湖南省湘潭市2021届新高考数学四模考试卷含解析

合集下载

湖南省衡阳市2021届新高考数学四模考试卷含解析

湖南省衡阳市2021届新高考数学四模考试卷含解析

湖南省衡阳市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下-个10米时,乌龟先他1米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为( )A .5101900-米B .510990-米C .4109900-米D .410190-米【答案】D 【解析】 【分析】根据题意,是一个等比数列模型,设11100,,0.110n a q a ===,由110.110010n n a -⎛⎫==⨯ ⎪⎝⎭,解得4n =,再求和. 【详解】根据题意,这是一个等比数列模型,设11100,,0.110n a q a ===, 所以110.110010n n a -⎛⎫==⨯ ⎪⎝⎭,解得4n =,所以()44441110011011111001190a q S q⎛⎫⎛⎫ ⎪- ⎪ ⎪-⎝⎭⎝⎭==-=--. 故选:D 【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题. 2.已知在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若函数()3222111()324f x x bx a c ac x =+++-存在极值,则角B 的取值范围是( )A .0,3π⎛⎫⎪⎝⎭B .,63ππ⎛⎫⎪⎝⎭ C .,3π⎛⎫π⎪⎝⎭D .,6π⎛⎫π⎪⎝⎭【答案】C 【解析】 【分析】求出导函数()f x ',由()0f x '=有不等的两实根,即>0∆可得不等关系,然后由余弦定理可及余弦函数性质可得结论. 【详解】()3222111()324f x x bx a c ac x =+++-,()2221()4f x x bx a c ac '∴=+++-.若()f x 存在极值,则()2221404b ac ac -⨯⨯+->,222a c b ac ∴+-<又2221cos ,cos 22a cb B B ac +-=∴<.又()0,,3B B π∈π∴<<π.故选:C . 【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.3.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( ) A .210x y --= B .210x y +-=C .210x y -+=D .210x y ---=【答案】A 【解析】 【分析】设()11,A x y ,()22,B x y ,利用点差法得到1212422y y x x -==-,所以直线AB 的斜率为2,又过点(1,1),再利用点斜式即可得到直线AB 的方程. 【详解】解:设()()1122,,,A x y B x y ,∴122y y +=,又21122244y x y x ⎧=⎨=⎩,两式相减得:()2212124y y x x -=-, ∴()()()1212124y y y y x x +-=-,∴1212422y y x x -==-,∴直线AB 的斜率为2,又∴过点(1,1),∴直线AB 的方程为:12(1)y x -=-,即2 10x y --=, 故选:A. 【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.4.已知y ax b =+与函数()2ln 5f x x =+和2()4g x x =+都相切,则不等式组3020x ay x by -+≥⎧⎨+-≥⎩所确定的平面区域在2222220x y x y ++--=内的面积为( ) A .2π B .3πC .6πD .12π【答案】B 【解析】 【分析】根据直线y ax b =+与()f x 和()g x 都相切,求得,a b 的值,由此画出不等式组所表示的平面区域以及圆2222220x y x y ++--=,由此求得正确选项.【详解】()()''2,2f x g x x x==.设直线y ax b =+与()f x 相切于点()00,2ln 5A x x +,斜率为02x ,所以切线方程为()()00022ln 5y x x x x -+=-,化简得0022ln 3y x x x =++①.令()'022g x x x ==,解得01x x =,200114g x x ⎛⎫=+ ⎪⎝⎭,所以切线方程为20001214y x x x x ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭,化简得200214y x x x =-+②.由①②对比系数得02012ln 34x x +=-+,化简得02012ln 10x x +-=③.构造函数()()212ln 10h x x x x=+->,()()()'3321122x x h x x x x+-=-=,所以()h x 在()0,1上递减,在()1,+∞上递增,所以()h x 在1x =处取得极小值也即是最小值,而()10h =,所以()0h x =有唯一解.也即方程③有唯一解01x =.所以切线方程为23y x =+.即2,3a b ==.不等式组3020x ay x by -+≥⎧⎨+-≥⎩即230320x y x y -+≥⎧⎨+-≥⎩,画出其对应的区域如下图所示.圆2222220x y x y ++--=可化为()()221124x y ++-=,圆心为()1,1A -.而方程组230320x y x y -+=⎧⎨+-=⎩的解也是11x y =-⎧⎨=⎩.画出图像如下图所示,不等式组230320x y x y -+≥⎧⎨+-≥⎩所确定的平面区域在2222220x y x y ++--=内的部分如下图阴影部分所示.直线230x y -+=的斜率为12,直线320x y +-=的斜率为13-.所以()tan tan BAC AED ADE ∠=∠+∠1123111123+==-⨯,所以4BAC π∠=,而圆A 的半径为2426=,所以阴影部分的面积是()2126324ππ⨯⨯=.故选:B【点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题. 5.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643C .16D .32【答案】A【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是2113244323⨯⨯⨯=,选A.6.ABC ∆中,BC =D 为BC 的中点,4BAD π∠=,1AD =,则AC =( )A.B.C.6D .2【答案】D 【解析】 【分析】在ABD ∆中,由正弦定理得sin 10B =;进而得cos cos 45ADC B π⎛⎫∠=+= ⎪⎝⎭,在ADC ∆中,由余弦定理可得AC . 