7 第八章 数控系统插补原理

合集下载

青科大第八章

青科大第八章


APT语言的基本组成 1. 基本符号 1) 字母:26个大写英文字母,A~Z。 2) 数字:10个阿拉伯数字,0~9。 3) 特殊符号:包括标点符号、算术运算符(+、 -、*、/、↑)及幂运算符(**或↑)等。
2. 关键词汇 (1) 几何元素词汇,如POINT、LINE (2) 几何关系和位置状况词汇,如TANTO (3) 与计算有关的函数类词汇,如SINF (4) 加工工艺词汇,如BORE (5) 刀具名称词汇,如TURNTL (6) 与刀具运动相关的词汇,如GOFWD

发展过程 早先的数控机床(NC)均为硬件控制,即其 控制功能通过安装在数控机床上的非柔性物理 电子元件来实现。读取设备从穿孔纸带上读出 控制指令,并将其传入控制器,以便控制机床 运动。数控机床不能存储数控程序。
随着集成电路和计算机技术的不断发展, 出现了计算机数控技术(CNC)。这种控制技术 与传统的数控技术相比具有以下优点: 1) 能够方便地储存、编辑数控程序,更快速地 进行重复编程。 2) 柔性更好,能加工不同形状、不同精度的零 件。 3) 具有更高的精度和效率。 4) 具备一定的辅助功能,如刀具补偿等。

数控编程的方法 1. 手工编程 手工编程也称人工编程,上述几方面的工 作,即从分析零件图纸、制定零件工艺规程、 计算刀具运动轨迹坐标值、编写加工程序单、 制备控制介质直至程序校核等都是靠人工来 完成的。
2. 自动编程 1) 以数控编程语言为基础的自动编程方法 在编程时编程人员依据所用数控语言的编 程手册以及零件图样,以数控语言的形式表 达出加工的全部内容,然后再把这些内容全 部输入计算机中进行处理,制作出可以直接 用于数控加工的NC程序。
3. 刀具轨迹计算及生成 1) 点位加工刀位轨迹的生成 2) 平面轮廓加工刀位轨迹的生成 3) 槽腔加工刀位轨迹的生成 4) 曲面加工刀位轨迹的生成 4. 后置处理 5. 程序输出 6. 加工程序动态仿真

插补原理

插补原理

插补开放分类:技术数控技术高新技术数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。

编辑摘要插补- 概述机构按预定的轨迹运动。

一般情况是一致运动轨迹的起点坐标、终点坐标和轨迹的曲线方程,由数控系统实施地算出各个中间点的坐标。

在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。

机床数控系统依照一定方法确定刀具运动轨迹的过程。

也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。

数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。

插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。

插补- 分类1、直线插补直线插补(Llne Interpolation)这是车床上常用的一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。

一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等. 数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x和y方向. 插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y方向走一小段,直到在实际轮廓上方以后,再向x方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补.2、圆弧插补圆弧插补(Circula : Interpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。

插补原理

插补原理

插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。

插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。

插补算法经过几十年发展,不断成熟,种类很多。

一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。

脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。

1数字积分插补是脉冲增量插补一种。

下面将首先阐述一下脉冲增量插补工作原理。

2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。

这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。

一个脉冲所产生坐标轴移动量叫做脉冲当量。

脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。

采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。

脉冲增量插补主要有逐点比较法、数据积分插补法等。

逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。

这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。

插补、刀补原理

插补、刀补原理

式中:
Ne tg Ge
cos
Ne G N
2 e 2 e
园弧插补算法
采用时间分割插补法 进行园弧插补的基本方 法是用内接弦线逼近圆 弧。设计圆弧插补程序 时,通常将插补计算坐 标系的原点选在被插补 圆弧的圆心上,如图所 示,以第一象限顺圆 (G02)插补为例来讨 论圆弧插补原理。
G02
B
A B A B A B A B A
B A
G03
A
B
A B
近似计算误差的影响
对插补的影响: • 对插补精度无影响,算 法本身可保证每个插补 点均落在圆弧上。 • 对合成进给速度均匀性
????????????r????????????rn2lln2ll?????????????????????????????????n??????????i?????????i1i2i121iii1i1iii1iii2i121iii1i1iiinnngrngggnngbnngrngggnnga顺圆插补g02和逆圆插补g03在各象限采用公式的情况如图所示
Y
Pi(Xi,Yi) A △Yi α
i
G02
△L
△Xi B
γ i D
Ym
R
△α i
C
Pi+1(Xi+1,Yi δ
O
X
则 L Yi 1 X i L cos i R Yi 2 Y R 2 X X 2 Y Y i i i i 整理得: L Yi 1 X i R Yi 2 X X X i i i 1 Y R 2 X X 2 i i i 1 Yi Yi 1 Yi
Ym α

