是公路中重要的咽喉工程,桥断路不通,随着时间的推移,新建的桥梁终究会成为旧桥。公路桥梁长期在自然环境(大气腐蚀、温度、湿度变化)和使用环境(荷载的增加,使用频率加快、材料与结构疲劳)的作用下,逐渐会产生损坏且不可逆。如果将所有旧危桥拆除重建,既不现实,也不科学。适当地对旧桥进行

体外预应力加固法

体外预应力加固法 一、体外预应力加固法基本概念 钢筋混凝土梁式桥通常包括简支梁(T型梁、少筋微弯板组合梁、π形梁及板梁等)、悬臂梁和连续梁等。当其存在结构缺陷,尤其是承载力不足或需要提高荷载等级,即需要对桥梁主要受力结构进行加固时,可在梁体外部(梁底与梁两侧)设置钢筋或钢丝束,并施加预应力,以改善桥梁的受力状况,达到提高桥梁承载能力的目的。 体外预应力是针对体内预应力而言的,即把预应力筋布置在主体结构之外。当体外预应力索应用于混凝土结构时就被称为体外预应力混凝土结构。体外预应力技术用于桥梁加固称为体外预应力加固。从力学特征上说,体外预应力索与周围结构主体在同一截面上的变形是不协调的。 体外预应力索加固结构的实质,是以粗钢筋、钢绞线或高强钢丝等钢材作为施力工具,对桥梁上部结构施加体外预应力,以预加力产生的反弯矩部分抵消外荷载产生的内力,从而达到改善旧桥使用性能并提高其极限承载能力的目的。 体外预应力加固法具有加固、卸荷、改变结构内力的三重效果,适用于中小跨径的梁式桥;对于较大跨径的桥梁,采用本方法加固时,宜同时配合其他加固方法进行综合加固,以达到较好的加固效果。 工程实践表明,用体外预应力索加固桥梁具有如下优点: (1)能够较大幅度地提高旧桥承载能力。加固后所能达到的荷载等级与原桥设计标准及安全储备有关,一般情况下可将原桥承载力提高30%--40%。 (2)体外预应力索加固技术所需设备简单,人力投入少,施工工期短,经济效益明显。 (3)在加固过程中,可以实现不中断交通或短时限制交通。 (4)对原桥损伤较小,可以做到不影响桥下净空,且不增加路面高程。 常用的体外预应力加固技术包括体外预应力钢丝束加固法和下撑式预应力拉杆(粗钢筋)加固法。 (5)体外预应力加固法与梁底增焊(或粘贴)钢筋(或钢板)的加固方法相比,不需清凿混凝土保护层,且损伤梁体程度小,加固时不影响或少影响交通,能恢复或提高桥梁的荷载等级,经济效果较明显。 但对于梁体外的预应力筋和有关构件,应采取切实有效的防护措施,否则在温度、腐蚀等外界条件作用下,容易造成预应力筋断裂,从而使加固工作失败。 二、体外预应力加固法原理 常用的体外预应力加固技术包括体外预应力钢丝束加固法和下撑式预应力拉杆(粗钢筋)加固法。 (一)外部预应力钢丝束加固法 采用外部预应力钢丝束(钢绞线)加固梁式上部结构,一般沿梁肋侧面按某种曲线线形(常用的有抛物线形等)设置预应力钢丝束,通过张拉预应力筋实现体外预应力。为保证曲线线形并固定钢束位置,在梁底每隔一定间距离(50——100c m)设置一个定位箍圈(由梁底向上兜),或者在梁肋侧面埋设定位销。钢

