分式求值方法与技巧集锦
分式问题的多种解法

分式问题的多种解法分式是数学中常见的一种形式,通常表示为两个数之间的比值。
在解决分式问题时,我们可以采用多种不同的方法来求得最终答案。
本文将介绍几种常用的解法,帮助读者更好地理解和运用分式。
一、通分法通分法是解决分式加减法的常用方法。
当两个分式的分母不同的时候,我们需要通过求得它们的公共倍数,使它们的分母相同,然后再进行加减运算。
例如,对于分式$\frac{1}{2}$和$\frac{2}{3}$,我们可以先找到它们的最小公倍数为6,然后将两个分式都通分为$\frac{3}{6}$和$\frac{4}{6}$,最终得到$\frac{7}{6}$作为它们的和。
二、化简法化简法是解决分式问题的另一种常见方法。
当一个分式的分子和分母可以化简为最简形式时,我们可以将其化简为约分后的分式。
例如,对于分式$\frac{6}{9}$,我们可以化简为$\frac{2}{3}$,从而得到最简形式的答案。
三、换元法换元法是解决一些复杂的分式问题的有效方法。
通过引入一个新的未知数或变量,我们可以将原始分式转化为更容易处理的形式。
例如,对于分式$\frac{x+1}{x}$,我们可以引入一个新的变量$y=x+1$,从而将原始分式转化为$\frac{y}{y-1}$,然后再进一步求解。
四、倒转法倒转法是解决除法分式问题的一种重要方法。
当一个分式为除法形式时,我们可以将其倒转为乘法形式,然后再进行计算。
例如,对于分式$\frac{3}{4} \div \frac{5}{6}$,我们可以将其倒转为$\frac{3}{4} \times \frac{6}{5}$,然后再计算得到$\frac{9}{10}$。
五、代入法代入法在解决一些复杂的分式问题时也十分实用。
通过将一些条件或特定数值代入到分式中,我们可以简化问题的求解过程。
例如,对于分式$\frac{x}{y}$,如果给定$x=2$,$y=3$,我们可以直接代入这些数值得到$\frac{2}{3}$作为最终答案。
分式运算的十种常用方法

分式运算的十种常用方法1、拆项后合并例1 (1999年第十一届“五羊杯”初中数学竞赛题)计算:=__________。
分析直接计算较繁,仔细观察各分母数发现各项可利用公式:=()达到裂项求和的目的。
解原式===。
评注根据分数的性质,将分数拆项为两数的和(或差),利用互为相反数的两个数之和为0这一性质简化计算。
2、分解后约分例2 (1996年北京市初中数学竞赛题)计算:分析仔细观察分子、分母中各因式,可发现这些因式可用代数式n(n+3)+2(其中n 为自然数)表示,由于n(n+3)+2=n2+3n+2=(n+1)(n+2),因此每个因式均可分解为二个连续自然数之积约分便可。
解因为n(n+3)+2=n2+3n+2=(n+1)(n+2),所以原式===998。
评注有些计算题,运算关系比较复杂,可通过观察分式的分子,分母的特征,借助因式分解的技巧将分子,分母分解后,利用约分简化计算。
3、分组后通分例3 (1995年天津市初二数学竞赛题)化简:++--分析观察各分母分解后易知,第一、二项,第三、四项分别组合通分较容易。
解原式=++-=-===0。
评注以容易通分为原则,把原分式分为若干组,然后分组运算再合并。
4、逐项合并通分例4 (1999年全国初中数学联赛题)计算:++的值。
分析若一次性完成通分,运算量很大,注意到分母(1-)与(1+)和(1-)与(1+)可用平方差公式逐项通分可以化简。
解原式=+==-2评注各分母之间若存在某种递进关系,一次通分难于完成时,可逐项通分。
5、换元后通分例5 (1997年北京市第十二届“迎春杯”数学竞赛题)计算:(1--…-)(++…+)-(1--…-)×(++…+)分析在算式中,四个因数并不是相互独立的,都有,,…,,若用x=+…+,算式便得到简化。
解设x=+…+,则原式=(1-a)(a+)-(1-a-)a=(1-a)a+(1-a)×-(1-a)a+=-+=。
分式运算的八种技巧

分式运算的八种技巧分式运算是数学中的一项基础知识,通过巧妙地运用一些技巧,可以简化分式的计算过程,提高计算的效率。
下面将介绍分式运算的八种技巧。
一、分式的通分当两个或多个分式进行加减运算时,需要先进行通分。
通分的目的是使分母相同,从而方便进行分式的加减运算。
二、分式的化简对于分子和分母同时包含因式的分式,可以通过因式分解进行化简。
化简后的分式通常更简洁、易于计算。
三、分式的约分对于分子和分母有公因式的分式,可以通过约分将其化简为最简形式。
约分可以简化计算过程,并且可以减小分子和分母的数字的大小,便于观察和把握。
四、分式的乘法和除法分式的乘法和除法相对简单,只需要将分子与分子相乘,分母与分母相乘即可。
当进行分数的除法运算时,可以将除法转化为乘法,将除法运算转化为分数的倒数,再进行乘法运算。
五、分式的加法和减法分式的加法和减法需要进行通分。
通分后,先对分子进行加减运算,再保持分母不变。
最后结果的分子分母可以进一步进行约分,化简为最简分数形式。
六、分式的分数化整数当分子大于分母时,可以进行分数化整数的运算。
