【精品】分式求值的方法与技巧
分式运算的常用技巧与方法

分式运算中的常用技巧与方法分式运算的常用技巧与方法举例1. 整体通分法例1.化简:21a a --a-1 分析 将后两项看作一个整体,则可以整体通分,简捷求解。
解:21a a --a-1=21a a --(a+1)= 21a a --(1)(1)1a a a -+-=22(1)1a a a ---=11a - 练习:计算112+-+a a a 2. 逐项通分法例2.计算1a b --1a b +-222b a b +-3444b a b - 分析:注意到各分母的特征,联想乘法公式,适合采用逐项通分法 解:1a b --1a b +-222b a b +-3444b a b -=22()()a b a b a b +----222b a b +-3444b a b- =222b a b --222b a b +-3444b a b -=2222442()2()b a b b a b a b+----3444b a b - =3444b a b --3444b a b -=0 练习:计算2111111x x x ++++- 3.先约分,后通分例3.计算:2262a a a a +++22444a a a -++ 分析:分子、分母先分解因式,约分后再通分求值计算 解:2262a a a a +++22444a a a -++=(6)(2)a a a a +++2(2)(2)(2)a a a +-+=62a a +++22a a -+=242a a ++=2 练习:计算:343622322222+--+--+-+--x x x x x x x x x4. 裂项相消法例4 计算)3)(2(1)2)(1(111--+--+-x x x x x分析 我们看到题目中每一个分式的分母是两个因数之积,而分子又是一个定值时,可将每一个分式先拆成两项之差,前后相约后再通分.解:原式=2131112111---+---+-x x x x x =31-x 练习:计算:.5. 整体代入法例5.已知1x +1y =5求2522x xy y x xy y-+++的值 解法1:∵1x +1y=5 ∴x y ≠0,.所以2522x xy y x xy y -+++=225112y x y x -+++=112()5112x y x y+-++=25552⨯-+=57 解法2:由1x +1y =5得,x y xy+=5, x+y=5xy ∴2522x xy y x xy y -+++=2()5()2x y xy x y xy +-++=25552xy xy xy xy ⨯-+=57xy xy =57练习:若11x y -=5,求3533x xy y x xy y +---的值. 6.运用公式变形法例6.已知a 2-5a+1=0,计算a 4+41a 解:由已知条件可得a ≠0,∴a+1a=5 ∴a 4+41a =(a 2+21a)2-2=[(a+1a )2-2]2-2=(52-2)2-2=527 练习:(1)已知x 2+3x+1=0,求x 2+21x 的值. 7. 设辅助参数法例7.已知b c a += a c b += a b c +,计算:()()()a b b c c a abc+++ 解:设b c a += a c b += a b c +=k ,则b+c=ak ;a+c=bk ;a+b=ck ; 把这3个等式相加得2(a+b+c)= (a+b+c)k若a+b+c=0,a+b= -c,则k= -1若a+b+c ≠0,则k=2()()()a b b c c a abc +++=ak bk ck abc⋅⋅=k 3 当k=-1时,原式= -1当k=2时,原式= 8练习:(1)已知实数x 、y 满足x:y=1:2,则=+-y x y x 3__________。
解答分式求值问题常用的小妙招

数学篇分式求值运算是初中代数的重要内容之一.由于分式的形式多样,分式求值问题也存在着多种不同的解法.下面介绍“引入参数”“拆项变形”“整体代入”“巧取倒数”这四种分式求值的方法,供同学们学习与参考.一、借助参数求分式的值在分式求值问题中,如果出现等比例式,就可以引入参数,将等比设成参数,将所有未知量都转换成含有参数的式子,再将之代入分式求得分式的值,这样求解过程将变得非常简单.例1若c 4=b 5=a 6≠0,则b +c a 的值为_____.分析:题中“c 4=b 5=a 6”是一个等比例式,可以设公共比为“t ”,这样可以得到c =4t ,b =5t ,a =6t ,然后将a 、b 、c 的值代入b +c a 即可求出值.解:∵c 4=b 5=a 6≠0,∴设c 4=b 5=a 6=t (t ≠0),∴有a =6t ,b =5t ,c =4t .将a =6t ,b =5t ,c =4t 代入b +c a 有:b +c a =5t +4t 6t =96=32,∴b +c a 的值为32.评注:该题中是一个等比例式,可以通过“引入参数”的方法将比值具体化,将a 、b 、c都替换成含有t 的参数,然后代入到b +c a 中,最后通过约分就能得到具体的数值.