高速铁路钢轨磨耗的分析研究

合集下载

钢轨波浪磨耗测量简介

钢轨波浪磨耗测量简介

波浪磨耗测量简介随着我国大提速和高速铁路的发展,线路状态对列车运行的影响,越来越集中在两个方面:长波长不平顺影响列车运行的舒适度;而短波不平顺,对列车走行部分的影响更为严重。

钢轨波浪磨耗,表面擦伤是钢轨短波不平顺的主要表现。

严重时,不但加剧车辆走行部的振动,影响行车安全,列车的这种响应,反过来加剧线路状态的恶化。

因此,今后钢轨波浪磨耗,表面擦伤等的检测应该随着铁路的高速化更加引起重视。

这里主要介绍波磨检测的新技术。

既然波浪磨耗属于轨道的短波不平顺,前面,介绍高低测量的一些基本问题都适用。

首先要解决的问题也是测量基准问题。

因此,可以分成两大类,即惯性基准和弦测法。

利用轴箱加速度计测量波磨国内外都有大量的研究和论述,这里不再重复。

下面介绍一下在最近引进的轨检车中,采用的以弦测法为基础的波磨测量技术。

一概述:最近引进的轨检技术,波磨测量其中之一是:意大利Tecnogamma 公司的波磨检测装置。

以往的波磨测量装置不同,采用弦测法和激光位移测量来实现。

现安装于检测中心200公里/小时的轨检车上。

二弦测法钢轨波浪磨耗检测利用弦测法原理来实现。

本系统用三个光电位移计,构成三点不等弦的测量。

: 波磨检测系统的弦测法.1 第一测量点;2 第二测量点;3 第三测量点.为了在波长从30 mm 到3000 mm 的测量范围内得到最优化的波长测量效果,三个测量点按照传递函数以一定的距离排列。

具体为:- 第一到第二测量点的距离为19 mm, 称为弦。

- 第一到第三测量点的距离为250 mm,为基准。

用三个光电位移计,构成三点不等弦的测量传感器安装在转向架上,这样系统本身只受第一系弹簧悬挂的影响。

这种安装可以在横向和垂直方向得到最好的检测效果。

检测系统可以在波长从10mm 到3000mm 的范围内检测波磨,下图是其传递函数。

短波和中波长的传递函数三光电位移计:光电位移计是采用三角测量原理实现的。

与钢轨没有任何机械接触,也无需机械定位系统。

浅谈小半径曲线钢轨磨耗的原因与整治措施

浅谈小半径曲线钢轨磨耗的原因与整治措施

浅谈小半径曲线钢轨磨耗的原因与整治措施小半径曲线钢轨磨耗是指在铁路交通运行过程中,位于小半径曲线处的钢轨因受到高速列车的持续运行摩擦、压力等多种因素的作用而出现的磨耗现象。

这种磨耗对于铁路交通的安全和运行质量都会产生严重的影响,因此需要采取相应的整治措施来减少磨耗,保障铁路运行的安全和顺畅。

造成小半径曲线钢轨磨耗的原因主要有以下几个方面:1.硬轮对钢轨磨损:因为小半径曲线处列车需要进行弯道运行,车轮与钢轨之间的分离力较小,对车轮和钢轨产生了较大的摩擦力,使得钢轨表面出现磨损。

2.车轮滚动作用:车轮在弯道处的滚动作用是不规则的,部分车轮轴向滚动时的滑移速度较快,会对钢轨表面产生较大的冲击力,导致磨耗加剧。

3.钢轨断裂:小半径曲线处的钢轨由于承受了较大的曲线压力,容易发生断裂,断裂面上的边缘会出现严重磨耗。

为了减少小半径曲线处钢轨的磨耗,可以采取以下整治措施:1.增加曲线半径:适当增大曲线半径可以减小列车在曲线上的侧向加速度,减少与钢轨之间的冲击力,从而减轻钢轨的磨耗。