后张体外预应力加固技术及其工程应用

收稿日期:2011-11-28 作者简介:刘航(1971-),男,湖南醴陵人,教授级高级工程师,副总工程师,e-mail :liuhang71@https://www.360docs.net/doc/d1224862.html,. 建筑技术Architecture Technology 第43卷第1期2012年1月 Vol.43No.1Jan.2012 后张预应力技术除在各类新建建筑、构筑物以及桥梁结构中广泛应用外,在结构加固改造领域也有着广阔的应用前景。本文结合一些工程实例,介绍了后张预应力加固技术的相关研究及其在结构加固改造工程中的应用。 1后张预应力技术应用 (1)采用后张体外预应力筋加固钢筋混凝土结构 最为常见,如对于承载能力或刚度不足的混凝土受弯构件,包括框架梁、楼板等采用后张预应力筋加固,以提高其刚度及承载能力;再如对于受压承载力不足的轴心受压柱、偏心受压柱采用预应力撑杆加固,对于混凝土桁架结构中承载力不足的轴心受拉构件和偏心受拉构件等采用预应力拉杆加固等。 (2)后张预应力技术还可用于钢结构和钢与混凝土组合结构的加固。通过对钢结构和钢与混凝土组合结构施加预应力,产生与外荷载反向的变形和内力,一方面可提高钢结构以及钢与混凝土组合结构的正常使用性能,另一方面也可显著提高结构的承载能力。 (3)后张预应力技术还开始用于砖砌体结构的抗震加固。自20世纪90年代开始,新西兰、澳大利亚、欧洲等国家和地区开展了将后张预应力技术用于砖砌体结构抗震加固的研究。结果表明,采用后张预应力技术加固砖砌体结构可以显著提高砖砌体结构的延性和耗能能力,使砖砌体结构抗震能力大幅度提高。 2 后张预应力加固混凝土受弯构件常用布置及节点做法 2.1 预应力筋常用束形布置 对于因承载力不足而采用后张预应力进行加固的 混凝土受弯构件,宜采用接近于其弯矩图布置的折线预应力筋进行加固;对于简支梁,也可采用布置于受拉区的直线预应力筋进行加固。图1~3为几种常用的加固预应力筋布置形式。 后张体外预应力加固技术及其工程应用 刘 航1,高会宗2,杨学中1,吴文奇1 (1.北京市建筑工程研究院有限责任公司,100039,北京;2.中广国际建筑设计研究院,100045,北京) 摘 要:对后张体外预应力技术在结构加固工程中的应用进行了较为全面的分析。探讨了后张预应力加固 钢筋混凝土受弯构件的设计计算方法,提出了预应力筋的常用束形布置和节点做法,并结合某工程实例分析了预应力加固框架梁的有关施工方法。后张预应力技术目前在国际上还被用于砖砌体结构的抗震加固,对其原理和效果也进行了简要的介绍。 关键词:体外预应力;后张法;加固;受弯构件;砌体结构中图分类号:TU 746.3;TU 757 文献标识码:B 文章编号:1000-4726(2012)01-0049-04 EXTERNAL POST-TENSIONING TECHNIQUES AND APPLICATIONS FOR STRUCTURES RETROFITTING LIU Hang 1,GAO Hui-zong 2,YANG Xue-zhong 1,WU Wen-qi 1 (1.Beijing Building Construction Research Institute Co.,Ltd.,100039,Beijing,China; 2.Architectural Design &Research Institute of CRTV,100045,Beijing,China ) Abstract:The external post -tensioning techniques used for structures retrofitting are analyzed comprehensively.The design and calculating methods of RC flexural members strengthened with external tendons are discussed.Meanwhile,the general profiles of external tendons and the joint detail are also presented.Moreover,the construction techniques of using post -tensioning to strengthening frame beams are introduced.Post-tensioning is also used as seismic retrofitting techniques for masonry structures in foreign countries and the related principles and methods are also introduced briefly. Key words:external prestressing;post-tensioned;retrofitting; flexural members;masonry structure ·49 ·

预应力混凝土连续箱梁纵向受力分析

预应力混凝土连续箱梁纵向受力分析 摘要:以某三跨预应力混凝土连续箱梁为例,利用有限元分析软件Midas/Civil分别建立了单梁模型和梁格法模型。通过对两种模型计算结果的比较,分析了单梁模型和梁格模型计算结果之间的差异,提出了设计计算分析中的一些建议。结论对同类桥梁的设计计算分析具有一定的参考意义。 关键词:连续箱梁平面杆系梁格法 1引言 对箱型梁桥进行有限元分析时通常可建立三种模型进行计算分析,即平面杆系、空间杆系以及空间实体模型。平面杆系模型方法简便,仅能反映杆系截面的平均力学特征,可用于简单结构的粗略分析;空间实体模型建模工作量大,适用于结构的局部分析;空间杆系模型在合理建模的情况下,能较为全面地反映结构的空间受力特点,具有基本概念清晰、易于理解和使用等特点[1]。本文从适用性和经济性出发,结合具体实例采用梁格法进行结构分析,并与平面杆系模型的计算结果进行比较分析验证梁格法的适用性。 2工程实例概况 本文以某三跨等截面预应力混凝土连续箱梁桥为例,桥跨布置为20m+32m+20m,桥面宽12.0m,为单箱双室截面,如图1所示;两侧翼缘悬臂板长2.0m,箱底宽7.5m,梁高1.45m,连续梁双点支撑,跨间无横隔板,仅在支点处设支座横梁。设计荷载:汽车-15、挂-80。 图1 桥梁简图(单位:cm) 3计算模型及计算结果分析 本文采用桥梁有限元分析软件Midas/Civil分别建立桥梁的单梁模型和梁格模型。 3.1单梁模型 采用Midas/Civil的空间梁单元建立桥梁的单梁模型,共建立节点73个,单元72个,如图2所示。其中汽车荷载的作用通过定义车道偏心加以考虑。

