条件分式求值的方法与技巧完整版

合集下载

条件分式求值的方法与技巧

条件分式求值的方法与技巧

学科: 奥数教学内容:条件分式求值的方法与技巧求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面:一、将条件式变形后代入求值例1432z y x ==,zy x z y x +--+22求的值. 解:设432z y x ===k , 那么x =2k ,y =3k ,z =4k . ∴ 原式=545443224322==+-⨯-⨯+k k k k k k k k . 说明:连比,常设比值k 为参数,这种解题方法叫参数法.例2的值求b a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有〔a +3b 〕〔a -2b 〕=0,∴ a +3b =0或a -2b =0,解得a =-3b 或a =2b .当a =-3b 时,原式=233=+---bb b b ; 当a =2b 时,原式=3122=+--b b b b .二、将求值变形代入求值.例3)11()11()11(,0cb a ac b b a c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++ac b a b a c b c b a c =3))(111(-++++a b c c b a ∵ a +b +c =0,∴ 原式=-3.例431=+x x ,的值求1242++x x x .分析:∵ 1)1(111222224-+=++=++x x xx x x x , ∴ 可先求值式的倒数,再求求值式的值.解:∵ 1)1(12224-+=++x x xx x 8132=-=,∴ 811242=++x x x .三、将条件式和求值式分别变形后代入求值.例5 yxy x y xy x y x ---+=-2232,311则分式的值为__________. 解法一:∵ 311=-yx , ∴ y -x =3xy ⇒x -y =-3xy .∵ 原式=xyy x xy y x 2)(3)(2--+- 53233)3(2=--+-=xy xy xy xy . 解法二:将分子、分母同除以xy 〔≠0〕. ∴原式=xy x y 121232---+ 5332323)11(2)11(23=--⨯-=-----=yx y x 分析:∵ 填空题不需要写出解题过程,故可取满足等式的特殊值求解.解法三:取x =21,y =-1,)31211(=+=-y x . ∴原式 .532/52/3)1()1(21221)1(2)1(213212==---⨯⨯--⨯--⨯⨯+⨯= 注意:特殊值法是解填空题或选择题常用的解题方法或技巧.取特殊值要注意满足条件等式,其原那么是要便于计算.例6 a 2+2a -1=0,求分式24)44122(22+-÷++--+-a a a a a a a a 的值. 解:原式=42])2(1)2(2[2-+⋅+--+-a a a a a a a 42)2()1()2)(2(2-+⋅+--+-=a a a a a a a a 42)2(42-+⋅+-=a a a a a aa a a 21)2(12+=+= ∵ 0122=-+a a ,∴ 122=+a a ,∴ 原式=1.注意:本例是将条件式化为“122=+a a 〞代入化简后的求值式再求值,这种代入的技巧叫做整体代入.1.231=-x x ,求分式221xx +的值.2.01342=+++x x x ,先化简后求xx x -+-3932的值. 3.化简求值43326512222-+---+÷+--a a a a a a a a ,其中a =-3. 4.abc =1,那么111++++++++c ca c b bc b a ab a 的值为________.参考答案1.417; 2.0〔原式=x +3〕; 3.)42(522--=-a 原式; 4.1〔取a =b =c =1〕.。

条件分式求值的常用方法整理精选汇总

条件分式求值的常用方法整理精选汇总

条件分式求值的常用方法整理精选汇总条件分式是一种数学表达式,具有形如$\frac{P(x)}{Q(x)}$的形式,其中$P(x)$和$Q(x)$是多项式。

在计算条件分式的值时,我们需要将$x$带入到分式中,首先计算分子$P(x)$及分母$Q(x)$的值,然后再计算两者的比值。

为了理解条件分式求值的常用方法,我们将从以下几个方面进行整理精选汇总:1.理解分子与分母的含义:分子$P(x)$是条件分式的分子部分,通常是一个与$x$相关的多项式。