2.优化曲线设计:合理地设计曲线的曲率和过渡曲线,减少曲线的变化率能够减小列车在曲线上的横向力,降低钢轨磨损。

3.加强轮对的维护:对列车车辆的轮对进行定期的维护和检验,保证车轮的圆度、踏面磨耗等参数在规定范围内,减小车轮对钢轨的冲击力。

4.增加轨道支撑力:通过修建合适的支撑结构,增加钢轨在曲线处的支撑力,减少钢轨的侧向滑移,降低磨损。

5.加强钢轨的维修:对于损坏严重的钢轨,及时进行更换和修复,保持钢轨的良好状态,减少磨损。

6.加装降噪设备:在小半径曲线出口处加装降噪装置,减少列车进入曲线的时候产生的噪音和震动,改善列车运行的环境。

总之,钢轨的磨耗是不可避免的,但通过合理的曲线设计、轮对维护和钢轨的维修等措施可以有效减少小半径曲线处钢轨的磨耗。

同时,也需要加强对铁路交通的监测和管理,及时发现和处理存在的问题,确保铁路运行的安全和稳定。

钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策发布时间:2021-01-15T14:31:50.107Z 来源:《基层建设》2020年第25期作者:黄永强[导读] 摘要:随着中国铁路高速重载的快速发展,对钢轨的质量要求也越来越高。

中国铁路呼和浩特局集团有限公司包头工务段内蒙古包头 014040摘要:随着中国铁路高速重载的快速发展,对钢轨的质量要求也越来越高。

对目前钢轨使用过程中凸显出来的钢轨波浪形磨耗问题进行了分类介绍及产生原因的初步分析,并对在线使用后产生的磨耗进行了取样解剖分析,根据具体分析结果提出了相应的质量改进措施。

关键词:钢轨波浪形;磨耗原因;对策一、波浪形磨耗形成的原因当车辆通过曲线半径较小的线路时,由于轮对冲角的改变,轮轨的纵向剪切力超过轮轨黏着极限,轮轨间发生纵向滑动,滑动处形成波谷;滑动后释放了积累的能量,使轮轨又处于黏着状态,钢轨表面出现波浪形波磨。

磨损性波磨是由于轮对在通过曲线时,轮对扭曲共振导致交替的纵向力,从而在车轮与钢轨间发生纵向滑动而产生波磨。

这不仅与车轮的重力角刚度特性有关,而且与曲线曲率及轮轨黏着状态有直接关系,主要是轮轨之间的粘滑振动导致内轨顶面的波磨。

当车辆通过曲线半径较小的线路时,由于轮对冲角的改变,轮轨的纵向剪切力超过轮轨黏着极限,轮轨间发生纵向滑动,滑动处形成波谷;滑动后释放了积累的能量,使轮轨又处于黏着状态,钢轨表面出现波浪形波磨。

道床不洁,污染严重,轨枕下道碴含土或石粉严重(轨枕下60mm处就已经出现),有严重的板结现象。

使线路的横向及纵向阻力加大,但道床的弹性减小,反弹力增大,容易产生波磨。

钢轨下大胶垫损坏严重,较大的损坏率为86%,较小的损坏率也达到了10%,使线路的弹性下降,容易产生波磨。

钢轨的材质与运量不匹配,准东铁路重车线大部分是U71Mn的包钢生产的钢轨,这类钢轨含碳量低,强度和韧性较小,对重载大运量线路不适合,难以承受,导致波磨的产生。

二、波浪形磨耗的危害根据钢轨的伤损标准,在桥梁上或隧道内的轻伤钢轨,应及时更换或处理。

钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策钢轨是铁路运输中的重要组成部分,起到支撑和引导车轮的作用。