将分子除以分母,得到一个整数,再将余数定为新的分子,保持分母不变,即可将分数化为带分数的形式。
七、小数转分数将小数转化为分数可以更方便地进行运算和比较。
通过将小数的小数位数与整数的数量级相匹配,将小数乘以适当的十的幂,然后化成最简分数即可。
八、分式的比较大小对两个分式进行比较大小的时候,可以化为相同分母的分数,然后比较分子的大小。
若分子相同,再比较分母的大小。
通过掌握这些分式运算的技巧,可以更加熟练地进行分式的计算,提高计算的准确性和效率。
同时,可以将复杂的分式化简为简单形式,便于理解和运算。
分式求值

分式求值的技巧
在分式运算中,常遇到求值问题,这类问题题型多样,技巧性强,若根据题目中分式的结构特点,采用适当方法,则可巧妙获解。
一、巧用配方法求值
例1 已知求的值。
二、巧用因式分解法求值
例2先化简,再求值:。
其中,
三、巧用整体代入法求值
例3 已知,求的值。
四、巧设参数(辅助未知数)求值
例4 已知,则=_____________。
五、巧用方程(或方程组)求值
例5 已知,,a、b、c均不为0,求的值。
六、巧用变形方法求值
例6 已知,且,则
=______________。
七、挖掘隐含条件,巧妙求值
例7 若,则=___________
九、利用倒数法求值
例9 已知,求的值。
专题07 分式的化简与求值

专题07 分式的化简与求值阅读与思考给出一定的条件,在此条件下求分式的值称为有条件的分式求值.而分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化简后求值是解有条件的分式的化简与求值的基本策略.解有条件的分式化简与求值问题时,既要瞄准目标.又要抓住条件,既要根据目标变换条件.又要依据条件来调整目标,除了要用到整式化简求值的知识方法外,还常常用到如下技巧: 1.恰当引入参数;2.取倒数或利用倒数关系; 3.拆项变形或拆分变形; 4.整体代入;5.利用比例性质等.例题与求解【例l 】 已知2310a a -+=,则代数式361a a +的值为 .(“希望杯”邀请赛试题)解题思路:目前不能求出a 的值,但可以求出13a a+=,需要对所求代数式变形含“1a a +”.【例2】 已知一列数1234567,,,,,,,a a a a a a a 且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为( ) A .648 B .832 C .1168 D .1944(五城市联赛试题)解题思路:引入参数k ,把17a a 用k 的代数式表示,这是解决等比问题的基本思路.【例3】 3(0)x y z a a ++=≠.求222()()()()()()()()()x a y a y a z a z a x a x a y a z a --+--+---+-+-. (宣州竞赛试题) 解题思路:观察发现,所求代数式是关于x a y a z a ---、、的代数式,而条件可以拆成x a y a z a ---、、的等式,因此很自然的想到用换元法来简化解题过程.【例4】 已知1,2,3,xy yz zxx y y z z x===+++求x 的值. (上海市竞赛试题)解题思路:注意到联立等式得到的方程组是一个复杂的三元一次方程组,考虑取倒数,将方程组化为简单的形式.【例5】 不等于0的三个正整数,,a b c 满足1111a b c a b c++=++,求证:,,a b c 中至少有两个互为相反数.解题思路:,,a b c 中至少有两个互为相反数,即要证明()()()0a b b c c a +++=.(北京市竞赛试题)【例6】 已知,,a b c 为正整数,满足如下两个条件:①32;a b c ++= ②14b c a c a b a b c bc ac ab +-+-+-++=.求证:以,,a b c 为三边长可以构成一个直角三角形.解题思路:本题熟记勾股定理的公式即可解答.(全国初中数学联赛试题)能力训练1.若a b c d b c d a ===,则a b c d a b c d-+-+-+的值是 .(“希望杯”邀请赛试题)2.已知2131xx x =-+,则24291x x x =-+ . (广东竞赛试题)3.若2221998,1999,2000a x b x c x +=+=++=且24abc =,则111c a b ab bc ac a b c++--- 的值为 .(“缙云杯”竞赛试题)4.已知232325x xy y x xy y +-=--,则11x y -= .5.如果111,1a b b c+=+=,那么1c a +=( ). A .1 B .2 C .12 D .14(“新世纪杯”竞赛试题)6.设有理数,,a b c 都不为0,且0a b c ++=,则222222222111b c a c a b a b c+++-+-+-的 值为( ).A .正数B .负数C .零D .不能确定7.已知4360,270(0)x y z x y z xyz --=+-=≠,则22222223657x y z x y z++++的值为( ). A .0 B .1 C .2 D .