RAID与SCSI的基本概念
IBM储存(磁盘阵列柜)基础知识培训

5
磁盘阵列柜的应用
由于磁盘阵列柜具有数据存储速度快、存储容量大等优点,所以磁盘阵列柜通 常比较适合在企业内部的中小型中央集群网存储区域进行海量数据存储。
6
存储网络的架构
企业存储技术发展日新月异,早期大型服务器的DAS 技术( Direct Attached Storage,直接附加存储,又称直连存储),后 来为了提高存储空间的利用及管理安装上的效率,因而有了SAN( Storage Area Network,存储局域网络)技术的诞生,SAN 可 说是DAS 网络化发展趋势下的产物。早先的SAN 采用的是光纤通 道(FC,Fiber Channel)技术,所以在iSCSI出现以前,SAN 多半 单指FC 而言。一直到iSCSI 问世,为了方便区别,业界才分别以 FC-SAN和IP-SAN。 NAS(Network Attached Storage:网络附 属存储)是一种将分布、独立的数据整合为大型、集中化管理的数 据中心,以便于对不同主机和应用服务器进行访问的技术。
2
基本配置 Server
HBA
Fibre Channel SCSI Chip Controller
RAID sub-system
SCSI Chip Controller Ethernet to Client workstations Dual Controller RAID with only one controller in use (B not used in this example). This RAID system has four SCSI buses with five drives on each bus.
14
SAN的组成
SAN由服务器,后端存储系统,SAN连接设备组成;
raid大全PPT课件

• RAID是将同一阵列中的多个磁盘视为单一的虚拟磁盘,数据是 以分段的方式顺序存放于磁盘阵列中。
服务器RAID技术及应用讲座
RAID术语
适用 够用 会用
Disk Spanning
RAID技术及应用
• Disk Spanning
服务器RAID技术及应用讲座
RAID术语
适用 够用 会用
Disk Mirroring
• Disk Mirroring
• 将相同的数据同时写入多 个硬盘中
• 当某个物理硬盘失效时, 提供数据资料的保护能力
• 降低系统写数据的性能
RAID技术及应用
File
1234
1234
1234
服务器RAID技术及应用讲座
RAID技术及应用
RAID Levels— RAID 3
• RAID3
• Striping with Dedicated Parity Drive
• 有校验数据,提供数据容错能力
• 当单个硬盘失效时,会产生奇偶盘I/O瓶颈效应
磁盘0
磁盘1
磁盘2
磁盘3
PA10
A1
A2
P1
A3
AP42
产生的冗余数据可以被存放于一个专作奇偶校验用的硬盘上, 也可以将这些奇偶校验数据分散分布在磁盘阵列的全部硬盘 中
• 产生和存储奇偶校验数据需要一些额外的操作,目前产生奇 偶校验数据有两种方式:硬件生成和软件计算。
服务器RAID技术及应用讲座
适用 够用 会用
讲座内容
RAID技术及应用
• RAID术语 • RAID技术的实现 • IDE RAID与SCSI RAID技术及应用 • 磁盘阵列操作演示 • 常用RAID卡产品介绍 • 问题与讨论
阵列技术RAID0、1、3、5、10、30、50介绍

附录A Disk Array磁盘阵列基本原理 A.1 我们为什幺需要磁盘阵列 目前人们逐渐认识了磁盘阵列技术。
磁盘阵列技术可以详细地划分为若干个级别0-5 RAID技术,并且又发展了所谓的 RAID Level 10, 30, 50的新的级别,本章节都会一一介绍。