【详解】在ABD ∆中,由正弦定理得sin sin 4AD BD B π=,得sin B =,又BD AD >,所以B为锐角,所以cos B =cos cos 4ADC B π⎛⎫∴∠=+= ⎪⎝⎭ 在ADC ∆中,由余弦定理可得2222cos 4AC AD DC AD DC ADC =+-⋅∠=,2AC ∴=.故选:D 【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.7.已知函数()ln 2f x x ax =-,()242ln ax g x x x=-,若方程()()f x g x =恰有三个不相等的实根,则a的取值范围为( ) A .(]0,eB .10,2e ⎛⎤ ⎥⎝⎦C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】由题意可将方程转化为ln 422ln x ax a x x -=-,令()ln xt x x=,()()0,11,x ∈+∞,进而将方程转化为()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,即()2t x =-或()2t x a =,再利用()t x 的单调性与最值即可得到结论.【详解】由题意知方程()()f x g x =在()()0,11,+∞上恰有三个不相等的实根,即24ln 22ln ax x ax x x-=-,①.因为0x >,①式两边同除以x ,得ln 422ln x axa x x-=-. 所以方程ln 4220ln x axa x x--+=有三个不等的正实根. 记()ln xt x x=,()()0,11,x ∈+∞,则上述方程转化为()()4220at x a t x --+=. 即()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,所以()2t x =-或()2t x a =. 因为()21ln xt x x-'=,当()()0,11,x e ∈时,()0t x '>,所以()t x 在()0,1,()1,e 上单调递增,且0x →时,()t x →-∞.当(),x e ∈+∞时,()0t x '<,()t x 在(),e +∞上单调递减,且x →+∞时,()0t x →.所以当x e =时,()t x 取最大值1e,当()2t x =-,有一根. 所以()2t x a =恰有两个不相等的实根,所以102a e<<. 故选:B. 【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.8.()cos sin xe f x x=在原点附近的部分图象大概是( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,以及该函数在区间()0,π上的函数值符号,结合排除法可得出正确选项. 【详解】令sin 0x ≠,可得{},x x k k Z π≠∈,即函数()y f x =的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()cos cos sin sin x xe ef x f x x x--==-=--,则函数()y f x =为奇函数,排除C 、D 选项;当0πx <<时,cos 0xe >,sin 0x >,则()cos 0sin xe f x x=>,排除B 选项. 故选:A. 【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.9.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .7【答案】A 【解析】 【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值. 【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由20x y x y +-=⎧⎨-=⎩得(1,1)A ,由3z x y =+得3y x z =-+,平移3y x =-, 易知过点A 时直线在y 上截距最小, 所以3114min z =⨯+=. 故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题. 10.设i 为虚数单位,z 为复数,若z i z+为实数m ,则m =( )A .1-B .0C .1D .2【答案】B 【解析】 【分析】可设(,)z a bi a b R =+∈,将z i z+化简,(2222a ab b i a b +++由复数为实数,220a b b +=,解方程即可求解 【详解】设(,)z a bi a b R =+∈,则)2222222222a ab b i za b a bi a bi i i z a ba b +++-++=+=+=++.2200a b b a +=⇒=,所以0m =. 故选:B 【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题11.如图,在ABC ∆中, 13AN AC =,P 是BN 上的一点,若23mAC AP AB =-,则实数m 的值为( )A .13B .19C .1D .2【答案】B 【解析】 【分析】23mAC AP AB =-变形为23AP mAC AB =+,由13AN AC =得3AC AN =,转化在ABN 中,利用B P N 、、三点共线可得.【详解】解:依题: 22333AP mAC AB mAN AB =+=+, 又B P N ,,三点共线,2313m ∴+=,解得19m =.故选:B . 【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程:A P B 、、 三点共线⇔(1)OP t OA tOB =-+ (O 为平面内任一点,t R ∈)12.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( )A .16216πB .1628πC .8216πD .828π 【答案】D 【解析】 【分析】 【详解】由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为2111442226828222πππ⋅⋅+⋅⋅=,故选D . 二、填空题:本题共4小题,每小题5分,共20分。