不能确定8.已知211xx mx =-+,则36331x x m x -+的值为( ) A .1 B .313m + C .2132m - D .2131m + 9.设0a b c ++=,求222222222a b c a bc b ac c ab+++++的值.10.已知111x y z y z x+=+=+其中,,x y z 互不相等,求证2221x y z =. (天津市竞赛试题)11.设,,a b c 满足1111a b c a b c++=++, 求证2121212121211111n n n n n n a b c a b c ------++=++.(n 为自然数)(波兰竞赛试题)12.三角形三边长分别为,,a b c .(1)若a a b cb c b c a ++=+-,求证:这个三角形是等腰三角形; (2)若1111a b c a b c-+=-+,判断这个三角形的形状并证明.13.已知1ax by cz ===,求444444111111111111a b c x y z+++++++++++的值. (“华杯赛”试题)14.解下列方程(组): (1)18272938x x x x x x x x +++++=+++++; (江苏省竞赛试题) (2)596841922119968x x x x x x x x ----+=+----; (“五羊杯”竞赛试题)(3)111211131114x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩.(北京市竞赛试题)B 级1.设,,a b c 满足0a b c ++=,0abc >,若a b c x a b c=++, 111111()()()y a b c b c c a a b=+++++,则23x y xy ++= .2.若0abc ≠,且a b b c c a c a b+++==,则()()()a b b c c a abc +++= . 3.设,,a b c 均为非零数,且2(),3(),4()ab a b bc b c ac a c =+=+=+,则a b c ++= .4.已知,,x y z 满足1x y z y z x z y x ++=+++,则222x y z y z x z y x+++++的值为 . 5.设,,a b c 是三个互不相同的正数,已知a c c bb a b a-==+,那么有( ). A .32b c = B .32a b = C .2b c = D .2a b =6.如果0a b c ++=,1114a b c ++=-,那么222111a b c++的值为( ).A .3B .8C .16D .207.已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( ).A .1996B .1997C .1998D .199998.若615325x y x y y x y x -==-,则222245623x xy y x xy y-+-+的值为( ). A .92 B .94C .5D .6 (全国初中数学联赛试题)9.已知非零实数,,a b c 满足0a b c ++=. (1)求证:3333a b c abc ++=; (2)求()()a b b c c a c a bc a b a b b c c a---++++---的值. (北京市竞赛试题)10.已知2410a a ++=,且42321322a ma a ma a++=++.求m 的值. (北京市竞赛试题)11.完成同一件工作,甲单独做所需时间为乙、丙两人合做所需时间的p 倍,乙单独做所需时间为甲、丙两人合做所需时间的q 倍;丙单独做所需时间为甲、乙两人合做所需时间的x 倍, 求证:21p q x pq ++=-.(10)pq -≠(天津市竞赛试题)12.设222222222,,222b c a a c b b a c A B C bc ac ab+-+-+-===,当3A B C ++=-时,求证:2002200220023AB C ++=.(天津市竞赛试题)13.某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部.(1)扶梯露在外面的部分有多少级?(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两人各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次追上女孩时走了多少级台阶?(江苏省竞赛试题)。
分式运算中的十二种常用技巧

2.计算:x-1 2-x-2 1+x+2 1-x+1 2.
解:原式=(x+2 1-x-2 1)+(x-1 2-x+1 2) =2((x-x+1)1)-(2(x-x+1)1)+((x+x-2)2)-((x+x-2)2)=x-2-41+x2-4 4 =-4( (xx22- -41) )+ (4x( 2-x42- )1)=(x2-1)12(x2-4).