RAID是廉价冗余磁盘阵列(Redundant Array of Inexpensive Disk)的简称。
用RAID的好处简单的说就是: 安全性高,速度快,数据容量超大 某些级别的RAID技术可以把速度提高到单个硬盘驱动器的400%。
磁盘阵列把多个硬盘驱动器连接在一起协同工作,大大提高了速度,同时把硬盘系统的可靠性提高到接近无错的境界。
这些“容错”系统速度极快,同时可靠性极高。
这本小册子将讨论这些新技术,以及不同级别RAID的优缺点。
我们并不想涉及那些关键性的技术细节问题,而是将磁盘阵列和RAID技术介绍给对它们尚不熟悉的人们。
相信这将帮助你选用合适的RAID技术。
A.2 RAID级别的定义 下表提供了6级RAID的简单定义,本书其后部分将对各级RAID进行更详尽的描述。
RAID级别 描述 速度* 容错性能 RAID 0 硬盘分段 硬盘并行输入/出 无 RAID 1 硬盘镜像 没有提高 有(允许单个硬盘错) RAID 2 硬盘分段加汉明码纠错 没有提高 有(允许单个硬盘错) RAID 3 硬盘分段加专用 奇偶校验盘 硬盘并行输入/出 有(允许单个硬盘错) RAID 4 硬盘分段加专用 奇偶校验盘需异步硬盘 硬盘并行输入/出 有(允许单个硬盘错) RAID 5 硬盘分段加奇偶校验 分布在各硬盘 硬盘并行输入/出比 RAID0稍慢 有(允许单个硬盘错) *对于单一容量昂贵硬盘(SLED)的性能提高 A.3 硬盘数据跨盘(Spanning) 数据跨盘技术使多个硬盘像一个硬盘那样工作,这使用户通过组合已有的资源或增加一些资源来廉价地突破现有的硬盘空间限制。
存储基础知识

NAS
多个 应用服务器
SAN
LAN
RAID
文件系统 RAID
JBOD(Just Bound Of Disk)
40年代~70年代 70年代~80年代 80年代~90年代
90年代之后
时间
DAS起源
服务器
SAS
FC
SCSI
控制器 控制器 控制器
磁盘阵列
DAS(Direct Attached Storage) 时间:70年代 背景:用户最早因为数据量的增多而产生存储的
斜向校验盘:DP1—DP4为各个数据盘及横向校验盘的斜向数据的校验信息 例:DP1=A1 XOR A6 XOR A11 XOR A16
DP5
斜向校验盘
RAID组合级别 —— RAID 10,RAID50
RAID10
将镜像和条带进行两级组合的RAID级 别,第一级是RAID1镜像对,第二级 为RAID 0。RAID10也是一种应用比较 广泛的RAID级别
A B C D ……
异或运 算
数据
A0 B0 C0 D0 A1 B1 C1 E1 A2 B2 D2 ……
A0
A1
A2
PA
B0 C0
B1
B2
C1
C2
P
异或运算
PBC
A0 A1 A2
B0 B1 B2
C0
D0
P0
C1
P1
E1
P2
D2
E2
D0
D1
D2
PD
数据盘
校验盘
A3
P3
C3
D3
E3
P4
B4
C4
D4
E4
RAID级别 —— RAID 6原理示例
raid介绍与容量计算

raid介绍与容量计算
RAID(冗余磁盘阵列)是一种将多个磁盘驱动器组合在一起
以提供可靠性和性能的技术。
通过将数据分散存储在多个磁盘上,RAID可以实现数据冗余和增加读写速度。
RAID有几种不同的级别,每个级别都有不同的特点和适用场景。
以下是一些常见的RAID级别:
1. RAID 0:数据分条带存储在多个磁盘上,提高了读写速度,但没有冗余备份。
容量计算使用所有磁盘的总和。
2. RAID 1:数据写入两个磁盘,实现数据的完全备份。
读取
性能略高于单个磁盘,但写入性能相对较差。
容量计算为总容量的一半,因为数据是完全冗余的。
3. RAID 5:数据和奇偶校验信息分布在多个磁盘上,提供了