长期以来,由于列车的高速运行和巨大的荷载作用,钢轨容易出现波浪形磨耗问题,这不仅会对铁路运输安全造成威胁,也会使铁路设备的维护成本增加。

分析钢轨波浪形磨耗的原因,并提出相应的对策,对于铁路运输的安全稳定具有重要意义。

钢轨波浪形磨耗的原因可以分为内部原因和外部原因两个方面。

内部原因主要包括钢轨本身的质量问题和设计问题。

钢轨的材质如果不合适,即硬度过低或过高,容易引发波浪形磨耗问题。

钢轨的冷却和淬火工艺如果不恰当,也会导致钢轨的质量不稳定,进而影响其耐磨性能。

对于新铺设的钢轨来说,如果设计不合理,比如弯道半径太小、坡度过陡等,也容易引发波浪形磨耗问题。

外部原因主要包括列车运行的振动和荷载的影响。

列车在高速运行过程中,会产生较大的振动,从而使钢轨产生相应的变形和形变,进而引发波浪形磨耗。

由于车轮与钢轨之间的接触负载较大,会导致钢轨表面的磨损加剧,进而加速波浪形磨耗的生成。

气温、湿度等气候因素也会对钢轨的波浪形磨耗产生一定的影响。

针对以上的原因,可以采取一些对策来减少钢轨的波浪形磨耗。

对于钢轨本身来说,可以通过提高材质的硬度和耐磨性能,选择合适的工艺进行冷却和淬火,以及合理设计铺设的位置和坡度等,来改善钢轨的质量和性能。

在列车运行方面,可以通过减小车轮与钢轨之间的接触载荷,降低列车的运行速度和振动,来减少对钢轨的磨损。

在气候因素方面,可以通过加强钢轨的防腐蚀处理,以及提高钢轨的抗气候变化能力,来延长钢轨的使用寿命。

高速铁路钢轨波磨检测及打磨治理分析

高速铁路钢轨波磨检测及打磨治理分析

2021年2月(总第412期)·31·质量管理QUALITY MANAGEMENT第49卷Vol.49第2期No.2铁道技术监督RAILWAY QUALITY CONTROL收稿日期:2020-06-20作者简介:孙小军,工程师0引言钢轨波磨是影响钢轨使用状态的主要病害形式之一,在客货混运铁路、地铁及高速铁路中较为常见,产生机理不尽相同[1-2]。

高速铁路钢轨发生波磨,容易造成动车组运行品质下降、扣件弹条断裂等问题,因此,预防和治理波磨受到铁路工务部门的高度重视。

从工务维修角度看,通过周期性打磨钢轨,可以最大限度地控制钢轨波磨的发展,有效延长钢轨和车辆部件的使用寿命,减少轨道维修费用,对于减轻振动和噪声污染也有重要意义[3]。

目前,钢轨波磨检测设备主要有离散型波磨测量仪(1m 直尺、1.2m 直尺、电子平直尺)和连续型波磨测量仪(接触式连续检测仪或激光式连续检测仪)2类。

钢轨打磨方式有传统打磨、快速打磨和人工小机打磨等。

基于某高速铁路钢轨打磨实践,分析波磨检测、打磨方式、打磨量和打磨周期等打磨治理的关键因素。

1波磨实测情况在选定的高铁观测线路上,动车组运行速度为250km/h~300km/h ,运行车型主要有CRH2,CRH380和CR400系列动车组。

根据高铁运营工况,在全线设立若干个检测段,开展周期性检测。

每个检测段长度2km~3km ,检测总里程约占线路运营里程的15%。

采用非接触式激光波磨测量仪,连续测量钢轨波磨,在检测段内,每100m 为1个统计段,分析滤波后波磨移动波深幅值的峰峰平均值和峰峰平均值超限百分比[4]。

为提高不同检测段的对比性,选取每个检测段的若干个100m 统计数据中的最大值(峰峰平均值最大值和峰峰平均值超限百分比最大值),作为表征该检测段的波磨特征值。

经检测分析,全线所有检测段,除A 段(北京南高速铁路钢轨波磨检测及打磨治理分析孙小军(中铁物总运维科技有限公司,北京100036)摘要:为预防和治理高速铁路钢轨出现的波磨现象,以某高铁钢轨为对象,跟踪检测和分析轨面波磨发展规律和不同打磨方式对波磨的治理效果。