分母$Q(x)$是条件分式的分母部分,也是一个与$x$相关的多项式。

理解分子和分母的含义对于正确进行求值非常重要。

2.找出分式的定义域:在进行条件分式求值之前,我们必须确定$x$的取值范围,即分式的定义域。

如果$x$的一些取值会导致分母等于0,那么这些值必须被排除在求值的范围之外。

因此,我们需要找出使得$Q(x)$等于0的$x$值,并将这些值从求值范围中排除。

3.化简分式:在求值之前,我们可以尝试对分子和分母进行化简。

通过因式分解、提取公因式等方式,将分子和分母简化为最简形式,可以使得计算更加简洁明了。

4.将$x$带入分子和分母:一旦找到了适当的定义域,并将分式化简为最简形式,就可以开始将$x$的取值代入分子和分母。

对分子部分的多项式$P(x)$计算其值,再对分母部分的多项式$Q(x)$计算其值。

这样就得到了最终的条件分式。

需要注意的是,如果$x$的一些取值导致分母$Q(x)$等于0,那么这些取值必须被排除在求值范围之外。

5.检查结果的合理性:求得条件分式的值后,应当对结果进行检查,确保其在定义域范围内是合理的。

特别是需要注意的是,在进行有理函数求值时,有可能得到无理数或者是不可约分的分式,这些结果在定义域范围内可能是有效的,所以需要特别注意。

通过以上的步骤,我们可以正确地计算条件分式的值。

需要注意的是,在计算过程中要仔细检查每一步的操作,确保求值的正确性。

另外,如果定义域非常复杂或者分子、分母都有高次数的项时,求解条件分式可能需要更加复杂的技巧和方法,这就需要灵活运用数学知识来处理。

分式运算的八种技巧

分式运算的八种技巧

分式运算综合题1、先化简,再求值:(1-x x -11+x )÷112-x ,其中x=22、先化简,再求值:21+-a a ·12422+--a a a ÷112-a ,其中a 满足a 2-a=12。

3、计算:223y x y x -+-222y x y x -++2232y x yx --。

4、化简:12+x x -1422-+x x ÷1222+-+x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值。

5、已知M=222y x xy -,N=2222y x y x -+,P=224x y xy-,用“+”或“-”连接M ,N ,P 有多种不同的形式,如M+N-P 。

请你任选一种进行计算,并化简求值,其中x :y=5:2。

6、已知abc ≠0且a+b+c=0,求a(b 1+c 1)+b(c 1+a 1)+c(a 1+b1)的值。

7、已知两个式子:A=442-x ,B=21+x +x-21,其中x ≠±2,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B8、已知1<x <2,则式子|2|2--x x -1|1|--x x +xx ||化简的结果是( )A.-1B.1C.2D.39、已知a2+3ab+b2=0(a ≠0,b ≠0),则式子a b +ba= 。

10、已知a 1+b 21=3,则式子b a ab b ab a 634452--+-= 。

11、已知3-x m -2+x n =)2)(3(17+-+x x x ,求m 2+n 2的值。

12、已知a,b 为实数,且ab=1,设M=1+a a +1+b b ,N=11+a +11+b ,试确定M ,N 的大小关系。

13、先化简,再求值:(x-13+x x )÷1222++-x x x ,其中x 满足x 2+x-2=0.14、已知A=(x-3)÷4)96)(2(22-+-+x x x x -1,(1)化简A; 2x-1<x,(2)若x 满足不等式组 且x 为整数,求A 的值。