数据的冗余和读写性能的提升。
至少需要三个磁盘。
容量计算为总容量减去一个磁盘的空间。
4. RAID 6:类似于RAID 5,但提供了更高的数据冗余性。
需
要至少四个磁盘。
容量计算为总容量减去两个磁盘的空间。
容量计算取决于RAID级别、磁盘大小和数量。
例如,如果有四个2TB的磁盘,并使用RAID 5,那么总容量为2TB * 3 =
6TB,因为一个磁盘用于奇偶校验。
需要注意的是,RAID的容量计算不包括操作系统或RAID控
制器的开销,因此实际可用容量可能会略有不同。
此外,RAID还提供了其他的优点,如故障容错和数据保护。
磁盘阵列安装方法

磁盘阵列安装方法一、磁盘阵列的概念和作用磁盘阵列(Redundant Array of Independent Disks,简称RAID)是将多个硬盘组合在一起,通过数据分段、校验和冗余等技术实现数据的高效存储和保护。
磁盘阵列可以提供更高的数据存储容量、更快的数据传输速度和更可靠的数据安全性,被广泛应用于服务器、工作站和企业级存储系统等领域。
二、选择合适的磁盘阵列类型根据具体需求和预算,选择合适的磁盘阵列类型是非常重要的。
常见的磁盘阵列类型包括RAID 0、RAID 1、RAID 5、RAID 6和RAID 10等。
不同的RAID类型具有不同的特点和适用场景,例如RAID 0提供了更高的读写性能,但没有冗余备份;RAID 1通过镜像技术实现数据冗余,但存储容量较低;RAID 5通过分布式校验实现数据冗余,并兼具存储容量和读写性能等方面的平衡。
三、准备磁盘和硬件设备在安装磁盘阵列之前,需要准备好相应的硬盘和硬件设备。
确保硬盘的接口类型和阵列控制器相匹配,同时注意硬盘的容量和数量是否满足所需的存储空间。
此外,还需要确认服务器或主机的电源和散热系统是否能够支持额外的硬盘阵列设备。
四、安装磁盘阵列控制器磁盘阵列控制器是实现磁盘阵列功能的关键设备,它负责管理和控制多个硬盘的数据读写、校验和冗余等操作。
根据具体的服务器或主机型号,选择相应的磁盘阵列控制器,并按照说明书的指引将其安装到对应的插槽上。
确保插槽与控制器的接口类型匹配,并注意插槽的定位和固定方式。
五、连接硬盘和电源线将准备好的硬盘插入到磁盘阵列控制器提供的硬盘插槽上,并正确连接数据线和电源线。
根据硬盘的接口类型,选择合适的数据线进行连接,例如SATA、SAS或SCSI等。
注意插头与插槽的方向,确保连接牢固可靠。
同时,根据硬盘的电源需求,连接相应的电源线,并确保电源供应稳定可靠。
六、配置磁盘阵列在硬件连接完成后,需要通过相应的软件工具或BIOS界面对磁盘阵列进行配置。
内存双通道于RAID能让计算机速度翻倍提升的两种技术
存双通道于RAID能让计算机速度翻倍提升的两种技术RAID说的通俗点,就是一台计算机使用多个硬盘,能实现多个硬盘同时读取,每多加一块硬盘计算机的磁盘读取速度就能多提高一倍。
这只是个人理解,详细请往下看存双通道,如果DDR 400 的带宽为3.2GB/sec 那么双通道后就变成3.2GB/sec 翻了一倍就是这个意思RAID是“Redundant Array of Independent Disk”的缩写,中文意思是独立冗余磁盘阵列。
冗余磁盘阵列技术诞生于1987年,由美国加州大学伯克利分校提出。
RAID磁盘阵列(Redundant Array of Independent Disks)简单地解释,就是将N台硬盘透过RAID Controller(分Hardware,Software)结合成虚拟单台大容量的硬盘使用,其特色是N台硬盘同时读取速度加快及提供容错性Fault Tolerant,所以RAID是当成平时主要访问Data的Storage不是Backup Solution。