箱梁体外预应力加固效果的分析

箱梁体外预应力加固效果的分析 摘要本文通过对某座钢筋混凝土连续箱梁桥上部结构采用体外预应力加固前、后两种状态下的内力及承载力状况进行分析,着重体现体外预应力加固的显著效果,根据分析提出箱梁体外预应力加固设计及施工时需要注意的问题及相关处理措施,为同类桥梁加固设计提供借鉴经验。 关键词箱梁体外预应力加固 0、引言 目前,国内一些重要高速公路交通运输日益繁忙,经过多年运营,在交通量不断增加和超载车辆的作用下,部分桥梁出现了较为明显的结构性病害,有必要进行处治加固。文中以深圳梅观高速公路改扩建工程中某座钢筋混凝土连续箱梁桥为例,着重研究在采用体外预应力加固前、后箱梁结构内力及承载力的变化情况,说明体外预应力加固效果的可行性及实用性。 1、桥梁概况 该桥上部结构为(20+30+20)m的现浇钢筋混凝土连续箱梁,箱梁梁高1.7m,单箱双室断面,顶板宽度为12.0m,底板宽度为7.6m,悬臂长度为2.0m,箱梁腹板厚度为30~50cm,箱梁跨中截面顶板厚度25cm、底板厚度20cm。原桥设计荷载为汽-超20,挂-120。 经过多年运营,各跨底板在桥跨1/4~3/4范围内均有横桥向裂缝产生,缝宽基本介于0.05~0.20mm之间,最大缝宽达0.32mm,缝长基本介于0.20~2.00m 之间,裂缝间距介于0.10~0.80m之间,部分裂缝延伸至腹板;另外,腹板除与底板连通的裂缝外,还有大量竖向裂缝,裂缝宽度基本介于0.05~0.20mm之间,最大缝宽达0.45mm,缝长介于腹板高度的1/3~2/3之间,少量裂缝竖向贯通腹板。 2、桥梁上部结构主要病害成因分析 本桥上部为钢筋混凝土箱梁结构,主跨跨径为30m,梁高为1.7m,梁高偏低。承载能力计算结果显示箱梁跨中抗弯承载能力不足,因而导致跨中区域产生大量横向裂缝;底板横向裂缝继续沿伸至腹板,造成腹板竖向开裂。 3、加固思路 通过在箱梁腹板外侧布置齿板及转向块,增设体外预应力钢束,在体外预应力钢束张拉完毕后,浇筑腹板加厚段增大箱梁截面来提高箱梁的承载力。钢束、齿板及转向块布置位置见图1~3。