11.已知x2-3xx+1=-1,求x4-9xx2 2+1的值.
【点拨】本题借助条件及所求分式,巧取倒数,再利用整体代入 法求值.
解:由x2-3xx+1=-1 知 x≠0,所以x2-3xx+1=-1.
所以 x-3+1x=-1,即 x+1x=2. 所以x4-9xx2 2+1=x2-9+x12=x+1x2-11=-7. 所以x4-9xx2 2+1=-17.
9.已知 x1y+1z +y1x+1z+z1x+1y+3=0,且1x+1y+1z≠0, 求 x+y+z 的值.
解:由 x1y+1z +y1x+1z+z1x+1y+3=0, 得xy+xz+xy+yz+xz+yz+3=0,即x+y z+1+y+x z+1+x+z y+1=0, 即x+yy+z+x+xy+z+x+zy+z=0. 则有(x+y+z)1x+1y+1z =0.
7.计算:1x-x(x1+1)-(x+1)1(x+2)-…
-(x+2
1 021)(x+2
022).
解:1x-x(x1+1)-(x+1)1(x+2)-…
-(x+2
1 021)(x+2
022)
=1x-(1x-x+1 1)-(x+1 1-x+1 2)-…-(x+21 021-x+21 022)
=1x-1x+x+1 1-x+1 1+x+1 2-…-x+21 021+x+21 022
数学分式的计算方法
数学分式的计算方法数学分式是数学中常见的一种表达形式,它由分子和分母组成,分子和分母都可以是数或者变量的组合。
在计算数学分式时,我们需要掌握一些基本的计算方法和技巧。
一. 分式的加减法1. 分式的加法:当两个分式的分母相同时,可以直接将分子相加,并保持分母不变。
例如,计算1/3 + 2/3,由于分母相同,所以直接将分子相加得到3/3,即1。
2. 分式的减法:当两个分式的分母相同时,可以直接将分子相减,并保持分母不变。
例如,计算4/5 - 2/5,由于分母相同,所以直接将分子相减得到2/5。
3. 分式的加减法:当两个分式的分母不同时,我们需要先找到它们的最小公倍数作为通分的分母,并将分子进行相应的乘法运算后再进行加减。
例如,计算1/2 + 1/3,首先找到2和3的最小公倍数为6,然后将分子进行相应的乘法运算得到3/6 + 2/6,最后得到5/6。
二. 分式的乘除法1. 分式的乘法:将两个分式的分子相乘作为新的分子,分母相乘作为新的分母。
例如,计算2/3 * 4/5,将分子相乘得到8,分母相乘得到15,所以结果为8/15。
2. 分式的除法:将第一个分式的分子乘以第二个分式的倒数,作为新的分子,第一个分式的分母乘以第二个分式的分子,作为新的分母。
例如,计算2/3 ÷ 4/5,将2/3乘以5/4得到10/12,最后可以化简为5/6。
三. 分式的化简与约分1. 分式的化简:将一个分式的分子和分母同时除以它们的最大公约数,可以得到一个化简后的分式。
例如,将12/16化简为3/4,因为12和16的最大公约数为4,所以同时除以4得到3/4。
2. 分式的约分:将一个分式的分子和分母同时除以它们的公因子,可以得到一个约分后的分式。
例如,将15/25约分为3/5,因为15和25的公因子为5,所以同时除以5得到3/5。
四. 分式的整数部分和真分数部分1. 分式的整数部分:当一个分式的分子大于或等于分母时,可以将其化简为一个整数和一个真分数相加。
第4讲 分式的化简求值(教师版)
巩固1
已知
,则
.
答案
解析 由
可得
,
∴原式
.
故答案为: .
标注 式 > 分式 > 分式化简求值 > 题型:分式条件化简求值
巩固2
若
,则
的值为
.
答案
解析 由题得 ∴ ∴ 又∵ ∴原式 . 故答案为: .
标注 式 > 分式 > 分式的运算 > 题型:分式通分
巩固3
若
,则
的值是
.
答案 备选答案1 : 备选答案2 :
分析:由题知,条件的基本形式是分子、分母分别为两项之积与两项之和,满足
可进行裂项拆分;
解:由题知
,
,
,即
拆 分则 法
∴三式相加得
又∵ ∴ 【拓展】
为何正整数时,下列分式为整数.
① ;②
;③
;④
;⑤
;⑥
;⑦
;⑧
;⑨
.