在RAID有一基本概念称为EDAP(Extended Data Availability and Protection),其强调扩充性及容错机制,也是各家厂商如:Mylex,IBM,HP,Compaq,Adaptec,Infortrend等诉求的重点,包括在不须停机情况下可处理以下动作:RAID 磁盘阵列支援自动检测故障硬盘;RAID 磁盘阵列支援重建硬盘坏轨的资料;RAID 磁盘阵列支援支持不须停机的硬盘备援Hot Spare;RAID 磁盘阵列支援支持不须停机的硬盘替换Hot Swap;RAID 磁盘阵列支援扩充硬盘容量等。
一旦RAID阵列出现故障,硬件服务商只能给客户重新初始化或者REBUILD,这样客户数据就会无法挽回。
因此对RAID0、RAID1、RAID5以及组合型的RAID系列磁盘阵列数据恢复,出现故障以后只要不对阵列作初始化操作,就有机会恢复出故障RAID磁盘阵列的数据。
RAID详解-RAID分类
汉明码 P1 P2 P3
编码用的数据码 D8、D4、D1 D8、D2、D1 D4、D2、D1
从编码形式上,我们可以发现汉明码是一个校验很严谨的编码方式。在这个例子中,通 过对 4 个数据位的 3 个位的 3 次组合检测来达到具体码位的校验与修正目的(不过只允 许一个位出错,两个出错就无法检查出来了,这从下面的纠错例子中就能体现出来)。 在校验时则把每个汉明码与各自对应的数据位值相加,如果结果为偶数(纠错代码为 0) 就是正确,如果为奇数(纠错代码为 1)则说明当前汉明码所对应的三个数据位中有错 误,此时再通过其他两个汉明码各自的运算来确定具体是哪个位出了问题。
另外,汉明码加插的位置也是有规律的。以四位数据为例,第一个是汉明码是第一位, 第二个是第二位,第三个是第四位,1、2、4 都是 2 的整数幂结果,而这个幂次数是从 0 开始的整数。这样我们可以推断出来,汉明码的插入位置为 1(20)、2(21)、4(22)、 8(23)、16(24)、32(25)…… 说完汉明码,下面就开始介绍 RAID 2 等级。
RAID 的初衷主要是为了大型服务器提供高端的存储功能和冗余的数据安全。在系统中, RAID 被看作是一个逻辑分区,但是它是由多个硬盘组成的(最少两块)。它通过在多个 硬盘上同时存储和读取数据来大幅提高存储系统的数据吞吐量(Throughput),而且在 很多 RAID 模式中都有较为完备的相互校验/恢复的措施,甚至是直接相互的镜像备份, 从而大大提高了 RAID 系统的容错度,提高了系统的稳定冗余性,这也是 Redundant 一 词的由来。
Raid、裸容量、可用容量的概念
Raid、裸容量、可用容量的概念Rai d概念lR aid简介简单的说,RA ID是一种把多块独立的硬盘(物理硬盘)按不同的方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据备份技术。
组成磁盘阵列的不同方式称为RAI D级别(R AID L evels)。
lR AID 0:无差错控制的带区组要实现RAID0必须要有两个以上硬盘驱动器,RAID0实现了带区组,数据并不是保存在一个硬盘上,而是分成数据块保存在不同驱动器上。
因为将数据分布在不同驱动器上,所以数据吞吐率大大提高,驱动器的负载也比较平衡。
如果刚好所需要的数据在不同的驱动器上效率最好。
它不需要计算校验码,实现容易。
它的缺点是它没有数据差错控制,如果一个驱动器中的数据发生错误,即使其它盘上的数据正确也无济于事了。
不应该将它用于对数据稳定性要求高的场合。
如果用户进行图象(包括动画)编辑和其它要求传输比较大的场合使用RAID0比较合适。
同时,RA ID可以提高数据传输速率,比如所需读取的文件分布在两个硬盘上,这两个硬盘可以同时读取。
那么原来读取同样文件的时间被缩短为1/2。