2021届湖南省湘潭市高三上学期第一次模拟检测数学(理)试题Word版含解析

2021届湖南省湘潭市高三上学期第一次模拟检测数学(理)试题Word版含解析

2021届湖南省湘潭市高三上学期第一次模拟检测数学(理)试题一、单选题1.设集合()(){}|140 A x x x =+->, {}|09 B x x =<<,则A B ⋂等于( ) A .()0,4 B .()4,9 C .()1,4- D .()1,9- 【答案】A【解析】集合()(){}()()|140 {|140} {|14}A x x x x x x x x =+->=+-<=-<<,{}|09 B x x =<<所以{}()|040,4A B x x ⋂=<<=. 故选A. 2.若复数满足,在复数的虚部为( )A .B .1C .-1D . 【答案】C【解析】由复数的除法运算公式可得,从而可求出z 的共轭复数,即可得出结果. 【详解】由题意可知,,故,所以其虚部为-1.【点睛】本题主要考查复数的四则运算和共轭复数的概念,属于基础题型.3.若,则( )A .B .C .D .【答案】A【解析】由展开即可求出结果.【详解】.【点睛】本题主要考查两角和与差的正切公式,由已知角表示所求角,即可求出结果,属于基础题型. 4.以双曲线的焦点为顶点,且渐近线互相垂直的双曲线的标准方程为()A. B. C. D.【答案】B【解析】由已知双曲线先求出所求双曲线的顶点坐标,再由所求双曲线的渐近线互相垂直,可得,从而可得双曲线方程.【详解】由题可知,所求双曲线的顶点坐标为,又因为双曲线的渐近线互相垂直,所以,则该双曲线的方程为.【点睛】本题主要考查双曲线的简单性质,属于基础题型.5.若满足约束条件,则的最大值是()A. B. C. D.3【答案】D【解析】先画出不等式组所表示的平面区域,又表示可行域内一点与点连线的斜率,结合图像即可得出结果.【详解】画出可行域,如图所示,表示可行域内一点与点连线的斜率,由图可知,当,时,取得最大值3.【点睛】本题主要考查简单的线性规划问题,只需掌握目标函数的几何意义,即可求解,属于基础题型. 6.某几何体的三视图如图所示(其中俯视图中的曲线是圆弧),则该几何体的表面积为()A. B. C. D.【答案】B【解析】由三视图可知该几何体为圆柱体的一半,结合表面积公式可得结果.【详解】该几何体为一个圆柱体的一半,所以表面积.【点睛】本题主要考查根据几何体的三视图求几何体的表面、体积问题,属于基础题型.7.设,,则()A. B.C. D.【答案】D【解析】利用对数的运算法则即可得出.【详解】,,,,则.故选D.【点睛】本题考查了对数的运算法则,考查了计算能力,属于基础题.8.若正整数除以正整数后的余数为,则记为,例如.如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的等于A.4 B.8C.16 D.32【答案】C【解析】初如值n=11,i=1,i=2,n=13,不满足模3余2.i=4,n=17, 满足模3余2, 不满足模5余1.i=8,n=25, 不满足模3余2,i=16,n=41, 满足模3余2, 满足模5余1.输出i=16.选C。