浅析钢轨波形磨耗成因及防治

浅析钢轨波形磨耗成因及防治

浅析钢轨波形磨耗成因及防治发表时间:2018-12-28T13:40:07.187Z 来源:《防护工程》2018年第24期作者:鲁笑琳[导读] 钢轨是铁路的重要组成部分,其质量将影响铁路工程的应用,不仅对铁路的寿命有直接影响,而且对铁路列车的安全产生影响。

本文就钢轨磨耗成因及预防措施进行了研究。

鲁笑琳中国铁路昆明局集团有限公司昆明南工务段云南昆明 650200摘要:钢轨是铁路的重要组成部分,其质量将影响铁路工程的应用,不仅对铁路的寿命有直接影响,而且对铁路列车的安全产生影响。

本文就钢轨磨耗成因及预防措施进行了研究。

关键词:钢轨波形磨耗;成因;影响因素;防治前言钢轨波形磨耗是线路上常见的钢轨病害之一。

钢轨波形磨耗会引起很高的轮轨相互作用力,加速机车车辆和轨道各组成部分的损坏,以至影响列车安全。

随着我国高速铁路的长期运营,钢轨波磨问题越来越受到重视。

1波磨的成因钢轨波形磨耗是指钢轨顶面纵向规律性的起伏不平的磨耗现象。

钢轨波形磨耗会增大轮轨振动和噪声,加大钢轨和轮对的荷载,能引起很大的轮轨附加动力,额外消耗牵引能源,加速轨面伤损和道床永久变形,增加维修养护费用,大大减小其使用寿命,甚至会影响行车安全。

钢轨波磨按波长分为波纹形和波浪形两种。

波纹形磨耗的波长为30-60mm,波幅为0.1-0.4mm,这种轨顶周期性不平顺,多发生在高速行车地段。

波浪形磨耗的波长为60-3000mm,波幅为2mm以下,主要发生在低速重载铁路上。

钢轨的波形磨耗主要发生在道岔区段钢轨、曲线地段钢轨、线路下沉地段的钢轨、难于经常维持道床捣固密实的钢轨、道床板结弹性差的钢轨以及轨道结构受约束较多较复杂的钢轨。

1.1曲线区段波形磨耗产生原因波形磨耗多出现在曲线地段,同时曲线半径越小,出现和发展的速率越快。

在曲线处轨道结构受到的作用力相对于直线路段是存在加成的,轮轨之间作用加大,波磨情况必然加剧。

轮对在曲线地段的振动表现为粘滑振动,在半径较小的曲线地段,轮轨间蠕滑力接近饱和,轮轨间磨耗功发生剧烈波动,造成钢轨的不均匀磨损或压溃。

铁路货车车轮运用磨耗超限故障调查分析报告

铁路货车车轮运用磨耗超限故障调查分析报告车轮是转向架的重要部件之一,也是影响车辆运行安全性的关键部件之一。

车轮与钢轨相接触,承担着车辆的全部重量,并保证车辆在钢轨上安全高速运行。

它不仅要有一定的强度和弹性,同时应具备阻力小和耐磨性好的优点,还应具备必要的抵抗脱轨的安全性。

车轮相关部位磨耗超过运用限度,就会危及行车安全。

车轮踏面圆周磨耗深度超过运用限度,过高的轮缘就有可能压坏钢轨连接螺栓,引起脱轨。

轮缘厚度磨耗超限,一方面会使轮轨间横向游隙增加,在通过曲线时减少了车轮在内轨上的搭载量,容易造成脱轨;另一方面会降低轮缘的强度,可能使轮缘根部产生裂纹,进而造成轮缘缺损,影响行车安全。