预应力砼连续箱梁支架受力分析

预应力砼连续箱梁支架受力分析 本文从搭设满堂脚手架需的基础,叙述预应力砼连续箱梁,必须基础稳固,支架荷载分析计算全面,通过预压,消除主要的非弹性变形和弹性变形,使底模顶面预设标高符合设计要求。 标签支架;砼连续箱梁;预压;荷载 在南水北调安阳段的生产桥的施工中,上部结构为后张法现浇预应力混凝土连续箱梁,梁长有95m、80m、70m、66m等,梁宽有5.5m、4.5m两种,下部结构为钻孔灌注桩基础、柱式墩台。桥梁设计车辆荷载等级为公路—Ⅱ级。桥位地震动峰值加速度为0.15g。在两桥台处设D80型伸缩缝各一道。混凝土设计标号为C50。本文就预应力砼连续箱梁支架受力,进行分析。 1 地基处理(渠道内搭满堂脚手架) 满堂脚手架的沉降值控制至关重要,所以应严格控制地基的强度,首先在桥位的两侧挖好排水系统,然后对原地面进行压实处理,土基高度比渠底高0.6m。在桥墩与桥台之间的渠坡上挖台阶,台阶高0.1m,宽0.3m,长(梁宽加1m),然后在土台阶上浇C10垫层、厚0.1 m,作为渠坡面上搭钢管架子垫石。坡面上粉2cm厚水泥砂浆,防止下雨时雨水冲毁台阶。 对承台与渠坡交界处架子搭设,承台开挖时的工作面,根据设计要求选用回填材料,回填跟承台顶面平,承台顶面以上土方暂不回填,搭满堂脚手架时,承台与渠坡交界处的三角形部位,立杆纵横间距按0.3m布设,大小横杆层步距按0.9 m搭设,增加斜撑杆。同时,注意渠坡上钢管与承台处钢管的连接。 2 支架荷载计算分析 支架进行强度、刚度及稳定进行验算,确保支架在施工过程中能满足承载要求。进行验算,过程如下: 满堂脚手架顶层大横杆验算: 箱梁底砼荷载,按中跨计算 G=30/80×(265-30)×26=2291.25KN 安全系数取K=1.2,假设全部重量作用于底模上,则底模按每平方米承受的荷载为:按中跨30m计算。 F1=2291.25×1.2/(3×30)=30.55KN/㎡

桥梁体外预应力加固技术综述

桥梁体外预应力加固技术综述 体外预应力技术是后张预应力体系的分支,是无粘结预应力结构技术的一种。它对置于混凝土截面之外的预应力筋进行张拉,通过体外筋端部锚具和转向块将预应力传递给混凝土结构。由于体外预应力技术具有结构自重轻,预应力筋替换、维护方便,预应力损失和应力变化幅度小,施工工期短,混凝土质量高、耐久性强等优点,已被广泛地应用于混凝土桥梁结构的加固维修。 1 体外预应力的概念与体系 体外预应力是指对布置于承载桥梁结构本体之外的钢束张拉而产生预应力。设计时仅把钢束锚固区域设置在桥梁结构本体内,转向块可设在桥梁结构体内或体外。 体外预应力体系由体外预应力管道(高密度聚乙烯管HDPE或钢管等)、浆体(防腐油脂或水泥浆体)、锚固体系和转向块等部件组成。体外预应力体系分为有粘结体外预应力体系和无粘结体外预应力体系。有粘结预应力体系是将钢铰线穿入孔道内张拉后,向孔道管内灌入水泥浆。无粘结预应力体系的体外预应力筋由若干单根无粘结筋组成,将单根无粘结筋平行穿入管内,张拉之前,先完成灌浆工艺,由水泥浆体将单根无粘结筋定位,张拉后不灌入水泥浆。 2 体外预应力加固的组成构造特点及作用机理 2.1 组成构造特点 桥梁体外预应力加固体系的形式是多种多样的。从构造形式上看,该体系主要由以下几部分组成:水平筋、斜筋、上锚固点、滑块、U形承托、水平筋固定支座。 (1) 体外预应力索、管道和灌浆材料 体外预应力体系采用的预应力索一般由钢铰线组成,包括与体内预应力混凝土结构完全相同的普通钢铰线以及镀锌钢铰线或外表涂层和外包PE防护的单根无粘结钢铰线。体外预应力索管道主要起防腐作用,它通常有两种形式:一是全部采用钢管道,二是钢管与高密度聚乙烯管道相结合的方式,即除在锚固段及转向弯曲段采用钢管外在其它直线段均采用高密度聚乙烯管道。 体外预应力索管道的灌浆材料可分为刚性灌浆材料和非刚性灌浆材料。刚性灌浆材料通常指水泥非刚性灌浆材料(如油脂和石蜡)。水泥灌浆是最简单和常用的,它可以适用于与结构有离散粘结的体外预应力结构,也适用于与结构完全无粘结的体外预应力结构。而油脂和石蜡通常用在由普通钢铰线和钢管道组成的预应力系统中,以达到钢索与结构无粘结的目的。 (2) 体外预应力索的锚固系统 体外预应力索的锚固体系一般可分为可更换和不可更换两大类。在可更换的体外预应力锚具中又包括钢索无法放松和可放松两种类型。使用无法放松的钢索可以是普通的钢铰线也可以是单根无粘结钢铰线。使用普通钢铰线时在管道中灌注非刚性灌浆材料(油脂或石蜡),使用无粘结钢铰线时管道中一般灌注水泥浆。但两种类型的锚具中均使用防腐材料填密而不使用水泥浆以满足钢索可更换的要求。可放松的类型在锚具后需预留一定长度的钢索以满足钢索放松的需要,这种锚具的体外预应力索只能是无粘结钢索。 (3) 体外预应力索的转向装置 体外预应力索的转向装置是体外预应力索在跨内唯一与混凝土体有联系的构件,起体外预应力索转向的重要作用。图1~图4是体外预应力混凝土结构中最常见的转向装置。 图1为块状式转向构造,只能承受钢索的竖向分力,大量应用于跨径较小、采用阶段施工的体外预应力混凝土结构。图2为底横肋式转向构造,能承受体外预应力索产生的横向水平分力。转向构造的混凝土在箱梁底板上是贯通的,这种构造常用于斜、弯的体外预应力