湖南省湘潭市2021届新高考数学五月模拟试卷含解析

湖南省湘潭市2021届新高考数学五月模拟试卷含解析

湖南省湘潭市2021届新高考数学五月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知AB 是过抛物线24y x =焦点F 的弦,O 是原点,则OA OB ⋅=u u u r u u u r( )A .-2B .-4C .3D .-3【答案】D 【解析】 【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,设AB :1x my =+,联立方程得到124y y =-,计算 22121216y y OA OB y y ⋅=+u u u r u u u r 得到答案.【详解】设211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,故22121216y y OA OB y y ⋅=+u u u r u u u r . 易知直线斜率不为0,设AB :1x my =+,联立方程214x my y x =+⎧⎨=⎩,得到2440y my --=,故124y y =-,故221212316y y OA OB y y ⋅=+=-u u u r u u u r .故选:D . 【点睛】本题考查了抛物线中的向量的数量积,设直线为1x my =+可以简化运算,是解题的关键 . 2.若函数32()3f x ax x b =++在1x =处取得极值2,则a b -=( ) A .-3 B .3C .-2D .2【答案】A 【解析】 【分析】对函数()f x 求导,可得(1)0(1)2f f =⎧⎨='⎩,即可求出,a b ,进而可求出答案. 【详解】因为32()3f x ax x b =++,所以2()36f x ax x '=+,则(1)360(1)32f a f a b '=+=⎧⎨=++=⎩,解得2,1a b =-=,则3a b -=-.故选:A. 【点睛】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题. 3.在等差数列{}n a 中,若244,8a a ==,则7a =( ) A .8 B .12C .14D .10【答案】C 【解析】 【分析】将2a ,4a 分别用1a 和d 的形式表示,然后求解出1a 和d 的值即可表示7a . 【详解】设等差数列{}n a 的首项为1a ,公差为d ,则由24a =,48a =,得114,38,a d a d +=⎧⎨+=⎩解得12a =,2d =,所以71614a a d =+=.故选C . 【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建1a 和d 的方程组求通项公式.4.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且23SB .22S ,且3SC .22S ,且23SD .22S ,且3S【答案】D 【解析】 【分析】首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长. 【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,所以:2AB BC CD AD DE =====,22AE CE ==,22(22)223BE =+=.故选:D.. 【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题. 5.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2A B =-I ,则m =( )A .4B .-4C .8D .-8【答案】B 【解析】 【分析】根据交集的定义,{}2A B =-I ,可知2B -∈,代入计算即可求出m . 【详解】由{}2A B =-I ,可知2B -∈, 又因为{}2|120B x x mx =+-=, 所以2x =-时,2(2)2120m ---=, 解得4m =-. 故选:B. 【点睛】本题考查交集的概念,属于基础题.6.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( ) A .甲 B .乙C .丙D .丁【答案】D【分析】根据演绎推理进行判断. 【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁. 故选:D . 【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础.7.