二、通过拆项求分式的值在求解比较复杂的分式时,我们可以根据具体的题目特征,对部分分式进行拆分,再配凑出较为容易计算的项来求解.结合题目的结论和条件往中间项配凑,往往能化繁为简,变难为易.例2若1a +1b =5a +b ,则b 2a 2+a 2b 2=_____.分析:待求分式“b 2a 2+a 2b 2”中的“b 2a 2”和“a 2b 2”互为倒数,如果能求出其中一个或知道“a b +b a ”,就可以对其进行平方后求得结果.再细看题目条件“1a +1b =5a +b”,需要配凑出“b a ”或“a b ”,我们可以考虑通分并整理得到“a 2+b 2=3ab ”.再将“a 2+b 2=3ab ”两边同除“ab ”,可得到“a b +b a =3”.解:∵1a +1b =5a +b ,通分并整理可得,a 2+b 2=3ab ,两边同除ab 可得,a b +b a =3,两边平方并整理可得,b 2a 2+a 2b 2=7.解答分式求值问题常用的小妙招江苏省盐城市新洋初级中学王伟解题指南19数学篇评注:此题看起来比较复杂,但是待计算的“b 2a 2+a 2b 2”是非常对称的,可以考虑由“a b +b a ”变形得出.通过通分找出a 、b 的其他数量关系“a 2+b 2=3ab ”,再同除ab 得到需要的“a b +b a ”.所以,本题的解题思路是由两端往中间变换.三、通过整体代换求分式的值整体代入的方法一般用于比较复杂的题目中,这类题目往往有共同的“局部”,解题时将共同的“局部”视为一个整体,然后直接整体代入求值.这种方法可以大大减少计算量,降低解题难度.例3若22y 2+3y +7的值为14,则14y 2+6y -1的值为().A.1 B.-1 C.-17 D.15分析:仔细观察条件“22y 2+3y +7=14”和结论“14y 2+6y -1”,发现有公共部分“2y 2+3y ”,可以转化为4y 2+6y =2(2y 2+3y ).若能计算出“2y 2+3y ”,则整个题目就能迎刃而解.解:∵22y 2+3y +7的值为14,∴22y 2+3y +7=14,∴2y 2+3y =1,∴4y 2+6y =2(2y 2+3y )=2×1=2,∴14y 2+6y -1=12-1=1,即14y 2+6y -1=1.∴此题选择A 项.2四、巧取倒数求分式的值倒数法往往出现在分数式的化简求值问题中.当分母相对分子而言比较复杂时,我们可以采用取倒数的方法将分式简单化,通过变形整理后得到“倒数”的具体值,再次通过“倒数法”还原待求值.例4若x +1x =3,则x 2x 4+x 2+1的值为().A.10 B.8 C.110 D.18分析:该题“x 2x 4+x 2+1”中分母比较复杂,若分子、分母调换一下位置,求解将会变得容易些.所以采用“巧取倒数法”解此题.设t =x 2x 4+x 2+1,则1t =x 4+x 2+1x 2=x 2+1x 2+1.而题目条件中“x +1x =3”通过平方可以轻松求出x 2+1x 2的值为7,从而求得1t =8,进而求解出t =18.解:设t =x 2x 4+x 2+1,则1t =x 4+x 2+1x 2=x 2+1x 2+1,∵x +1x =3,∴x 2+1x 2=(x +1x )2-2x ⋅1x =7,∴1t =x 2+1x 2+1=8,∴t =18,即x 2x 4+x 2+1=18.故D 项正确.评注:“取倒数法”可以简化解题过程,但是一定要记住在解题结束前再次采用“倒数法”将数值倒回来.分式的求值问题是一种常见问题.它涉及面广,技巧性强,也是中考中出现频率较高的问题.解答这类问题要认真分析条件式和解题指南。
分式运算技巧知识点总结

分式运算技巧知识点总结分式运算是数学中一种常见的运算形式,它包括分数的加减、乘除等操作。
在分式运算中,掌握一些技巧可以帮助我们更加快速、准确地计算。
本文将对分式运算的一些常用技巧进行总结,并给出相应的例子加以说明。
一、分数的加减运算技巧1. 寻找相同的分母:在进行分数的加减运算时,首先要寻找相同的分母。
若分母不同,则需要通过通分的方法将分母转化为相同的数。
例子1:计算1/2 + 1/3。
解析:由于1/2和1/3的分母不同,我们需要找到它们的最小公倍数,即6。
将两个分数的分子和分母都乘以适当的数进行通分:1/2 + 1/3 = 3/6 + 2/6 = 5/62. 合并同类项:在找到相同的分母后,可以将分子进行合并,然后再进行计算。
例子2:计算2/5 + 3/5。
解析:由于2/5和3/5的分母相同,直接将分子相加即可:2/5 + 3/5 = (2 + 3)/5 = 5/5 = 13. 化简分数:在进行分数的加减运算时,可以先将分数化简,再进行计算。
这样可以简化计算过程,得到更简洁的结果。
例子3:计算3/10 + 2/5。
解析:先对3/10进行化简,即可以将分子和分母都除以最大公约数2得到1/5:3/10 + 2/5 = 1/5 + 2/5 = (1 + 2)/5 = 3/5二、分数的乘除运算技巧1. 分数的乘法:将分数的分子相乘,分母相乘即可。
例子4:计算2/3 × 4/5。