插补原理及控制方法

插补原理及控制方法

CNC系统对于直线和圆弧的控制并不是严格按照直线 CNC系统对于直线和圆弧的控制并不是严格按照直线 和圆弧轨迹进行控制。 和圆弧轨迹进行控制 。 上图为加工某一轮廓时的刀具轨 迹曲线, 运动进行切削加工。 迹曲线,加工时要求刀具沿曲线L运动进行切削加工。 我们可以进行这样的分析, 我们可以进行这样的分析 , 首先将曲线 L 分割为 l0、 若干段, l1、…li、…lN若干段,再用直线和圆弧代替这些小的曲 线段, 足够小时, 就接近了原曲线; 线段 , 当逼近误差 δ 足够小时 , 就接近了原曲线 ; 然后 运动的合成, 数控系统通过各坐标方向 最小位移量 运动的合成 , 不断 地控制刀具相对工件运动, 走出直线和圆弧, 地控制刀具相对工件运动 , 走出直线和圆弧 , 从而非常 逼近的走出所需的刀具轨迹曲线。 数字化 ” 逼近的走出所需的刀具轨迹曲线 。 这体现出了 “ 数字化” 的概念。 的概念。 这种在允许误差范围内, 用沿直线或圆弧( 这种在允许误差范围内 , 用沿直线或圆弧 ( 逼近函 合成的分段运动代替任意曲线运动, 数 ) 的 最小位移量 合成的分段运动代替任意曲线运动 , 以得到所需的刀具运动轨迹的方法, 以得到所需的刀具运动轨迹的方法 , 是数字控制的基本 构思之一,这个过程就是插补。 构思之一,这个过程就是插补。
插补开始
偏差判别
坐标进给
偏差计算 N 终点判别 Y 插补结束
二、逐点比较法直线插补 如图所示, 如图所示 , 对 XY平面第 平面第 一象限直线段进行插补。 一象限直线段进行插补 。 直 线段起点位于坐标原点O, 线段起点位于坐标原点 ,终 点 位 于 A ( Xe,Ye ) 。 设 点 P ( Xi, Yi) 为任一动点 ( 加 , ) 为任一动点( 工点、插补点) 工点、插补点)。 点在直线OA上时 上时, 当P点在直线 上时, 点在直线 XeYi – XiYe = 0 当P点在直线 上方时, 点在直线OA上方时, 点在直线 上方时 XeYi – XiYe > 0 点在直线OA下方时 下方时, 当P点在直线 下方时, 点在直线 XeYi – XiYe < 0

数控系统的实时插补以及加减速控制-模板

数控系统的实时插补以及加减速控制-模板

数控系统的实时插补以及加减速控制1 前言在数控系统中,为了保证机床在起动或停止时不产生冲击、失步、超行程或振荡,必须有专门的加、减速控制规律程序,以使机床在各种加工作业的情况下都能按照这个规律快速、准确地停留在给定的位置上,这就是所谓的加减速控制。

对于连续切削的数控机床,其进给速度不仅直接影响到加工零件的表面粗糙度和精度,而且刀具和机床的寿命以及生产效率也与进给速度密切相关。

对于不同材料的工件、加工刀具、加工方式和条件,应选择合适的进给速度。

而进给速度的控制方法则与采用的插补算法有关。

插补运算是数控系统根据输入的基本数据(如直线的起点和终点,圆弧的起点、终点和圆心,进给速度,刀具参数等),在轮廓起点和终点之间,计算出若干中间点的坐标值,通过计算,将工件轮廓描述出来。