分析:分离常数法其核心是化简分子,在分子里面构造与分母相同的项,其本质是整数解问题;
解:①
2 已知
,则代数式
答案
解析 ∵ ∴ ∴
, ,
,
把 代入原式
的值为
.
. 标注 式 > 分式 > 分式化简求值 > 题型:整体代入求值
3 已知
,
,则
.
答案 解析 原式
. 标注 式 > 分式 > 分式化简求值 > 题型:整体代入求值
例题3 1若
,则
的值是
.
答案
解析 ∵
;∴
即
∴
.
标注 式 > 整式的乘除 > 乘法公式 > 题型:利用完全平方公式计算
分式章节涉及的12个技巧 7个概念 5种方法 4种思想全梳理
专题一 分式的意义及性质的4种题型题型1:分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m 中,不是分式的式子有( )A .1个B .2个C .3个D .4个解析:4x -25,2m ,x 2π+1不是分式.选C2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 解析:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,∴共可构成6个分式.题型2:分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a >4C .a <4D .a ≠4解析:D4.当x =________时,分式x -1x 2-1无意义. 解析:±15.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.解析:x 2-6x +m =(x -3)2+(m -9). ∵(x -3)2≥0,∴当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.题型3:分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是解析:x 2-2x +1=(x -1)2,∵分式的值为正数,∴x +2>0且x -1≠0.解得x >-2且x ≠17.已知分式a -1a 2-b2的值为0,求a 的值及b 的取值范围.解析:∵分式a -1a 2-b2的值为0,∴a -1=0且a 2-b 2≠0,解得a =1且b ≠±1.题型4:分式的基本性质及其应用 8.下列各式正确的是( ) A.a b =a 2b 2B.a b =ab a +bC.a b =a +c b +cD.a b =abb2 解析:选D9.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2B .x =-2C .x <-2D .x ≠-2解析:选B10.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.解析:设x 4=y 6=z7=k (k ≠0),则x =4k ,y =6k ,z =7∴x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =372211.已知x +y +z =0,xyz ≠0,求x |y +z|+y |z +x|+z|x +y|的值解析:由x +y +z =0,xyz ≠0可知,x ,y ,z 必为两正一负或两负一正当x ,y ,z 为两正一负时,设x >0,y >0,z <0,原式=x |-x|+y |-y|+z|-z|=1+1-1=1当x ,y ,z 为两负一正时,设x >0,y <0,z <0,原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1专题二 分式8种运算技巧技巧1:约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.解析:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 小结:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.技巧2:整体通分法 2.计算:a -2+4a +2.解析:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2.小结:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.技巧3:顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.解析:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1) =8x 7x 8-1. 小结:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.计算:(3m -2n )+(3m -2n )33m -2n +1-(3m -2n )2+2n -3m3m -2n -1.解析:设3m -2n =x , 则原式=x +x 3x +1-x 2-xx -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1) =4n -6m(3m -2n +1)(3m -2n -1).技巧5:裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).解析:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100 =100a (a +100)小结:对于分子是1,分母是相差为1的两个整式积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项.技巧6:整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.解析:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc ≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.解析:由xx 2-3x +1=-1,知x ≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x=2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.技巧8:消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz ≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.解析:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z . 因为xyz ≠0,所以z ≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.小结:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专题三 分式方程解求字母的值或范围4大技巧技巧1:利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.解析:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.技巧2:利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=m x -3+2有解,求m 的取值范围.解析:去分母并整理,得x +m -4=0.解得x =4-m . ∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m ≠3.解得m ≠1.