因此对管内列检作业场发现的货车车轮运用磨耗超限故障进行调研分析。

一、货车车轮运用磨耗超限故障现状我车间列检作业场自2015年1月1日至12月31日的一年时间内,共计检查列车5568列,312769辆,发现货车车轮磨耗超过运用限度的故障931件,列均0.17件,辆均0.003件,日均2.55件。

1.按故障类型分析:其中车轮轮缘厚度磨耗超限故障14件,占货车车轮运用磨耗超限故障总数的1.51%;车轮踏面圆周磨耗深度超限故障911件,占货车车轮运用磨耗超限故障总数的97.85%;车轮轮辋厚度磨耗超限故障6件,占货车车轮运用磨耗超限故障总数的0.64%。

通过以上分析发现货车车轮运用磨耗超限故障主要集中在车轮踏面圆周磨耗深度超限上。

2.按车轮材质分析:其中辗钢车轮运用磨耗超限故障65件,占货车车轮运用磨耗超限故障总数的7.00%;铸钢车轮运用磨耗超限故障866件,占货车车轮运用磨耗超限故障总数的93.00%。

通过以上分析发现货车车轮运用磨耗超限故障主要集中在铸钢车轮上。

3.按车轮磨耗超限尺寸分析:其中磨耗超限1.0mm以下的396件,占货车车轮运用磨耗超限故障总数的42.53%;磨耗超限1.0mm至2.0mm以下的381件,占货车车轮运用磨耗超限故障总数的40.92%;磨耗超限2.0mm至3.0mm以下的124件,占货车车轮运用磨耗超限故障总数的13.32%;磨耗超限3.0mm至4.0mm 以下的25件,占货车车轮运用磨耗超限故障总数的2.69%;磨耗超限4.0mm及以上的5件,占货车车轮运用磨耗超限故障总数的0.54%。

钢轨磨耗影响因素分析及磨耗预测研究


0.393
0.025
-0.624
800
0.419
0.359
0.019
-0.536
由表 2 分析可知,为降低钢轨的磨耗,应适当 增加曲线半径。
收稿日期:2017-11-03 作者简介:周宇 (1983-),男,天津人,硕士,中级工程师。
Copyright©博看网 . All Rights Reserved.
第一轮对 磨耗指数
-2.102 -1.104 -0.411 -0.304 -0.553
由表 1 分析可知,为了降低通过曲线时的轮轨 磨耗,车速应比实际线路规定的最高行车速度略低。 1.2 曲线半径因素分析
在仿真实验中,选取曲线半径范围 400~800 m 不同曲线下对应的各磨耗指标如表 2 所示。
表 2 不同曲线半径对磨耗指标的影响 Tab.2 Different curve radius on the wear index
ZHOU Yu
(Tianjin Subway Operation Co., Ltd.,Tianjin 300000,China)
Abstract:The paper according to the problem of prediction of Rail Wear,Proposed based on t-s fuzzy neural network forecasting method of wear. summed up speed,curve radius and friction coefficient,etc factors can be used numerical representation of the five factors as network input parameter,then To the Gauge Wear,Vertical Wear as output is established based on t-s fuzzy neural network rail abrasion prediction model,combined with the actual data of simulation experiment. Key words:rail transit;analysis of influencing factors;wear prediction;T-S fuzzy neural network

重载铁路小半径曲线钢轨磨耗分析

重载铁路小半径曲线钢轨磨耗分析摘要本文通过对大准线曲线钢轨磨耗客观原因进行分析,结合具体情况,提出了重载铁路减少小半径曲线地段钢轨磨耗的一些具体办法。

关键词大准铁路;小半径曲线;磨耗大准铁路为I级干线单线电气化铁路,东起大同东站西至准格尔旗薛家湾站,是处于西煤东运北通道上的一条重要运煤专用铁路。

通过近几年的扩能改造施工,年通过总重120Mt,已达到重载铁路标准,沿线通过地段大多属于山区,小半径曲线较多。

随着近两年列车牵引质量和机车轴重不断增加,小半径曲线地段钢轨磨耗速率加大,大大增加了铁路的运输成本。

1 曲线长轨条更换现状自2006年大准线铺设无缝线路以来,全线共有60条曲线由于钢轨磨耗严重进行了更换,其中有59条是半径R≤600m曲线,占更换总数的98.3%;占全线小半径曲线(全线半径R≤600m曲线共87条)总数的67.8%。