体外预应力加固技术

体外预应力加固技术 摘要:体外预应力加固方法是一种人为主动的加固改造和修复技术,首先对体外预应力加固体系的基本构成和加固方法进行了总结和分析研究体外预应力加固受弯构件的计算方法,在总结规范中给出的计算方法的基础上进一步探讨体外预应力筋在加固完成后,在荷载作用下应力增量的计算问题。 关键字:体外预应力、加固、加固效应 Abstract:The technology of structural reinforcement is developing rapidly and begins to takeshape. Firstly,the external prestressing system and strengthening methods axe summarized,the external prestressed strengthening flexural }}}err}bers was studied,a calculation method are summarized in detail,on the basis of externally prestressed tendons are discussed under load stress increment,according to the calculation problem of unbounded prestressed concrete suggestion into consideration of the calculation method. Keywords:External prestressing;Strengthening;Reinforcement effect

体外预应力加固张拉控制应力较低的原因及索力测试方法

听课报告 ——体外预应力加固张拉控制应力较低的原因及索力测试方法 通过桥梁检测与养护课程加固部分的学习,我学到了许多加固措施以及目前加固工作的重要性和技术性。通过本部分的学习,不仅掌握了一些常规的加固方法和注意事项,了解了更多的现实与理想的差距,而且看到了未来加固行业的重要作用和艰巨任务。 一、体外预应力筋应力的测试及应力增量计算方法 体外预应力筋应力的测试具有重要的意义,通过应力的测试可以知道力筋的应力损失情况,并由此计算得出目前结构的整体应力状态,进而检验其是否满足结构的承载能力和正常使用极限状态。然而对体外预应力筋的应力测试的方法却不是很多,因为其应力较大,且在工作状态下检测设备不方便工作。 在刚加固完时的体外预应力筋的应力是很容易求得的,因为张拉力筋时可以通过张拉设备读出其拉力值,进而由应力的定义可以方便的求出刚加固完成时的平均应力值,再通过整体计算和局部计算检验加固效果。但是,随着时间的推移,预应力筋中的应力会逐渐损失,如前面第一部分讨论的种种损失因素。在加固一段时间后,体外预应力筋的应力值发生变化,要评定桥梁的应力状况,就需要重新测量力筋中的预应力损失,再由测得的应力值分别按照持久状况承载能力极限状态、持久状况正常使用极限状态、持久状况和短暂状况应力进行整体计算;以及对转向构造进行承载力和抗裂性计算、锚固区的承载力和抗裂性计算、持久状况下的其他局部构件的承载力计算。 通过凌老师课堂上的讲解,问题的提出以及恰到好处的引导,学生我结合本科力学的知识以及桥梁方面的知识,从理论的角度构思出以下的检测体外索的预应力的方法。 1.静力平衡思想 如图1所示的状况,体外预应力筋束在梁底平行穿过,假设不考虑多束预应力筋之间的定位装置,即各力筋在两端转向块之间被绷紧且没有什么限制,力筋此时被拉直。