∴当m ≠1时,原分式方程有解.技巧3:利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4D .-4解析:D4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.解析:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0, 所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3,解得m =12. 综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.小结:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.技巧4: 利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.解析:1或-16.已知关于x 的方程x -4x -3-m -4=m3-x无解,求m 的值.解析:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形: (1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程根是原方程增根,4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3解综上所述,m 的值为-3或1.7.已知关于x 的分式方程x +a x -2-5x =1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值.解析:原方程去分母并整理,得(3-a )x =10. (1)因为原方程的增根为x =2, 所以(3-a )×2=10.解得a =-2. (2)因为原分式方程有增根, 所以x (x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a )x =10的解, 所以原分式方程的增根为x =2. 所以(3-a )×2=10. 解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a )x =10无解,则原分式方程也无解; ②当3-a ≠0时,要使原方程无解,则由(2)知,a =-2. 综上所述,a 的值为3或-2.小结:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.专题四 5种分式求值方法方法1: 直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.解析:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.方法2:活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.解析:由x 2-5x +1=0得x ≠0, ∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527. 小结:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.解析:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xy xy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.方法3:整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z ≠0,求x 2y +z +y 2z +x +z 2x +y 的值.解析:因为x +y +z ≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z .所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z .所以x 2y +z +y 2z +x +z 2x +y=0.小结:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.方法4:巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.解析:∵4x 2-4x +1=0, ∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.方法5:设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.解析:设x 2=y 3=z4=k ≠0,则x =2k ,y =3k ,z =4k .所以x 2-y 2+2z 2xy +yz +xz =(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726.专题五 热门考点整合应用考点1:三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .式子A B一定是分式(A ,B 为整式) 解析:B2.若式子1x 2-2x +m不论x 取任何数总有意义,则m 的取值范围是( ) A .m ≥1 B .m >1 C .m ≤1 D .m <1解析:∵x 2-2x +m =x 2-2x +1+m -1=(x -1)2+m -1,∴当m -1>0,即m >1时,式子1x 2-2x +m总有意义,选B概念2 分式方程34.某服装店用10 000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14 700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( ) A.10 000x -10=14 700(1+40%)xB.10 000x +10=14 700(1+40%)xC.10 000(1-40%)x-10=14 700x D.10 000(1-40%)x+10=14 700x 解析:B4.下列关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x=4;⑥x a =35-x ,其中分式方程有 .(填序号) 解析:②④⑤概念3 增根5.若关于x 的方程x -4x -5-3=a x -5有增根,则增根为( ) A .x =6B .x =5C .x =4D .x =3解析:B6.已知关于x 的方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值. 解析:方程两边同乘x 2-1,得2(x -1)+k (x +1)=6.整理得(2+k )x +k -8=0.∵原分式方程有增根x =1,∴2+k +k -8=0.解得k =3.7.若关于x 的分式方程2m +x x -3-1=2x 无解,求m 的值. 解析:方程两边都乘x (x -3),得(2m +x )x -x (x -3)=2(x -3),即(2m +1)x =-6.①(1)当2m +1=0时,此方程无解,∴原分式方程也无解.此时m =-0.5;(2)当2m +1≠0时,要使关于x 的分式方程2m +x x -3-1=2x 无解, 则x =0或x -3=0,即x =0或x =3.把x =0代入①,m 的值不存在;把x =3代入①,得3(2m +1)=-6,解得m =-1.5.∴m 的值是-0.5或-1.5.考点2:一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y . 解析:(1)原式=12x -30y 15x +40y ;(2)原式=5x +15y 25x -y.考点3:一种运算——分式的运算9.