解析:将分子相乘得到2 × 4 = 8,分母相乘得到3 × 5 = 15,所以结果为8/15。
2. 分数的除法:将除数的分子乘以被除数的倒数,即可进行分数的除法运算。
例子5:计算2/3 ÷ 4/5。
解析:将除数2/3的分子乘以被除数4/5的倒数5/4,即2/3 × 5/4,根据分数的乘法规则可得到结果10/12,化简得到5/6。
三、其他分式运算技巧1. 分数的幂运算:对分式进行幂运算时,可以将分子和分母分别进行幂运算。
分式求值的方法与技巧

分式专题三---分式求值的方法与技巧一.求值。
1.已知()224++=+-x B x A x x x ,求A ,B 的值。
2.已知:22)2(2)2(3-+-=-+x B x A x x ,则A= 、B = 3.若()()212112+++=+++x B x A x x x 恒成立,则A +B =_______________。
二.将条件式变形后代入求值。
1.已知432z y x ==,z y x z y x +--+22求的值. (提示:已知连比,常设比值k 为参数,这种解题方法叫参数法)2.二、将求值变形代入求值. 1.已知31=+xx ,的值求1242++x x x . 2.已知的值求ba b a b ab a +-=-+,0622. 3.已知0132=+-a a ,求142+a a 的值。
4. 已知yxy x y xy x y x ---+=-2232,311则分式的值为__________. 5.已知231=-x x ,求分式221xx +的值. 6.已知b a 43=,则222232b a b ab a -+-=_______________。
7.(2007赤峰)已知114a b +=,则3227a ab b a b ab-+=+- . 8.已知311=+b a ,则b ab a b ab a +++-23的值是_________.9.如果a+a 1=3,则=+221aa __________. 10.已知1a - 1b =3,求分式2a+3ab-2b a-ab-b 的值. 11.若ab=2,a+b=-1,则ba 11+ 的值为 12.若0152=+-x x ,则x x x x 1122+++=_______________。
13.已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。
三、将条件式和求值式分别变形后代入求值.14.已知a 2+2a -1=0,求分式24)44122(22+-÷++--+-a a a a a a a a 的值. 注意:本例是将条件式化为“122=+a a ”代入化简后的求值式再求值,这种代入的技巧叫做整体代入.15.已知abc =1,则111++++++++c ca c b bc b a ab a 的值为________. 16.已知)11()11()11(,0cb a ac b b a c c b a +++++=++求的值. 17.若.1,11,11的值求b ab a c c b +=+=+ 18.若7=+b a ,12=ab ,则ab b a 22+=_______________。
分式化简求值解题技巧

分式化简求值解题技巧分式化简求值解题技巧一、整体代入对于一些分式表达式,可以先将其中的变量整体代入,然后再求值。
比如:已知a+2b=2006,求3a²+12ab+12b² ÷ (2a+4b)的值。
可以先将a替换为2006-2b,然后化简得到:3a²+12ab+12b² ÷ (2a+4b) = 3(2006-2b)² + 12b(2006-2b) + 12b² ÷ (2(2006-2b)+4b)再进行进一步化简求解。
练一练:1.已知x+y=3,求(2x+3y) ÷ (x-y)的值。
2.已知112x-3xy+2y ÷ xy-x-2y = 5,求xy ÷ (x+2y)的值。
3.若a+b=3ab,求(1+2b²) ÷ (2a-b)的值。
二、构造代入有些分式表达式可以通过构造代入的方式来求解。
比如:已知x-5 ÷ (x-2) = 2001,求(x-2)³ - (x-1)² + 1的值。
可以构造一个分式,使得它的分母为(x-2),分子为(x-2)³-(x-1)²+1,然后将其化简,得到:x-2)³-(x-1)²+1 ÷ (x-2) = (x-5) + 4(x-2) + 9再进行进一步化简求解。
练一练:4.若ab=1,求a ÷ (b+c) + b ÷ (c+a) + c ÷ (a+b)的值。
5.已知xy+yz+zx ÷ xyz = 2,求(x+y)² ÷ z²的值。
三、参数辅助,多元归一有些分式表达式可以通过引入参数或多元归一的方式来求解。
比如:已知a+b+c=1,求a(1-b) ÷ (b+c) + b(1-c) ÷ (c+a) + c(1-a) ÷(a+b)的值。
分式求值方法及技巧

分式求值技巧
2023年中考复习
设参数k法
方法介绍
当题目给出的条件出现连比形式,或者连等式时,经常采用增设参数k的方法,用含参数k的代数式表示分式中的各字母.在化简求值过程中,参数k最终都能消去,即可求出结果.