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1AB 的中点,,M N 分别为线段1AC 和 棱11B C 上任意一点,则22PM MN +的最小值为( )A 2B .2C 3D .2【答案】D 【解析】 【分析】取AC 中点E ,过M 作MF ⊥面1111D C B A ,可得MFN ∆为等腰直角三角形,由APM AEM ∆≅∆,可得PM EM =,当11MN B C ⊥时, MN 最小,由 22MF MN =,故()122222222PM MN PM MN EM MF AA ⎛⎫=+=+≥= ⎪ ⎪⎝⎭,即可求解. 【详解】取AC 中点E ,过M 作MF ⊥面1111D C B A ,如图:则APM AEM ∆≅∆,故PM EM =,而对固定的点M ,当11MN B C ⊥时, MN 最小.此时由MF ⊥面1111D C B A ,可知MFN ∆为等腰直角三角形,22MF MN =, 故()122222222PM MN PM MN EM MF AA ⎛⎫+=+=+≥= ⎪ ⎪⎝⎭.故选:D 【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题. 8.执行如图所示的程序框图,输出的结果为( )A .193B .4C .254D .132【答案】A 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,x M 的值,当3x =,1943M =>,退出循环,输出结果. 【详解】程序运行过程如下:3x =,0M =;23x =,23M =;12x =-,16M =;3x =,196M =;23x =,236M =; 12x =-,103M =;3x =,1943M =>,退出循环,输出结果为193, 故选:A. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.9.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( ) A .()1,+∞ B .13,8⎛⎤-∞ ⎥⎝⎦C .13,8⎛⎫-∞ ⎪⎝⎭D .13,8⎛⎫+∞⎪⎝⎭【答案】B 【解析】 【分析】由题意可知函数()y f x =为R 上为减函数,可知函数()2y a x =-为减函数,且()212212a ⎛⎫-≤- ⎪⎝⎭,由此可解得实数a 的取值范围. 【详解】由题意知函数()y f x =是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤, 因此,实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. 故选:B. 【点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.10.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则A B =I ( ) A .(3,)+∞ B .(,1)(3,)-∞-+∞UC .(2,)+∞D .(2,3)【答案】A 【解析】【分析】计算()(),13,B =-∞-+∞U ,再计算交集得到答案. 【详解】{}()()2230,13,B x x x =-->=-∞-⋃+∞,{}2,A x x x R =>∈,故(3,)A B =+∞I .故选:A . 【点睛】本题考查了交集运算,属于简单题.11.二项式732x x ⎛⎫- ⎪⎝⎭展开式中,1x 项的系数为( ) A .94516-B .18932-C .2164-D .28358【答案】D 【解析】 【分析】写出二项式的通项公式,再分析x 的系数求解即可. 【详解】二项式732x x ⎛⎫- ⎪⎝⎭展开式的通项为777217731(3)22rr rr r r r r x T C C x x ---+⎛⎫⎛⎫⎛⎫=-=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,令721r -=-,得4r =,故1x 项的系数为7444712835(3)28C -⎛⎫-=⎪⎝⎭. 故选:D 【点睛】本题主要考查了二项式定理的运算,属于基础题.12.已知平面向量,a b r r 满足||||a b =r r,且)b b -⊥r r ,则,a b r r 所夹的锐角为( )A .6π B .4π C .3π D .0【答案】B 【解析】 【分析】根据题意可得)0b b -⋅=r r,利用向量的数量积即可求解夹角.【详解】因为))0b b b b -⊥⇒-⋅=r r r r2||b b ⋅=rr而2cos ,2||||||a b a b a b a b b ⋅⋅===⋅r r r r r r r r r所以,a b rr 夹角为4π故选:B 【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省永州市2021届新高考数学四模考试卷含解析