先化简,再求值:⎝⎛⎭⎫2ab 2a +b 3÷⎝⎛⎭⎫ab 3a 2-b 22·⎣⎡⎦⎤12(a -b )2,其中a =-12,b =23. 解析:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2=8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2=2a a +b . 当a =-12,b =23时,2a a +b =2×⎝⎛⎭⎫-12-12+23=-6.考点4:一个解法——分式方程的解法10.小明解方程1x -x -2x=1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解析:方程两边同乘x ,得1-(x -2)=1.……①去括号,得1-x -2=1.……②合并同类项,得-x -1=1.……③移项,得-x =2.……④解得x =-2.……⑤∴原方程的解为x =-2.……⑥解析:步骤①去分母时,没有在等号右边乘x ;步骤②括号前面是“-”,去括号时,没有变号;步骤⑥前没有检验.正确的解答过程如下:解析:方程两边都乘x ,得1-(x -2)=x ,去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3,解得x =32. 经检验x =32是原分式方程的解.考点5:一个应用——分式方程的应用11.近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A ,B 两种设备.每台B 种设备价格比每台A 种设备价格多0.7万元,花3万元购买A 种设备和花7.2万元购买B 种设备的数量相同.(1)求A 种、B 种设备每台各多少万元?(2)根据单位实际情况,需购进A ,B 两种设备共20台,总费用不高于15万元,求A 种设备至少要购买多少台?解析:(1)设每台A 种设备x 万元,则每台B 种设备(x +0.7)万元,根据题意,得3x =7.2x +0.7. 解得x =0.5.经检验,x =0.5是原方程的解且符合题意.∴x +0.7=1.2.答:每台A 种设备0.5万元,每台B 种设备1.2万元.(2)设购买A 种设备m 台,则购买B 种设备(20-m )台,根据题意,得0.5m +1.2(20-m )≤15.解得m ≥907. ∵m 为整数,∴m ≥13.答:A 种设备至少要购买13台.考点6:四种思想思想1 数形结合思想12.如图,点A ,B 在数轴上,它们所表示的数分别是-4,2x +23x -5,且点A ,B 到原点的距离相等,求x 的值.(第12题)解析:由题意,得2x +23x -5=4. 去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.小结:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.思想2 整体思想13.已知实数a 满足a 2+4a -8=0,求1a +1-a +3a 2-1·a 2-2a +1a 2+6a +9的值. 解析:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3) =4(a +1)(a +3) =4a 2+4a +3. 由a 2+4a -8=0得a 2+4a =8,故4a 2+4a +3=411. 小结:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z ≠0,求x 2+y 2+z 22x 2+y 2-z 2的值. 解析:由2x -3y +z =0,3x -2y -6z =0,z ≠0,得到⎩⎪⎨⎪⎧2x -3y =-z ,3x -2y =6z.解得⎩⎪⎨⎪⎧x =4z ,y =3z. 所以原式=(4z )2+(3z )2+z 22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320. 小结:本题先用含z 的式子分别表示出x 与y ,然后代入所求式子消去x ,y 这两个未知数,从而简化求值过程,体现了消元思想.思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b. 解析:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b=2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2a a +b小结:本题是类比思想的典范,分式的性质、运算顺序、运算律都可以类比分数的相关知识。
分式运算的常用技巧与方法
h 分式运算中的常用技巧与方法 教学目标:掌握分式运算中的常用技巧与方法,会灵活运用这些方法准确解答较复杂的分式计算题。 教学重难点:会灵活运用所学的技巧与方法准确计算。 教学过程: 一 复习 1.分式的加减乘除及乘方的运算法则 2.分式混合运算的顺序 二 分式运算的常用技巧与方法举例 1. 整体通分法
例1.化简:21aa-a-1 分析 将后两项看作一个整体,则可以整体通分,简捷求解。 解:21aa-a-1=21aa-(a+1)= 21aa-(1)(1)1aaa=22(1)1aaa=11a
练习:计算112aaa 2. 逐项通分法 例2.计算1ab-1ab-222bab-3444bab 分析:注意到各分母的特征,联想乘法公式,适合采用逐项通分法 解:1ab-1ab-222bab-3444bab=22()()ababab-222bab-3444bab
=222bab-222bab-3444bab=2222442()2()babbabab-3444bab =3444bab-3444bab=0 练习:计算2111111xxx 3.先约分,后通分
例3.计算:2262aaaa+22444aaa 分析:分子、分母先分解因式,约分后再通分求值计算 解:2262aaaa+22444aaa=(6)(2)aaaa+2(2)(2)(2)aaa=62aa+22aa=242aa=2 h 练习:计算:343622322222xxxxxxxxx 4. 裂项相消法 例4 计算)3)(2(1)2)(1(111xxxxx 分析 我们看到题目中每一个分式的分母是两个因数之积,而分子又是一个定值时,可将每一个分式先拆成两项之差,前后相约后再通分.
解:原式=2131112111xxxxx=31x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列, 从而通过求{ } ÷ 的通项间接地求数列{ 的 n}
通项. 一般 对 于形 如 n : , ・ a+ 一百 的类 型均 可
、
构造等差数 列 构造 { } 以 为首项 、 为公 差的等差数列. 是 以
“ “1 1
,
中学 教 学 参 考
解题 方法 s技 巧
分 式 求 值 方 法 与 技 巧 集 锦
广 西 田 东县 第二 中学( 3 5 0 农树 新 5 10 )
分式求值运算是 中学数学 的一个基 础 内容 , 它涉 及
的知识点多 、 覆盖面广 、 综合性 强 , 需要学生 有扎实 的基
础; 同时 它 题 型 多 样 , 巧 性 强 , 于 变 化 , 要 学 生 有 技 富 需 敏锐 的观察 力 , 强的分析 判断 能力 和思维 能力 , 较 以及 灵 活 的解 题 方 法 技 巧 . 文 就 这 个 问 题 作 了 总 结 归 纳 , 本 希 望 对 同学 们 有 所 启 示 .
4. k嘉 . ・ .
三 、 元 法 换
= 警
一 一.
n 6+ 6 + ∞ 6‘ c
评 注 : 已知 式 和 所 求 式 均 为 多项 式 , 子 是 单 项 当 分 式时, 考虑取倒数求解. 可
六 、 项 法 添
评注 : 在解有 关含 有 比例 式的题 目时 , 参数 求 解 设
七 、 项 法 拆
评注 : 通过 引入新 变量 , 以清楚地展现 原式 结构 , 可
使 问题 解 决起 来 简捷 .