其中,有4条曲线已进行两次更换,分别是K19+487—K20+097,半径500m,K24+370—K25+342,半径500m,K25+875—K26+634,半径400m,K78+790—K79+711,半径400m。

2 大准线曲线钢轨磨耗情况分析曲线钢轨磨耗是不可避免的,结合实际情况分别从以下几个方面对钢轨磨耗作出分析。

2.1曲线钢轨磨耗客观原因曲线是轨道结构强度中的薄弱环节,当列车运行进入曲线后,车体受机车牵引,随着贯性向前运行,轨道迫使车辆转弯,这样必然行成车轮冲击轨道,造成轨道变形,车轮和钢轨同时受到磨耗,当离心力和向心力不平衡时,更加剧钢轨的磨耗,导致曲线上股内侧圆弧段至顶面1/3处连续性鱼鳞剥落掉块,下股踏面中部连续麻点,并且发展扩大。

随着磨耗的日益加重,当钢轨状态不能满足列车运行要求时,则必须对曲线钢轨进行更换。

工务段对小半径曲线共先后更换63次,其中有62次是更换的曲线上股,再次证明了曲线上股是钢轨最易磨耗的部位。

2.2大准线曲线钢轨更换时间在更换过得59条小半径曲线中,其中2008年共更换16条,春季更换3条,秋季更换13条;2009年更换32条,春季更换16条,秋季更换15条(有1条是第二次更换);2010年更换15条,春季更换12条,夏季更换3条(有3条是第二次更换)。

钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策
钢轨波浪形磨耗是指钢轨表面形成周期性的波浪状磨损现象,严重影响列车行车安全和运输效率。

本文将分析钢轨波浪形磨耗的原因,并提出相应的对策。

钢轨波浪形磨耗的原因主要有以下几点:
1. 车辆荷载:列车在行驶过程中,会产生较大的荷载,使钢轨不断受力变形,从而引起波浪形磨耗。

特别是在曲线区段,由于轨道内外侧的切向受力不均衡,容易造成轨道波浪磨耗现象。

2. 制动力磨耗:列车制动时,制动摩擦力会使钢轨表面产生较大的摩擦力,导致波浪形磨耗。

特别是在陡坡和弯道区段,受力更加复杂,制动力磨耗更为明显。

3. 线路设计:线路在设计时,曲线半径、坡度和超高等参数设置不合理,会导致列车在行驶过程中产生较大的横向力和纵向力,增加了钢轨波浪形磨耗的风险。

对于钢轨波浪形磨耗问题,可以采取以下对策:
1. 加强巡视检查:加大对钢轨的巡视频率,及时发现和处理波浪形磨耗问题,防止事故发生。

通过定期测量钢轨几何参数,及时调整线路,减少波浪形磨耗的发生。

2. 提高材料质量:选用高强度、耐磨损的材料制造钢轨,提高其使用寿命,减少波浪形磨耗的发生。

3. 控制运输荷载:合理控制列车的荷载,减少轮轨接触力和钢轨的受力变形,降低波浪形磨耗的风险。

4. 加强线路维护:加大对线路维护的力度,及时清理铁屑、砂石等杂物,保持钢轨表面的光滑度,减少钢轨波浪形磨耗的发生。

钢轨波浪形磨耗是列车运行中的一个常见问题,对于保证列车行车安全和提高运输效率具有重要意义。

通过采取合理的设计措施和维护方法,可以有效预防和减少钢轨波浪形磨耗的发生,提高线路的安全性和运输效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速铁路钢轨磨耗的分析研究
作者:于家敏
来源:《科学与财富》2020年第02期
摘要:高速铁路列车轴重轻,速度快,钢轨的磨耗有其自身的特点,本文作者通过对全国主要著名的几条高速铁路钢轨磨耗情况的长期跟踪观测,重点分析与总结了高速铁路钢轨的磨耗特点。