在所有的级别中,RAI D 0的速度是最快的。
但是RA ID 0没有冗余功能的,如果一个磁盘(物理)损坏,则所有的数据都无法使用。
lR AID 1:镜象结构对于使用这种RAI D1结构的设备来说,RAID控制器必须能够同时对两个盘进行读操作和对两个镜象盘进行写操作。
通过下面的结构图您也可以看到必须有两个驱动器。
因为是镜象结构在一组盘出现问题时,可以使用镜象,提高系统的容错能力。
存储系统概述
分块:将一个分区提成多个大小相等旳、地址相邻旳块,这些块称为分块。 它是构成条带旳元素。 条带(Striping):同一磁盘阵列中旳多个磁盘驱动器上旳相同位置构成条带, 提升同时读写性能
驱动器1
D6 D3 D0
磁盘上旳数 据分块
驱动器2
D7 D4 D1
磁盘上旳数 据分块
驱动器3
读取数据块D2,D3… 读取数据块D1 读取数据块D0
D0,D1,D2,D3,D4,D5
驱动器1 D4 D2 D0
驱动器2 D5 D3 D1
文档仅供参考,如有不当之处,请联系改正。
RAID 0数据丢失
阵列中某一种驱动器发生故障,将造成其中旳数据丢失。
驱动器1 D6 D3 D0
驱动器2 D7 D4 D1
磁盘失效 数据恢复
驱动器3 D5 D3 P0
文档仅供参考,如有不当之处,请联系改正。
RAID组合---RAID 10
• RAID 10是将镜像和条带进行组合旳RAID级别,先进行RAID 1镜像然后再做 RAID 0。RAID 10也是一种应用比较广泛旳RAID级别。
读取数据
D0,D1,D2,D3,D4,D5
SAS
FC
接口类型
并行
串行
并行
串行
串行
主流接口速 100MB/S
率
133MB/S
300MB/S 600MB/S
320MB/S
3GB/S 6GB/S
2GB/S、4GB/S 、8GB/S
容量
1T/2T/3T 4T/6T
转速
5900 rpm 7200 rpm
最大连接设
2
1 or 15 with
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RAID简介 内嵌微处理器的磁盘子系统通常称为R A I D系统。R A I D阵列的可用容量总小于成员磁盘的总量。 一、RAID 0(分块)是简单的、不带有校验的磁盘分块,本质上它并不是一个真正的R A I D,因为它并不提供任何形式的冗余。假如RAID 0的磁盘失败,那么,数据将彻底丢失。为了在RAID 0情况下恢复数据,唯一的办法是使用磁带备份或者镜像拷贝。 二、RAID 1(镜像)是非校验的R A I D级。 三、RAID 2(专有磁盘的并行访问)的定义涉及R A I D控制器中的错误校验电路。这个功能已经被集成到磁盘驱动器中,虽然便宜,但效率却不高。因此, RAID 2没有形成产品。 四、并行访问R A I D都属于R A I D 3。R A I D 3(使用专有校验磁盘的同步访问)子系统将数据分块存放到阵列中的所有驱动器,将校验数据写到阵列中的一个另外的校验磁盘, R A I D 3被认为是校镽 A I D。 五、RAID4(使用专用校验磁盘的独立访问)是一种独立访问的R A I D实现,它使用一个专用的校验磁盘。与RAID 3不同的是,RAID 4有更大量的分块,使多个I / O请求能同时处理。虽然它为读请求提供了性能的优势,但RAID 4的写开销特别大,因为在每次读、修改和写周期中,校验磁盘都被访问两次。 六、RAID 5(使用分布式校验的独立访问)是一个独立访问的R A I D阵列,校验数据被分布在阵列中的所有磁盘。换而言之,即没有一个专有校验磁盘,因而,没有像RAID 4一样的写瓶颈。 七、RAID 6(使用双校验的独立访问)提供两级冗余,即阵列中的两个驱动器失败时,阵列仍然能够继续工作。