6 6 中学教学参考( 中旬 )2 。 - 。 9 7总第 2 。期
拆项法就是结合 已知和所求式 特点 , 对其 进行巧妙 拆分 , 化繁为简 , 于求解 的方法. 便
一
四 、 方 法 配
配方法就是把一个解析式 利用恒等变 形 的方法 , 把
其 中 的某 些 项 配 成 一 个 或 几 个 多 项 式 正 整 数 次 幂 的 和
的形式解决数学 问题 的方法. 【 4 已知 I -5 - 1 , 一+ 的值. 例 】 z x F —0 求
解 : z 一5 + 1 0 z 0 由此 得 z 由 z x — 知 ≠ , + 一5 .
是 在 一 个 比较 复 杂 的 数 学式 子 中 , 新 的 变 元 去 代 替 原 用
式 的一个 部分 或改 造原来 的式子 , 使它简 化 , 问题易 使
于 解 决 的 一 种 重 要解 题 方法 .
+一. n + )5 1+(+ ) c0 ( ÷+(+ c 的 求 丢 - ) 丢 1 -
【 1 若ห้องสมุดไป่ตู้z =0 求 二 例 】 一9 ,
的值 .
题 时, 可考 虑 用 完全 平 方 公 式 进 行 解 答.
五 、 数 法 倒
评注 : 注意 隐含 的 条 件 , 体 考 虑 是 解 决 本 类 题 目 整
的 关键 .
【s 知 、 满 一 , 一 , 例】已 n. 足 号 b c {
旦+ + + 旦+拿+ 一3 a b c 鱼 鱼+ ÷+ ++ +
+ 十a a b c — b c + + +
一 —
4 y
z
一
。z
一
一 =
3 y x
3z l
一
22 ( y- 2 (
一
x
)
z
一
—
3— 0 3一 一 3 — .
一
堡 一旦 一
1 ‘ 1
3× 3 口一 2 n
一i 求分式 1
,
二 、 数 法 参
参数法是指在解 题过程 中, 通过 适 当引入 一些与题
目发 生 联 系 的 新 变 量 ( 数 ) 以 此 作 为 媒 介 , 进 行 分 参 , 再
的值.
析和综合 , 而解决 问题的方 法. 从
【 2 已知 : 例 】 x y 2一
z
一
解 将 知 倒 变 : 一, 一, : 已作 数 形 3 4 害
解 题 方 法与技 巧。H N XE J O U A KO O G U I X E CN A Z A
例 谈 构 造 法在 数 列 求通 项 中 的应 用
河北 巨鹿 中学( 5 2 0 李 改芳 055)
等差数 歹 和等 比数 列 是 两类基 本 类 型 的数 列 , U 由递 推
数列求通项的问题是 近年来高考的热点, 而有意识地构造 等差等 比数列不失为求通项的一条简捷有效的方法.
・ . .
、
直 接 法
直接法就是从 已知条件 出发 , 运用概念 、 公式 、 理 定 等进行推理或运算 , 出未知数 的值 并代人所 求式获解 求
的方法.
5 7 2 .
一  ̄ ( 。 :( 2  ̄ 2 + - 21一=z ) 2-— x ) 2[+ 2 + :
评 注 : 求 解 有 关 分 式 中 两数 ( 两式 ) 平 方 和 问 在 或 的
是 一 种 常 用的 方 法 .
添项法是在 已知或 所求 式 中加上某 项再 减去 这项 ( 或与之恒等 的项) 然 后进 行变 形 , 而使 问题易 于求 , 从
解 的方 法 . 【 6 已 知 n b f 不 等 于 0的 实 数 , n b 例 】 ,,为 且 +
我们通常把未知 数 或变数 称 为元 , 谓换 元法 , 所 就
【3 号求 兰 例】若 一 一 , 警
2, 口 那么 一3 . a ̄
兰 兰二 垒
一
的. 值
-
值.
解由 一 一 得 一_ 此 2 x : _ _由 设y 一 { 1 1 耋 , -
x x 2 +3 y
-
解a C+(+ c {一 + :D ÷ 6 n+(+ )导 (+ ÷ 丢 0 0 ) C ) 口
一. + 31 一 4 + 5 5 即 {一 , 十1 , 一. —
3— 4
,
求{
的. 值
解设 一 一 ( o则 一k 一k 一 :专 詈 号 是 ≠) 2Y 3z 忌 , , ,
三 相 得 + + 一, 式 加 丢 ÷ 6 即
日
肛
一, 6 于
aO c
l