湖南省永州市2021届新高考数学四模考试卷含解析

湖南省永州市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2(,)|A x y y x ==,{}22(,)|1B x y xy =+=,则A B I 的真子集个数为( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】求出A B I 的元素,再确定其真子集个数. 【详解】由2221y x x y ⎧=⎨+=⎩,解得x y ⎧⎪=⎪⎨⎪=⎪⎩或x y ⎧⎪=⎪⎨⎪=⎪⎩,∴A B I 中有两个元素,因此它的真子集有3个. 故选:C. 【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合,A B 都是曲线上的点集.2.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B.CD .23【答案】C 【解析】试题分析:设AC BD 、的交点为O ,连接EO ,则AEO ∠为,AE SD 所成的角或其补角;设正四棱锥的棱长为a,则1,,2AE EO a OA ===,所以222cos 2AE OA EO AEO AE OA +-∠=⋅2221)()()a a +-==,故C 为正确答案. 考点:异面直线所成的角.3.已知函数2()ln(1)f x x x-=+-,则函数(1)=-y f x 的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【详解】设2()(1)ln 1g x f x x x -=-=-+,由于120112ln 22g -⎛⎫=> ⎪⎝⎭+,排除B 选项;由于()2222(e),e 2e 3eg g --==--,所以()g e >()2e g ,排除C 选项;由于当x →+∞时,()0>g x ,排除D 选项.故A 选项正确. 故选:A 【点睛】本题考查了函数图像的性质,属于中档题. 4.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行; ②若一个平面经过另一个平面的垂线,则这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④【分析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择. 【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④. 故选:D 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.5.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .16481【答案】C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =.本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.6.已知函数()2()2ln (0)f x a e x x a =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点(,())s f t ,(,)s t D ∈所构成的平面区域面积为2e 1-,则a =( ) A .e B .1e 2- C .1 D .2e e - 【答案】D 【解析】 【分析】依题意,可得()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,于是可得()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,继而可得()221211a e e e e ⎛⎫---=-⎪⎝⎭,解之即可. 【详解】解:()2222()a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,因为所有点(,())s f t (,)s t D ∈所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=- ⎪⎝⎭, 解得2ea e =-, 故选:D. 【点睛】本题考查利用导数研究函数的单调性,理解题意,得到221(2)(1)1a e e e e---=-是关键,考查运算能力,属于中档题.7.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ).A .16B .283C .5D .4【答案】D 【解析】 【分析】由76523a a a =+,可得3q =,由219m n a a a ⋅=,可得4m n +=,再利用“1”的妙用即可求出所求式子的最小值. 【详解】设等比数列公比为(0)q q >,由已知,525523a a q a q =+,即223q q =+,解得3q =或1q =-(舍),又219m n a a a ⋅=,所以211111339m n a a a --⋅=,即2233m n +-=,故4m n +=,所以1914m n +=1919()()(10)4n mm n m n m n++=++ 1(1044≥+=,当且仅当1,3m n ==时,等号成立. 故选:D. 【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.8.根据散点图,对两个具有非线性关系的相关变量x ,y 进行回归分析,设u= lny ,v=(x-4)2,利用最小二乘法,得到线性回归方程为ˆu=-0.5v+2,则变量y 的最大值的估计值是( ) A .e B .e 2C .ln2D .2ln2【答案】B 【解析】 【分析】将u= lny ,v=(x-4)2代入线性回归方程ˆu=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值. 【详解】解:将u= lny ,v=(x -4)2代入线性回归方程ˆu=-0.5v+2得: ()2ln 0.542y x =--+,即()20.542x y e --+=,当4x =时,()20.542x --+取到最大值2, 因为xy e =在R 上单调递增,则()20.542x y e --+=取到最大值2e .故选:B. 【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,. 9.设n S 为等差数列{}n a 的前n 项和,若33a =-,77S =-,则n S 的最小值为( )A .12-B .15-C .16-D .18-【答案】C 【解析】 【分析】根据已知条件求得等差数列{}n a 的通项公式,判断出n S 最小时n 的值,由此求得n S 的最小值. 【详解】依题意11237217a d a d +=-⎧⎨+=-⎩,解得17,2a d =-=,所以29n a n =-.由290n a n =-≤解得92n ≤,所以前n项和中,前4项的和最小,且4146281216S a d =+=-+=-. 故选:C 【点睛】本小题主要考查等差数列通项公式和前n 项和公式的基本量计算,考查等差数列前n 项和最值的求法,属于基础题.10.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )AB .23C.2D .1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,可得:200023263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y ==时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件2PM MF =,利用向量的运算可知200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.11.若关于x 的不等式1127k xx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( )A .9B .8C .7D .6【答案】A 【解析】 【分析】根据题意可将1127kxx ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3x x k ≥,令()ln xf x x=,利用导数,判断其单调性即可得到实数k 的最小值. 【详解】因为不等式有正整数解,所以0x >,于是1127k xx ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3k xx≥, 1x =显然不是不等式的解,当1x >时,ln 0x >,所以ln 3ln 3k x x ≥可变形为ln 3ln 3x x k≥. 令()ln x f x x =,则()21ln xf x x-'=, ∴函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,而23e <<,所以 当*x ∈N 时,()(){}max ln 3max 2,33f f f ==,故ln 33ln 33k≥,解得9k ≥.故选:A . 【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.12.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解 【详解】 因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D 【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题 二、填空题:本题共4小题,每小题5分,共20分。