条件分式求值的方法与技巧(含解析)-

条件分式求值的方法与技巧(含解析)-

条件分式求值的方法与技巧(含解析)-求条件分式的值是分式化简、计算的重要内容,解题要紧有以下三个方面:【一】将条件式变形后代入求值例1432z y x ==,z y x z y x +--+22求的值、 解:设432z y x ===k , 那么x =2k ,y =3k ,z =4k 、 ∴原式=545443224322==+-⨯-⨯+k k k k k k k k 、 说明:连比,常设比值k 为参数,这种解题方法叫参数法、 例2的值求b a b a b ab a +-=-+,0622、 解:由0622=-+b ab a 有〔a +3b 〕〔a -2b 〕=0,∴a +3b =0或a -2b =0,解得a =-3b 或a =2B 、当a =-3b 时,原式=233=+---bb b b ; 当a =2b 时,原式=3122=+--b b b b 、 【二】将求值变形代入求值、例3)11()11()11(,0cb a ac b b a c c b a +++++=++求的值、 解:原式=1)111(1)111(1)111(-+++-+++-++ac b a b a c b c b a c =3))(111(-++++a b c c b a ∵a +b +c =0,∴原式=-3、例431=+xx ,的值求1242++x x x 、 分析:∵1)1(111222224-+=++=++x x x x x x x , ∴可先求值式的倒数,再求求值式的值、 解:∵1)1(12224-+=++x x xx x 8132=-=,∴811242=++x x x 、 【三】将条件式和求值式分别变形后代入求值、例5yxy x y xy x y x ---+=-2232,311则分式的值为__________、 解法一:∵311=-yx , ∴y -x =3xy ⇒x -y =-3xy 、 ∵原式=xyy x xy y x 2)(3)(2--+- 53233)3(2=--+-=xy xy xy xy 、 解法二:将分子、分母同除以xy 〔≠0〕、 ∴原式=xy x y 121232---+ 5332323)11(2)11(23=--⨯-=-----=yx y x 分析:∵填空题不需要写出解题过程,故可取满足等式的特别值求解、解法三:取x =21,y =-1, )31211(=+=-yx 、 ∴原式.532/52/3)1()1(21221)1(2)1(213212==---⨯⨯--⨯--⨯⨯+⨯=注意:特别值法是解填空题或选择题常用的解题方法或技巧、取特别值要注意满足条件等式,其原那么是要便于计算、例6a 2+2a -1=0,求分式24)44122(22+-÷++--+-a a a a a a a a 的值、 解:原式=42])2(1)2(2[2-+⋅+--+-a a a a a a a 42)2()1()2)(2(2-+⋅+--+-=a a a a a a a a 42)2(42-+⋅+-=a a a a a aa a a 21)2(12+=+= ∵0122=-+a a ,∴122=+a a ,∴原式=1、注意:本例是将条件式化为“122=+a a ”代入化简后的求值式再求值,这种代入的技巧叫做整体代入、练习1、231=-x x ,求分式221xx +的值、 2、01342=+++x x x ,先化简后求xx x -+-3932的值、 3、化简求值43326512222-+---+÷+--a a a a a a a a ,其中a =-3、 4、abc =1,那么111++++++++c ca c b bc b a ab a 的值为________、 参考答案1、417; 2、0〔原式=x +3〕; 3、)42(522--=-a 原式; 4、1〔取a =b =c =1〕、。

分式求值方法及技巧

分式求值方法及技巧

分式求值技巧
2023年中考复习
设参数k法
方法介绍
当题目给出的条件出现连比形式,或者连等式时,经常采用增设参数k的方法,用含参数k的代数式表示分式中的各字母.在化简求值过程中,参数k最终都能消去,即可求出结果.
例1:
解答:
例2:
解答:
设定主元法
方法介绍
当题目中给出2个字母,却只给出1个方程,或者给出3个字母,却只给出2个方程时,我们无法具体求出每个字母的值.因此,可以设定其中一个字母作为主元,用含主元的代数式来表示其他字母,从而可以在分式化简中,达到只含有主元的目的,最终消去主元求值.
例1:
解答:
例2:
解答:
整体同除法
方法介绍
对于有些题目,我们可以从需要求值的分式入手,将分子分母同除分式中次数最高的项,以达到让分式中出现与已知条件相关的代数式,从而可以将已知条件作为整体,代入求值.
例1:
解答:
例2:
解答:
用乘法公式
方法介绍
对于一些本身,或者通分后含平方和类型的分式,我们可以联系以前所学的乘法公式,利用配方等方法,对分式进行变形,从而更快求解.
例1:
解答:
例2:
解答:
特殊值法
方法介绍
这是最后没有办法的办法了,适用于选择填空题.对于一些无法求出具体数值的字母,我们可以根据已知条件,取字母的一组特殊值,然后代入求解.当然,如果你不确定结果是否正确,可以多代几组特殊值检验.
例1:
解答:
例2:
解答:。

分式求值 技巧多(初中数学)

分式求值 技巧多(初中数学)