RAID 1: 就是我们常说的“磁盘镜像”,通过在阵列里的一个 硬盘上完全复制相同数据的方式来提供对数据的充分保护。如果其中一个硬盘毁坏,另外一个硬盘将提供精确的,完全相同的数据,RAID系统将切换到镜像的硬盘继续使用,对用户而言,数据并没有丢失。 这种镜像系统不好的地方是数据的存储速度并没有得到改善,而且磁盘利用率低。然而,它提供对管理者而言最简单有效的保护,当一个硬盘失效时,阵列管理软件会直接将数据请求切换到有效硬盘上。
RAID 3:RAID 3 将数据交错分布在多个驱动器中,有一个专门的硬盘用户提供奇偶数据存储,提供错误数据的恢复和重建。
RAID 5: RAID 5 是最通行的配置方式。它是具有奇偶校验的数据恢复功能的数据存贮方式。在 RAID 5里,奇偶校验数据块分布于阵列里的各个硬盘中,这样的数据连接会更加顺畅。 如果其中一个硬盘损坏,奇偶校验数据将被用于数据的重建。这是一个很通行的做法。这种方式的缺点是数据的读写时间会相对长些(在写入一组数据时必须完成两次读写操作)。它的容量是 N-1,最小必须有三个硬盘。 磁盘阵列术语汇编 Array:阵列 磁盘阵列模式是把几个磁盘的存储空间整合起来,形成一个大的单一连续的存储空间。NetRAID控制器利用它的SCSI通道可以把多个磁盘组合成一个磁盘阵列。简单的说,阵列就是由多个磁盘组成,并行工作的磁盘系统。需要注意的是作为热备用的磁盘是不能添加到阵列中的。 Array Spanning:阵列跨越 阵列跨越是把2个,3个或4个磁盘阵列中的存储空间进行再次整合,形成一个具有单一连续存储空间的逻辑驱动器的过程。NetRAID控制器可以跨越连续的几个阵列,但每个阵列必需由相同数量的磁盘组成,并且这几个阵列必需具有相同的RAID级别。就是说,跨越阵列是对已经形成了的几个阵列进行再一次的组合,RAID 1,RAID 3和RAID 5跨越阵列后分别形成了RAID 10,RAID 30和RAID 50。
Cache Policy:高速缓存策略 NetRAID控制器具有两种高速缓存策略,分别为Cached I/O(缓存I/O)和Direct I/O(直接I/O)。缓存I/O总是采用读取和写入策略,读取的时候常常是随意的进行缓存。直接I/O在读取新的数据时总是采用直接从磁盘读出的方法,如果一个数据单元被反复地读取,那么将选择一种适中的读取策略,并且读取的数据将被缓存起来。只有当读取的数据重复地被访问时,数据才会进入缓存,而在完全随机读取状态下,是不会有数据进入缓存的。 Capacity Expansion:容量扩展 在微软的Windows NT,2000或Novell公司的NetWare 4.2,5操作系统下,可以在线增加目前卷的容量。在Windows 2000或NetWare 5系统下,准备在线扩容时,要禁用虚拟容量选项。而在Windows NT或NetWare 4.2系统下,要使虚拟容量选项可用才能进行在线扩容。 在NetRAID控制器的快速配置工具中,设置虚拟容量选项为可用时,控制器将建立虚拟磁盘空间,然后卷能通过重构把增加的物理磁盘扩展到虚拟空间中去。重构操作只能在单一阵列中的唯一逻辑驱动器上才可以运行,你不能在跨越阵列中使用在线扩容。 Channel:通道 在两个磁盘控制器之间传送数据和控制信息的电通路。 Format:格式化 在物理驱动器(硬盘)的所有数据区上写零的操作过程,格式化是一种纯物理操作,同时对硬盘介质做一致性检测,并且标记出不可读和坏的扇区。由于大部分硬盘在出厂时已经格式化过,所以只有在硬盘介质产生错误时才需要进行格式化。 Hot Spare:热备用 当一个正在使用的磁盘发生故障后,一个空闲、加电并待机的磁盘将马上代替此故障盘,此方法就是热备用。热备用磁盘上不存储任何的用户数据,最多可以有8个磁盘作为热备用磁盘。一个热备用磁盘可以专属于一个单一的冗余阵列或者它也可以是整个阵列热备用磁盘池中的一部分。