湖南省湘潭市2021届新高考第二次适应性考试数学试题含解析

湖南省湘潭市2021届新高考第二次适应性考试数学试题含解析

湖南省湘潭市2021届新高考第二次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( ) ABC .52D .54【答案】B 【解析】 【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解. 【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,12222||i i i i z i i z ----====-+∴==故选:B 【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.2.已知斜率为2的直线l 过抛物线C :22(0)y px p =>的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点M 的纵坐标为1,则p =( ) A .1 B.C .2D .4【答案】C 【解析】 【分析】设直线l 的方程为x =12y 2p+,与抛物线联立利用韦达定理可得p . 【详解】 由已知得F (2p,0),设直线l 的方程为x =12y 2p +,并与y 2=2px 联立得y 2﹣py ﹣p 2=0,设A (x 1,y 1),B (x 2,y 2),AB 的中点C (x 0,y 0), ∴y 1+y 2=p ,又线段AB的中点M的纵坐标为1,则y012 =(y1+y2)=12p=,所以p=2,故选C.【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.3.已知x,y满足不等式组220210x yx yx+-≤⎧⎪--≤⎨⎪≥⎩,则点(),P x y所在区域的面积是( )A.1 B.2 C.54D.45【答案】C【解析】【分析】画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线220x y+-=的斜率为2-,直线21x y--的斜率为12,所以两直线垂直,故BCD∆为直角三角形,易得(1,0)B,1(0,)2D-,(0,2)C,52BD=,5BC=115552224BCDS BD BC∆=⋅=⨯=.故选:C.【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.4.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞ B .(][),22,-∞-⋃+∞ C .(][),12,-∞-⋃+∞ D .[]2,2-【答案】B 【解析】 【分析】先根据题意,对原式进行化简可得()1111111n n a a n n n n n n +-==-+++,然后利用累加法求得11=3-11n a n n +++,然后不等式21211n at at n +<+-+恒成立转化为2213t at +-≥恒成立,再利用函数性质解不等式即可得出答案. 【详解】由题,()()11111n n n n n n a a a na n a ++-=+⇒=++即()1111111n n a a n n n n n n +-==-+++ 由累加法可得:11121111121n n nn n a a a a a a a a n n n n n ++-⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪++-⎝⎭⎝⎭⎝⎭L 即1111111123311121n a n n n n n n +⎛⎫⎛⎫⎛⎫=-+-++-+=-< ⎪ ⎪ ⎪++-+⎝⎭⎝⎭⎝⎭L 对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立 即22213240t at t at +-≥⇒+-≥令()[]()222424,2,2f a t at at t a =+-=+-∈-可得()20f ≥且()20f -≥即2212202120t t t t t t t t ⎧≥≤-⎧+-≥⇒⎨⎨≥≤---≥⎩⎩或或 可得2t ≥或2t ≤- 故选B 【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.5.盒中有6个小球,其中4个白球,2个黑球,从中任取()1,2i i =个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数()1,2i X i =,则( )A .()()1233P X P X =>=,12EX EX >B .()()1233P X P X =<=,12EX EX >C .()()1233P X P X =>=,12EX EX <D .()()1233P X P X =<=,12EX EX < 【答案】C 【解析】 【分析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项. 【详解】13X =表示取出的为一个白球,所以()14116233C P X C ===.12X =表示取出一个黑球,()12116123C P X C ===,所以()121832333E X =⨯+⨯=.23X =表示取出两个球,其中一黑一白,()11422268315C C P X C ===,22X =表示取出两个球为黑球,()22226115C P X C ==,24X =表示取出两个球为白球,()242266415C P X C ===,所以()2816103241515153E X =⨯+⨯+⨯=.