例1:
解答:
例2:
解答:
设定主元法
方法介绍
当题目中给出2个字母,却只给出1个方程,或者给出3个字母,却只给出2个方程时,我们无法具体求出每个字母的值.因此,可以设定其中一个字母作为主元,用含主元的代数式来表示其他字母,从而可以在分式化简中,达到只含有主元的目的,最终消去主元求值.
例1:
解答:
例2:
解答:
整体同除法
方法介绍
对于有些题目,我们可以从需要求值的分式入手,将分子分母同除分式中次数最高的项,以达到让分式中出现与已知条件相关的代数式,从而可以将已知条件作为整体,代入求值.
例1:
解答:
例2:
解答:
用乘法公式
方法介绍
对于一些本身,或者通分后含平方和类型的分式,我们可以联系以前所学的乘法公式,利用配方等方法,对分式进行变形,从而更快求解.
例1:
解答:
例2:
解答:
特殊值法
方法介绍
这是最后没有办法的办法了,适用于选择填空题.对于一些无法求出具体数值的字母,我们可以根据已知条件,取字母的一组特殊值,然后代入求解.当然,如果你不确定结果是否正确,可以多代几组特殊值检验.
例1:
解答:
例2:
解答:。
【推荐】初中数学分式求值的10个常用技巧-实用word文档 (4页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==初中数学分式求值的10个常用技巧分式求值是分式运算中的一类常见问题,对计算能力的要求较高.在求解此类问题时,既要注意基本法则的应用,也要掌握相关的解题技巧.下面是小编为大家带来的初中数学学习方法分式求值的10个常用技巧,欢迎阅读。
一、整体通分例1:计算x2+x+1-.分析:把(x2+x+1)看成一个整体,对式子进行通分,并且分子还可利用乘法公式简化运算.解:原式 =-==-.二、部分通分例2:计算 ---.分析:按照常规解法是把四个分母一起通分,这样求解过于繁琐.若选择前面两个分式通分,然后再逐个通分,这样便化繁琐为简单.解:原式=--=-=-.三、取倒数例3:已知=1,求x+的值.分析:根据已知分式的特点,运用取倒数的方法是解决这类问题的常用方法.解:把=1两边取倒数,得=1,即x-3+=1,所以x+=4.四、整体代入例4:已知-=,则的值是().A. B. - C. 2 D. -2分析:将已知等式变形,转化为含有ab、(a-b)的代数式,整体代入求解.解:将已知条件通分合并得=,所以ab=2×(b-a)=-2(a-b),则==-2.故答案选D.五、特值思想例5:已知-=1,则的值是().A. B. - C. 1 D. -1分析:本题从不同的角度来思考,可以得到不同解法,但用特值思想求解最简捷.解:取b = 1,则a=,代入得,原式 =-1,故答案选D.六、因式分解例6:计算+.分析:通过观察发现,每个分式的分子、分母均可进行因式分解,因此可将每个分式先因式分解,约分后,再进行计算.解:原式 =+=+==七、巧用拼凑例7:化简.分析:观察分式不难发现,其中的常数3给该分式的运算带来了不便.为此可设法将3巧妙拼凑成与a、b、c有关的式子,这样很容易想到3=++.解:原式=+=+=。
分式求值的技巧点拨

分式求值的技巧点拨胡伟在分式运算中,常遇到求值问题,这类问题题型多样,技巧性强,若根据题目中分式的结构特点,采用适当方法,则可巧妙获解。
一、巧用配方法求值例1 已知01x 5x 2=+-求44x 1x +的值。
解:由0x 01x 5x 2≠=+-知,由此得5x 1x =+∴2)x1x (x 1x 22244-+=+ 5272]2)x1x [(22=--+= 说明:在求解有关分式中两数(或两式)的平方和问题时,可考虑用完全平方公式进行解答。
二、巧用因式分解法求值例2 先化简,再求值:1n mn )n m n mn n mn 2m n m (22222--+-+--。
其中231m -=,231n +=。
解:原式=1n mn ])n m )(n m ()n m (n )n m (n m [2--++--- n m mn 1n mn n m n 11n mn )n m n n m 1(--=-⋅--=----= ∵23231m --=-=,23231n +-=+=∴1)23)(23(mn -=+---=,4)23()23(n m -=+----=- ∴41n m mn -=--=原式 说明:因式分解法是一种重要的数学方法,解决很多数学问题都要用到它,尤其是在分式化简和分式的四则运算中运用较多。
因此,希望同学们对因式分解的各种方法熟练掌握。