插补的任务就是根据起点、终点、轨迹轮廓、进给速度,按数控系统的当量,对轮廓轨迹进行细化。

插补精度和插补速度是插补的两项重要指标,它直接决定了数控系统的控制精度和控制速度,所以插补是整个数控系统控制软件的核心。

由于每个中间点计算所需的时间影响系统的进给速度,而插补中间点的精度又影响到加工精度,因此,本文所采用的插补算法正是满足精度要求和实时性的关键所在。

2 系统采用的插补及加减速控制插补本系统采用的插补算法是时间分割法,或称采样插补法。

因为此法非常适合于以交流伺服电机为执行机构的半闭环位置采样控制系统,且能够满足实时性要求。

这种方法是把加工一段直线或圆弧的整段时间细分为许多相等的时间间隔,称为单位时间间隔(或插补周期)。

每经过一个单位时间间隔就进行一次插补运算,算出在这一时间间隔内各坐标轴的进给量,边计算,边加工,直至加工到终点。

在加工某一直线段或圆弧段时,先通过控制加速度来计算速度轨迹,然后通过速度计算,将进给速度分割成单位时间间隔的插补进给量,也就是轮廓步长,又称为一次插补进给量。

根据刀具运动轨迹与各坐标轴的几何关系,就可求出各轴在一个插补周期内的插补进给量,按时间间隔以增量形式给各轴送出一个个插补增量,通过执行机构使机床完成预定轨迹的加工。

数控原理与系统——插补和刀补计算原理


一、逐点比较法直线插补 y
2. 算法分析(第Ⅰ 象限)
偏差判别
直线上 直线上方
y j ye xi xe
y j ye xi xe
xe y j xi ye 0
o
xe y j xi ye 0
A(xe,ye) F>0 P(xi,yj) F<0
x
直线下方 y j ye
xi xe
xe y j xi ye 0
一、逐点比较法直线插补
2. 算法分析(第Ⅰ 象限)
终点比较
用Xe+Ye作为计数器,每走一步对计数器进行减1计算, 直到计数器为零为止。
总结
Fij xe y j xi ye
第一拍 判别 第二拍 进给 第三拍 运算 第四拍 比较
Fij 0
Fij 0
x
y
Fi1, j Fi, j ye
Fi , j1 Fi , j xe
1. 基本原理
在刀具按要求轨迹运动加工零件轮廓的过程中,不 断比较刀具与被加工零件轮廓之间的相对位置,并根据 比较结果决定下一步的进给方向,使刀具向减小误差的 方向进给。其算法最大偏差不会超过一个脉冲当量δ。
每进给一步需要四个节拍: 偏差判别 坐标进给 新偏差计算
终点比较
数控机床原理与系统 §2-2 逐点比较法
1. 插补的定义
数据密集化的过程。数控系统根据输入的基本 数据(直线起点、终点坐标,圆弧圆心、起点、终 点坐标、进给速度等)运用一定的算法,自动的在 有限坐标点之间形成一系列的坐标数据,从而自动 的对各坐标轴进行脉冲分配,完成整个线段的轨迹 分析,以满足加工精度的要求。
要求:实时性好,算法误差小、精度高、速度均匀性好
Fi1, j Fi, j 2 xi 1 Fi, j1 Fi, j 2 y j 1

数控插补原理

数控插补原理嘿,朋友们!今天咱来聊聊数控插补原理。

这玩意儿啊,就像是一个神奇的魔法,让机器能按照我们的想法精确地行动起来。

你看啊,数控插补原理就好比是一个超级聪明的指挥家。

想象一下,一场音乐会,指挥家要让各种乐器在合适的时间发出合适的声音,这样才能演奏出美妙的音乐。

数控插补原理也是这样,它要指挥着机床的刀具,在正确的位置、以正确的速度进行切削,这样才能加工出我们想要的零件。

比如说,我们要加工一个复杂的曲线形状。

这要是靠我们手工去弄,那可真是太难啦,说不定弄半天还弄不好。

但有了数控插补原理就不一样啦!它能把这个复杂的曲线分解成一个个小的线段,然后让刀具沿着这些线段一步步地走过去,就像走迷宫一样,最后不就加工出我们想要的形状啦!再打个比方,这数控插补原理就像是一个经验丰富的导航。

我们要去一个陌生的地方,导航会给我们规划出一条精确的路线,告诉我们什么时候转弯,什么时候直行。

数控插补原理也是这样,它会给刀具规划出精确的路径,让刀具知道该怎么走,才能加工出符合要求的零件。

那这数控插补原理是怎么做到这些的呢?这可就涉及到一些专业的知识啦。

它要根据我们输入的指令,计算出刀具在每个时刻的位置和速度。

这就像是一场精密的计算游戏,不能有一点差错。

而且啊,不同的插补方法还有不同的特点呢。

就拿直线插补来说吧,它就像是走直线,简单直接。

而圆弧插补呢,就像是画圆弧,得有一定的技巧。

还有抛物线插补等等其他的插补方法,每一种都有自己独特的用处。

哎呀,这数控插补原理可真是太重要啦!没有它,那些高精度的零件怎么能制造出来呢?那些复杂的机器设备怎么能正常运行呢?它就像是机器世界的基石,支撑着整个制造业的发展。