体外预应力加固梁的受力性能分析

体外预应力加固梁的受力性能分析 体外预应力多应用于桥梁和建筑结构以及结构加固补强之中。本文对体外预应力加固混凝土梁的研究概况及加固机理进行了阐述,为以后的加固设计提供理论参考。 标签:体外预应力;加固机理;等效荷载 现行《混凝土结构加固技术规范》(CECS 2590)中列出了加大截面加固法、外包钢加固法、改变结构传力途径加固法、外部粘钢加固法、预应力加固法等多种结构加固方法。其中体外预应力加固法已愈来愈受到人们的关注,它克服了采用其他方法加固时加固材料中普遍存在的应力效应滞后的缺陷,保证了新旧材料和结构的整体性与协同工作,是一种有效的主动加固方法。工程实践表明:采用体外预应力法加固桥梁和房屋结构,不仅能提高其承载力,还可以减小挠度和裂缝宽度,提高结构的弹性恢复能力,并且具有施工简便、不占用空间等特点[1]。 1、体外预应力加固梁研究概况 体外预应力是后张预应力体系的重要分支之一。传统的后张预应力结构中,预应力筋总是埋放布置在混凝土截面之内,而体外预应力混凝土结构是将预应力筋布置于混凝土截面以外施加预应力的一种结构体系。 我国于1996年10月首次采用体外预应力技术对一孔跨度为27.7m的预应力混凝土梁进行了加固[2]。90年前后,东南大学以吕志涛为首的课题组,运用试验方法对体外预应力加固梁进行了研究,通过梁的正截面抗弯加固、梁的抗剪加固的试验研究和分析计算,对预应力加固梁进行了较为系统的研究,提出了预应力加固的设计计算方法[3]。1991年,杜世生、叶见曙、赖国麟等[4]提出了体外预应力加固钢筋混凝土简支梁的抗弯极限强度的计算方法。 1999年北京建筑工程技术研究中心刘航[5]等人做了“体外预应力加固混凝土框架梁的试验研究”。其结论是钢筋混凝土框架结构采用按其弯矩图布置的折线体外预应力筋进行加固时,在正常使用极限状态下,可以显著减小梁的跨中挠度和裂缝宽度;在承载力极限状态下,可以显著提高原结构的抗弯极限承载力,效果好于直线体外预应力筋。2000年奉龙成和赵人达通过对12片体外预应力加固试验梁的己有试验结果的分析,认为其等效塑性区长度与破坏截面中性轴高度之比是基本接近一常数,在确定这一常数数值后,给出体外预应力筋的极限应力计算公式以及正截面强度的计算方法,公式对样本试验数据精度较高,但其他学者的试验数据表明其等效塑性区长度与破坏截面中性轴高度之比浮动较大。 2、体外预应力加固原理及特点 体外预应力加固技术的基本原理是充分利用了混凝土抗压性能,通过体外

西安万达体外预应力加固施工方案

西安明乐园万达广场商业综合体体外预应力加固工程 施工方案 江苏建华建设有限公司 二0一一年七月

西安明乐园万达广场商业综合体 体外预应力加固工程 一、工程概况 本工程为西安明乐园万达广场商业综合体影城改造项目体外预应力加固工程。影城一影厅改造为IMAX厅,此部分原屋面拆除后,临近屋面梁体挠度验算不够,现需对挠度不够部分梁体进行体外预应力加固。加固范围为8轴—14轴/H轴—L轴。 二、施工准备 1、现场实际情况调查,进场后对需要加固的梁体所在的位置进行详细的勘察,看是 否有放映设备、空调机组及风管、消防水电管线等障碍物,勘察梁体下方是否有墙体需进行拆除。若施工条件不能原设计要求,及时联系设计进行修改。 2、施工脚手架的搭设,在需布设钢绞线的梁下搭设3米宽的操作脚手架,以方便拆 除原吊顶、穿钢绞线及布置转向块及护角块。拆除部分梁下墙的时候,也需搭设施工脚手架。 3、防护措施,对需进行加固的影厅座椅、扶手、荧幕进行防护,必要时荧幕需临时 拆除,等加固完成后再行恢复。 三、体外预应力加固施工工艺 1、施工要求 体外预应力拉索的机理与一般非预应力加固方法有明显不同,是一种“主动”的加固方法,在加固施工中对被加固混凝土构件起到卸荷作用,加固后新旧结构共同作用。而一般加固方法仅对新增部分荷载发挥加固作用,加固效果取决于新旧材料间的协同工作情况。预应力加固施工有一整套的技术控制措施,其主要工序为: ①预应力钢绞线材料等级、防护方法、张拉锚固方法、中间支承方式、连接方法的确定和布置; ②预应力钢绞线形状的永久固定施工; ③建立并保持所需预应力值,建立预应力值使用液压千斤顶进行张拉,由张拉吨位

相关文档
最新文档