分式求值 技巧多分式求值是分式运算中较为常见的题型,若能灵活地运用各种解题方法,掌握一定的解题技巧,常常可简捷、快速获解.一、先化简分式,再将条件直接代入求值例1 先化简,再求值:(1 –11-a ) ÷ (aa a a -+-2244),其中a = – 1. 分析:当分式的分子或分母是多项式时,应先分解因式,然后按照运算顺序进行化简,化成最简分式或整式形式,再把已知条件直接代入求值即可.解:原式 =12--a a ·2)2()1(--a a a =2-a a . 当a = – 1时,原式=211---=31. 二、将分式以已知条件为目标进行变形,然后代入求值例2 已知ab = – 1,a + b = 2,则式子ba ab += . 分析:所给的条件不容易化简,可考虑将所求的分式变形,然后将已知条件作为整体代入求值. 解:ba ab +=ab a b 22+=ab ab b a 2)(2-+. 将ab = – 1,a + b = 2整体代入,得原式=1)1(222--⨯-= – 6. 三、将所给条件转化后代入分式求值例3 若a + 3b = 0,则 (1 –b a b 2+) ÷ 222242ba b ab a -++= . 分析:不能求出a ,b 的值,可利用a + 3b = 0找出a ,b 之间的关系,然后代入化简后的式子求值.解:原式= (b a b b a b a 222+-++)×2)()2)(2(b a b a b a +-+= (b a b a 2++)×2)()2)(2(b a b a b a +-+=b a b a +-2. 由a + 3b = 0,得a = – 3b ,所以原式=b b b b +---323=b b 25--=25. 四、将所给条件和分式双方同时变形,再求值 例4已知y x 11-= 3,则yxy x y xy x ---+232的值是 . 分析:本题可对已知条件变形,再将所求式变形为更接近已知条件的式子.解:因为y x 11-= 3,所以xyx y -= 3,所以x – y = – 3xy .所以y xy x y xy x ---+232=xy y x xy y x --+-3)(2=xy xy xy xy --+-336=xy xy 43--=43. 故填43.。

分式求值的常用技巧

分式求值的常用技巧

分式求值的常用技巧分式是一种特殊类型的数学表达式,它包含有一个或多个数(称为分子)除以另一个数(称为分母)。

分式可以代表有理数和算术运算,例如加法、减法、乘法和除法。

在解决分式求值问题时,有一些常用的技巧可以帮助我们简化计算和得出结果。

1.化简分式首先,我们可以通过化简分式来简化计算过程。

化简分式的目的是找到分子和分母的最大公约数,并将分子和分母都除以它,使分式更简单。

例如,考虑分式12/24,我们可以找到最大公约数为12,并将分子和分母都除以12,得到1/2、这样,原分式就被化简为最简分式。

2.找到分子和分母的公因式在一些分式中,分子和分母可能有一个或多个公因式。

我们可以通过找到它们来简化计算。

例如,考虑分式16/24,我们可以发现分子和分母都可以被2整除。

我们可以将16除以2得到8,24除以2得到12,从而得到化简后的分式8/12、然后,我们可以继续找到8和12的最大公约数,并将它们化简为最简分式。

3.交换分子和分母的位置有时候,分式的分子和分母的位置可以互换。

我们可以利用这个性质来简化计算。

例如,考虑分式1/4,我们可以将分子和分母互换,得到4/1、然后,我们可以将4除以1得到4,从而得到最简分式44.将分式转化为小数形式有时候,将分式转化为小数形式可以更便于计算。

我们可以通过将分子除以分母来得到分数的小数形式。

例如,考虑分式3/5,我们可以将3除以5得到0.6、这样,我们就得到了分式的小数形式。

5.使用乘法和除法的性质在进行分式求值时,我们可以利用乘法和除法的性质来简化计算。

例如,考虑分式(2/3)*(4/5),我们可以将分子和分母相乘得到8/15、同样的,如果我们考虑分式(2/3)/(4/5),我们可以将分子乘以分母的倒数得到(2/3)*(5/4),然后进行乘法操作得到10/12,最后化简为5/66.使用加法和减法的性质在进行分式求值时,我们还可以利用加法和减法的性质来简化计算。