所以啊,朋友们,可别小看了这数控插补原理。

它虽然看起来很复杂,但只要我们认真去学,去理解,就一定能掌握它的奥秘。

到时候,我们就能让机器在我们的指挥下,乖乖地工作,制造出各种精美的零件和产品。

这不就是我们想要的吗?让我们一起加油,去探索数控插补原理的神奇世界吧!。

数控原理的插补计算

§3-7 插补计算
译码
刀补计算 速度处理
插补预处理
插补预处理的任务: 插补预处理为插补程序准
备好了刀具中心的速度、轨迹形状以及描述该轨迹 形状所必须的相关参数。
插补计算
一、插补的概念
插补的定义:
根据给定轮廓轨迹的曲线方程和进给速度, 在轮廓的起点和终点中间,“插入或补上” 轮廓轨迹各个中间点的坐标,这个过程称 为插补。
max 1
0
0
三、插补方法分类
目前常用的各种插补算法大致分为两类:
1、脉冲增量插补
特点:
每次插补输出的是单个的行程增量,以一 个个脉冲的方式输出给步进电动机。 插补输出的进给速度主要受插补运算速度 的限制,因而进给速度指标难以提高。 脉冲增量插补算法较简单,通常仅有加法 和移位运算,因此比较容易用硬件来实现, 而且用硬件实现的这类插补运算速度很快。
二、评价插补算法的指标
4、合成速度的均匀性指标
合成速度的均匀性是指插补输出的各种进给速度 的合成进给速度与编程给定的进给速度的符合程度, 可用速度不均匀性系数来评价:
F FC 1000 04、合成速度的均匀性指标
一个实用的插补算法,应该保证速度不 均匀性系数尽可能小。一般要求:
1、脉冲增量插补
常见算法:
逐点比较法、数字积分法、最小 偏差法、目标点跟踪法、单步追 踪法等 主要用在中低等精度和中低等速度,以步 进电动机为驱动元件的数控系统。
2、数字增量插补
特点:
每次插补输出的是,根据进给速度计算的 各坐标轴在一定的时间间隔内的位移增量。 其基本是用直线段来逼近曲线。 插补运算速度与进给速度无严格的关系。
小结:
1、插补的概念
根据给定轮廓轨迹的曲线方程和进给速度,在轮廓的起 点和终点中间,“插入或补上”轮廓轨迹各个中间点的坐 标,这个过程称为插补。

8-数据采样插补

由于每次进给量很小,所以在整个插补过程中,这种近似是 可行的。其中Xi、Yi为已知。由上式可求出所以可得
X f cos
又由式
X (Xi )X 2 Y Y Yi 2
便可求得 △Y. △X 、△Y求出后,可求得新的插补点坐标值为
Xi+1=Xi+Δ X,Yi+1=Yi+Δ Y
插补周期越长,插补计算误差越大,插补周期应 尽量选得小一些。CNC系统在进行轮廓插补控制时,除 完成插补计算外,数控装置还必须处理一些其它任务, 如显示、监控、位置采样及控制等。 因此,插补周期应大于插补运算时间和其它实时 任务所需时间之和。插补周期大约在8ms左右。 对于直线插补,不会造成轨迹误差。在圆弧插补 中,会带来轨迹误差。
4.2
数据采样插补原理
1. 数据采样直线插补 如图5-14所示,直线起点在原点O(0,0),终点为E(Xe, Ye),刀具移动速度为F。设插补周期,则每个插补周期的进给 步长为
L FTs
各坐标轴Ye L
Y E(Xe, Ye) Yi+ 1 Yi Ni Ni+ 1 L Yi Xi
O

Xi
Xi+ 1
X
数据采样法直线插补
式中,L为直线段长度;K为系数, 因为
L
X e2 Ye2
K L / L
X i X i 1 X i X i 1 KX e Yi Yi 1 Yi Yi 1 KYe
因而动点的插补计算公式为
X i X i-1 Yi Yi-1
L FTs
Y E(Xe, Ye) L=FT S

A(Xa, Ya)
O
X
图1-15 用弦进给代替弧进给
如图所示,设刀具在第一象限沿顺时针圆弧运动,圆上点 A(Xi,Yi)为刀具当前位置,B(Xi+1,Yi+1)为刀具插补后到达
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档