通过结果表明:高速铁路直线段钢轨的垂直磨耗量与磨耗速度相对比较小,而小半径曲线地段钢轨的侧面磨耗严重,已影响到钢轨的使用寿命。

建议在小半径曲线地段使用在线热处理钢轨,同时进行钢轨润滑,以减少钢轨磨耗。

关键词:高速铁路;钢轨;垂直磨耗;侧面磨耗
引言钢轨磨耗是影响钢轨使用寿命的重要因素,按照磨耗的部位的不同,钢轨磨耗分为垂直磨耗与侧面磨耗,其中垂直磨耗在钢轨轨顶面宽三分之一处,距标准工作边测量,侧面磨耗在钢轨踏面,按标准断面下的16毫米处测量。

目前,普通速度的钢轨的垂直磨耗,侧面磨耗重伤标准分别是11毫米与19毫米,高速铁路钢轨的垂直磨耗,侧面磨耗重伤标准分别是10毫米和12毫米。

直线段钢轨的磨耗以垂直磨耗为主,而曲线段钢轨上股以侧面磨耗为主,下股以垂直磨耗为主。

高速铁路列车轴重轻,速度快,钢轨的磨耗有其自身的特征。

我国高速铁路钢轨磨耗虽然己经开展了一些研究。

但由于我国高速铁路尚处于运营初期,高速铁路钢轨的磨耗特征及规律还需要持续的跟踪研究。

本文通过对我国高速铁路钢轨磨耗情况的长期跟踪测量,分析总结了高速铁路钢轨磨耗的一些规律及特点。

研究结果表明:尖轨和基本轨磨耗发展呈现逐渐收敛的趋势;基本轨垂向磨耗在轮载过渡区前后较大,在轮载过渡区相对较小,直尖轨垂向磨耗比曲尖轨更严重;曲尖轨侧向磨耗明显大于直尖轨,在轮载过渡区前侧向磨耗较小,轮载过渡区侧向磨耗明显,基本轨侧向磨耗主要集中在尖轨前端及岔前区域,直基本轨侧向磨耗比曲基本轨更严重。

试验结果可为磨耗仿真研究提供试验验证,同时可为高速道岔的养护维修提供科学指导。

一.磨耗的跟踪观测情况
从2008年我国第一条高速铁路开通以来,开始对多条高速铁路钢轨的磨耗情况进行了长期的跟踪观测,测点布置及观测时间。

利用轨头廊形测量仪对钢轨测点测量了轨头外形,然后利用软件计算出钢轨的垂直磨耗和侧向磨耗。

二.磨耗的分析与结果
1.直线段钢轨外形与磨耗情况
高铁线路以直线与大半径曲线为主,因此,许多线路都重点测量了直线段钢轨的磨耗以及外形变化情况。

我国从第一条高速铁路开通以后,进行了持续几年的跟踪观测,对多次测量的軌头外形数据进行了比较与分析。

通过数据研究发现,除了钢轨轨距角部位稍有变化外,外形变化不明显,轨距角有变化是因为钢轨大机打磨所致。

第一次测量的时候的垂直磨耗较明显,这主要是因为实测外形和标准钢轨外形的差异以及打磨的原因,最近一次的测量的平均垂直磨耗量是1.6毫米,和一次测量相比,相对垂直磨耗量为0.56毫米,几年的观测时间内钢轨预防性打磨两次,一次打磨垂直磨耗量是0.1毫米左右,由此可以估算出七年的轮轨的自然磨耗为0.36毫米,自然磨耗速率仅仅为0.05毫米一年。