例如,考虑分式(2/3)+(4/5),我们可以找到两个分数的公共分母,然后将分子相加得到一个新的分数作为结果。

分式求值的技巧点拨

分式求值的技巧点拨

分式求值的技巧点拨在分式运算中,常遇到求值问题,这类问题题型多样,技巧性强,若根据题目中分式的结构特点,采用适当方法,则可巧妙获解。

⑴、巧用配方法求值例1 已知2510x x -+=,求441x x+的值。

(2)已知0132=+-a a ,求142+a a 的值。

⑵、巧用因式分解法求值例2 先化简,再求值:22222()21m n mn n mn m mn n m n n -+--+--,其中m =n =。

说明:因式分解法是一种重要的数学方法,解决很多数学问题都要用到它,尤其是在分式化简和分式的四则运算中运用较多。

因此,希望同学们对因式分解的各种方法熟练掌握。

⑶、巧用整体代入法求值 例3 (1)已知113a b -=,求2322a ab ba ab b+---的值。

(2)已知a 、b 均为正数,且a 1+b 1=-b a +1.求(a b )2+(ba)2的值.说明:在解答给定条件下求分式的值这类问题时,需要把待求值的分式进行恒等变形,转化成能用已知条件表示的形式,再代入计算,或先把条件进行化简再采用上述方法求值。

⑷、巧设参数(辅助未知数)求值 例4 (1)已知实数x 、y 满足x :y =1:2,则3x yx y-=+__________。

(2)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。

(3)已知的值求ba ba b ab a +-=-+,0622.⑸、巧用方程(或方程组)求值例5 (1)已知230a b c -+=,3260a b c --=,a 、b 、c 均不为0,求3332222423a b c a b b c ac-+-+的值。

(2).已知a +b -c =0,2a -b +2c =0(c ≠0),求cb a cb a 235523+-+-的值.说明:将已知的等式看成方程(或方程组),先用其中的一个字母表示出其他的两个字母,并代入所求的分式进行运算是本题求解的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件分式求值的方法与
技巧
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
学科: 奥数
教学内容:条件分式求值的方法与技巧
求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面:
一、将条件式变形后代入求值
例1已知
432z y x ==,z y x z y x +--+22求的值. 解:设4
32z y x ===k , 则x =2k ,y =3k ,z =4k .
∴ 原式=5
45443224322==+-⨯-⨯+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法.
例2已知的值求b
a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有(a +3b )(a -2b )=0,
∴ a +3b =0或a -2b =0,
解得a =-3b 或a =2b .
当a =-3b 时,原式=233=+---b
b b b ; 当a =2b 时,原式=3
122=+--b b b b . 二、将求值变形代入求值.
例3已知)11()11()11(,0c
b a a
c b b a c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++a
c b a b a c b c b a c =3))(111(-++++a b c c
b a ∵ a +b +
c =0,
∴ 原式=-3.
例4已知31=+x x ,的值求1
242++x x x . 分析:∵ 1)1(111222224-+=++=++x x x
x x x x , ∴ 可先求值式的倒数,再求求值式的值.
解:∵ 1)1(122
24-+=++x x x x x 8132=-=,
∴ 8
11242=++x x x . 三、将条件式和求值式分别变形后代入求值.
例5 已知y
xy x y xy x y x ---+=-2232,311则分式的值为__________. 解法一:∵ 311=-y
x , ∴ y -x =3xy ⇒x -y =-3xy .
∵ 原式=xy
y x xy y x 2)(3)(2--+- 5
3233)3(2=--+-=xy xy xy xy . 解法二:将分子、分母同除以xy (≠0). ∴原式=
x y x y 121232---+ 分析:∵ 填空题不需要写出解题过程,故可取满足已知等式的特殊值求解.
解法三:取x =2
1,y =-1, )31211(=+=-y
x . ∴原式
注意:特殊值法是解填空题或选择题常用的解题方法或技巧.取特殊值要注意满足条件等式,其原则是要便于计算.
例6 已知a 2+2a -1=0,求分式24)44122(
22+-÷++--+-a a a a a a a a 的值. 解:原式=4
2])2(1)2(2[2-+⋅+--+-a a a a a a a ∵ 0122=-+a a ,
∴ 122=+a a ,
∴ 原式=1.
注意:本例是将条件式化为“122=+a a ”代入化简后的求值式再求值,这种代入的技巧叫做整体代入.
1.已知231=-x x ,求分式221x
x +的值. 2.已知01342=+++x x x ,先化简后求x
x x -+-3932的值. 3.化简求值4
3326512222-+---+÷+--a a a a a a a a ,其中a =-3. 4.已知abc =1,则1
11++++++++c ca c b bc b a ab a 的值为________. 参考答案
1.4
17; 2.0(原式=x +3);
3.)4
2(522--=-a 原式; 4.1(取a =b =c =1).。

相关文档
最新文档