而在某个特定的阵列中,只能有一个热备用磁盘。 当磁盘发生故障时,控制器的固件能自动的用热备用磁盘代替故障磁盘,并通过算法把原来储存在故障磁盘上的数据重建到热备用磁盘上。数据只能从带有冗余的逻辑驱动器上进行重建(除了RAID 0以外),并且热备用磁盘必须有足够多的容量。系统管理员可以更换发生故障的磁盘,并把更换后的磁盘指定为新的热备用磁盘。 Hot swap Disk Module:热交换磁盘模式 热交换模式允许系统管理员在服务器不断电和不中止网络服务的情况下更换发生故障的磁盘驱动器。由于所有的供电和电缆连线都集成在服务器的底板上,所以热交换模式可以直接把磁盘从驱动器笼子的插槽中拔除,操作非常简单。然后把替换的热交换磁盘插入到插槽中即可。热交换技术仅仅在RAID 1,3,5,10,30和50的配置情况下才可以工作。 I2O(Intelligent Input/Output):智能输入输出 智能输入输出是一种工业标准,输入输出子系统的体系结构完全独立于网络操作系统,并不需要外部设备的支持。I2O使用的驱动程序可以分为操作系统服务模块(operating system services module,OSMs)和硬件驱动模块(hardware device modules,HDMs)。 Initialization:初始化 在逻辑驱动器的数据区上写零的操作过程,并且生成相应的奇偶位,使逻辑驱动器处于就绪状态。初始化将删除以前的数据并产生奇偶校验,所以逻辑驱动器在此过程中将一并进行一致性检测。没有经过初始化的阵列是不能使用的,因为还没有生成奇偶区,阵列会产生一致性检测错误。 IOP(I/O Processor):输入输出处理器 输入输出处理器是NetRAID控制器的指令中心,实现包括命令处理,PCI和SCSI总线的数据传输,RAID的处理,磁盘驱动器重建,高速缓存的管理和错误恢复等功能。 Logical Drive:逻辑驱动器 阵列中的虚拟驱动器,它可以占用一个以上的物理磁盘。逻辑驱动器把阵列或跨越阵列中的磁盘分割成了连续的存储空间,而这些存储空间分布在阵列中的所有磁盘上。NetRAID控制器能设置最多8个不同容量大小的逻辑驱动器,而每个阵列中至少要设置一个逻辑驱动器。输入输出操作只能在逻辑驱动器处于在线的状态下才运行。 Logical Volume:逻辑卷 由逻辑磁盘形成的虚拟盘,也可称为磁盘分区。 Mirroring:镜像 冗余的一种类型,一个磁盘上的数据在另一个磁盘上存在一个完全相同的副本即为镜像。RAID 1和RAID 10使用的就是镜像。 Parity:奇偶校验位 在数据存储和传输中,字节中额外增加一个比特位,用来检验错误。它常常是从两个或更多的原始数据中产生一个冗余数据,冗余数据可以从一个原始数据中进行重建。不过,奇偶校验数据并不是对原始数据的完全复制。 在RAID中,这种方法可以应用到阵列中的所有磁盘驱动器上。奇偶校验位还可以组成专用的奇偶校验方式,在专用奇偶校验中,奇偶校验数据可分布在系统中所有的磁盘上。如果一个磁盘发生故障,可以通过其它磁盘上的数据和奇偶校验数据重建出这个故障磁盘上的数据。 Power Fail Safeguard:掉电保护 当此项设置为可用时,在重构过程中(非重建),所有的数据将一直保存在磁盘上,直到重构完成后才删除。这样如果在重构过程中发生掉电,将不会发生数据丢失的危险情况。 RAID:独立冗余磁盘阵列 独立冗余磁盘阵列最初叫做廉价冗余磁盘阵列(Redundant Array of Inexpensive Disks),它是由多个小容量、独立的硬盘组成的阵列,而阵列综合的性能可以超过单一昂贵大容量硬盘(SLED)的性能。由于是对多个磁盘并行操作,所以RAID磁盘子系统与单一磁盘相比它的输入输出性能得到了提高。服务