从前几年开始,对武广客专金沙洲隧道直线段钢轨的外形及磨耗情况进行了持续定期的跟踪观测。

从调查数据可以看出,2011年的外形与2010年在外形上稍有差距,这是因为在2010年底对该钢轨进行了打磨,2015年外形和2011年外形比较变化不明显。

武广客专运行六年多的垂直磨耗量为1.06毫米,和第一次测量相比,相对垂直磨耗量为0.46毫米,六年的轮轨的自然磨耗为0.36毫米,自然磨耗速率仅为0.07毫米一年。

另一方面,京沪高铁的钢轨磨耗和外形变化情况和京津城际基本相同,钢轨轨头外形变化不明显。

京沪高铁运行三年时的垂直磨耗量为0.34毫米,三年的观测时间内钢轨预防性打磨一次,一次的打磨量为0.1毫米左右,由此可以估算出三年的轮轨的自然磨耗为0.24毫米,自然磨耗速率仅仅为0.08毫米一年。

2.曲线段钢轨外形与磨耗
高速铁路正线以直线和大半径曲线为主,但进出站及联络线仍存在一些小半径曲线,从观测结果可以看出,小半径曲线钢轨的主要磨耗为侧面磨耗,但也有一定的垂直磨耗,其中南京站曲线半径为600米,最大侧面磨耗是6.6毫米,此此钢轨的抗磨耗能力也比较低。

这些小半径曲线地段磨耗严重的钢轨寿命只有两三年,因此建议小半径区段铺设使用在线热处理钢轨。

3.分析与探讨
从以上几条高速铁路钢轨磨耗的跟踪观测结果可以看出,高速铁路钢轨磨耗具有以下特点:首先,高速铁路直线地段的垂直磨耗量与磨耗速率均较上。

从几条线路的轮轨自然磨耗速率来看,几条线路的轮轨自然磨耗速率都需要高度重视。

另由跟踪观测可以推算出更大自然磨耗速度率是0.1毫米一年,由此可以推算出最大的垂直磨耗为0.15毫米一年。

目前高速铁路钢轨垂直磨耗的重伤标准为10毫米,按照推算的直线段钢的最大磨耗速率计算,要达到垂直磨耗重伤至少需要66年。

从高速铁路直线段钢轨的磨耗速率可以看出,在直线地段,垂直磨耗并不是影响钢轨使用寿命的主要因素。

最后,高速铁路在进出站和联络线仍有一些小半径曲线,高速列车在这些小半径曲线上以相对低的速度通过。

虽然动车轴重轻,但小半径曲线钢轨
的磨耗和普速线路的特征相同,即上股主要是以侧面磨耗为主。

而这些高速线路的小半径曲线地段也铺设了和直线区段相同的相对低强度,低硬度的热轧钢轨,导致这些小半径区段钢轨侧面磨耗严重,寿命只有两三年,有些严重的线路。

为解决高速线路小半径曲线的磨耗问题,应更换在线热处理钢轻,提高钢轨的强度和硬度。

在一些磨耗严重的地段,除了提高钢轨的强度和硬度外,还应该采用钢轨润滑的方式来进行减磨。

结束语:通过对几条高速铁路钢轨磨耗情况进行了跟踪观测,对我国高速铁路钢轨的磨耗特点与初步规律进行了总结。

高速铁路因为轴重轻,速度快,直线段钢轨的垂直磨耗量和磨耗速率均较小,从观测的几条线路上的轮轨自然磨耗速率来看,己严重影响到高速铁路钢轨的寿命及运行安全,建议在小半径区段使用在线热处理钢轨,同时采用钢轨润滑的方式来减少钢轨磨耗。

參考文献:
[1]李静.关于高速铁路轨道施工技术的研究[J].科学技术创新,2017(9):90.
[2]李显,于莉萍,王海,等.高速铁路轨道板沉降与水平偏位机械复位技术[J].铁道标准设计,2017,61(7):46-50.
[3]王秋鹏.高速铁路轨道状态监测中的光纤光栅传感技术分析[J].电子测试,2017(22):212.。

相关文档
最新文档