三、巧用整体代入法求值例3 已知3b 1a 1=-,求bab 2a b 2ab 3a 2---+的值。
解:由3b1a 1=-变形得ab 3b a -=-,代入所求式得: 原式ab 2)b a (ab 3)b a (2--+-= 53ab 2ab 3ab3ab 6=--+-=说明:在解答给定条件下求分式的值这类问题时,需要把待求值的分式进行恒等变形,转化成能用已知条件表示的形式,再代入计算,或先把条件进行化简再采用上述方法求值。
四、巧设参数(辅助未知数)求值例4 已知实数x 、y 满足x:y=1:2,则=+-yx y x 3__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式专题三---分式求值的方法与技巧
一.求值。
1.已知224x B x A x x x
,求A ,B 的值。
2.已知:22)2(2)2(3x B x A x x
,则A=、B=
3.若212112x B x A x
x x
恒成立,则A +B =_______________。
二.将条件式变形后代入求值。
1.已知432z y x
,z y x z y x
22求的值.
(提示:已知连比,常设比值k 为参数,这种解题方法叫参数法)2.
二、将求值变形代入求值.
1.已知31
x x ,的值求1242x x x
.
2.已知的值求b a b a
b ab a ,0622.
3.已知0132a a ,求142a a
的值。
4.已知y xy x y xy x
y x 2232,311
则分式的值为__________.
5.已知231
x x ,求分式221
x x 的值.
6.已知b a 43,则222232b a b ab a
=_______________。
7.(2007赤峰)已知1
14a b ,则3227a
ab b a b ab .
8.已知311
b a ,则b ab a b ab a
23的值是_________.
9.如果a+a 1
=3,则221
a a __________.
10.已知1a - 1b =3,求分式2a+3ab-2b a-ab-b
的值. 11.若ab=2,a+b=-1,则b a 11
的值为
12.若0152x x ,则x x x x 1122=_______________。
13.已知02322y xy x (x ≠0,y ≠0),求xy y x x y y x 2
2的值。
三、将条件式和求值式分别变形后代入求值.
14.已知a 2+2a -1=0,求分式24
)441
22(22a a a a a a a a 的值.
注意:本例是将条件式化为“122a a ”代入化简后的求值式再求值,这种代入的技巧叫做
整体代入.
15.已知abc =1,则111c ca c
b b
c b a ab a 的值为________.
16.已知)1
1()1
1()1
1(,0c b a a c b b a c c b a 求的值.
17.若.
1,11
,11
的值求b ab
a c c
b 18.若7b a ,12ab ,则ab b a
22=_______________。
19.若b a a b 111
,则b a a b =_______________。
20.如果n 222108为完全平方数,则n =_______________。
21.已知0199752x x ,则代数式
211223x x x
的值是多少?
22.已知:A=xy-x 2,B=xy y xy
x 222,C=y x x
2,若A ÷B=C ×D ,求D .
.111,
12,1002,1001.100023222的值求且已知c b a ac b ab c bc a
abc x c x b x a
24.已知a c c b b a 1
1
1
,且c b a ,你能否求出2
22c b a 的值?请说出理由25.(2008四川省达州市)符号“a b
c d ”称为二阶行列式,规定它的运算法则为:a b
ad bc c d ,
请你根据上述规定求出下列等式中x 的值.2
1111
11x
x 26.已知b a b a
b a ab b a 则且,0622的值为()
27.3213213232
y x y x x y
x y 28.1
43)1(2111x 29.已知01342x x
x ,先化简后求x x x
3932的值.
30.化简求值43326512222a a a a a a a a
,其中a =-3.。