所以()()1233P X P X =>=,12EX EX <. 故选:C 【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.6.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强【答案】D 【解析】 【分析】根据所给的雷达图逐个选项分析即可. 【详解】对于A ,甲的数据分析素养为100分,乙的数据分析素养为80分, 故甲的数据分析素养优于乙,故A 正确;对于B ,乙的数据分析素养为80分,数学建模素养为60分, 故乙的数据分析素养优于数学建模素养,故B 正确; 对于C ,甲的六大素养整体水平平均得分为10080100801008031063+++++=,乙的六大素养整体水平均得分为806080606010025063+++++=,故C 正确;对于D ,甲的六大素养中数学运算为80分,不是最强的,故D 错误; 故选:D 【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题. 7.下列函数中,在区间()0,∞+上为减函数的是( ) A .1y x =+B .21y x =-C .12xy ⎛⎫= ⎪⎝⎭D .2log y x =【答案】C 【解析】 【分析】利用基本初等函数的单调性判断各选项中函数在区间()0,∞+上的单调性,进而可得出结果. 【详解】对于A选项,函数y =()0,∞+上为增函数;对于B 选项,函数21y x =-在区间()0,∞+上为增函数;对于C 选项,函数12xy ⎛⎫= ⎪⎝⎭在区间()0,∞+上为减函数; 对于D 选项,函数2log y x =在区间()0,∞+上为增函数. 故选:C. 【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.8.已知椭圆22y a +22x b =1(a>b>0)与直线1y a x b -=交于A ,B 两点,焦点F(0,-c),其中c 为半焦距,若△ABF是直角三角形,则该椭圆的离心率为( ) AB.C.14D.14【答案】A 【解析】 【分析】联立直线与椭圆方程求出交点A ,B 两点,利用平面向量垂直的坐标表示得到关于,,a b c 的关系式,解方程求解即可. 【详解】联立方程222211y x a b y x a b⎧+=⎪⎪⎨⎪-=⎪⎩,解方程可得0x y a =⎧⎨=⎩或0x b y =-⎧⎨=⎩,不妨设A(0,a),B(-b ,0),由题意可知,BA u u u r ·BF u u u r=0,因为(),BA b a =u u u r ,(),BF b c =-u u u r,由平面向量垂直的坐标表示可得,0b b ac ⋅-=, 因为222b a c =-,所以a 2-c 2=ac , 两边同时除以2a 可得,210e e +-=,解得e=5-1或152e --=(舍去),所以该椭圆的离心率为5-1. 故选:A 【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于,,a b c 的关系式是求解本题的关键;属于中档题、常考题型. 9.在ABC ∆中,“sin sin A B >”是“tan tan A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】通过列举法可求解,如两角分别为2,63ππ时【详解】当2,36A B ππ==时,sin sin A B >,但tan tan A B <,故充分条件推不出; 当2,63A B ππ==时,tan tan A B >,但sin sin A B <,故必要条件推不出;所以“sin sin A B >”是“tan tan A B >”的既不充分也不必要条件. 故选:D. 【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题10.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( )A .2493π+B .4893π+C .483π+D .144183π+【答案】C【解析】【分析】由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为r=,圆锥的高h=截去的底面劣弧的圆心角为23π,底面剩余部分的面积为221412sin2323S r rππ=⋅+,利用锥体的体积公式即可求得. 【详解】由已知中的三视图知圆锥底面半径为6r==,圆锥的高6h==,圆锥母线l=120°,底面剩余部分的面积为2222212212sin66sin24323323S r rπππππ=+=⨯+⨯⨯=+11(2464833V Shππ==⨯+⨯=+故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.11.已知向量11,,2a b m⎛⎫== ⎪⎝⎭r r,若()()a b a b+⊥-r r r r,则实数m的值为()A.12B.C.12±D.±【答案】D【解析】【分析】由两向量垂直可得()()0a b a b+⋅-=r r r r,整理后可知22a b-=r r,将已知条件代入后即可求出实数m的值.【详解】解:()()a b a b+⊥-r r r rQ,()()0a b a b∴+⋅-=r r r r,即22a b-=r r,将1a=r和22212b m⎛⎫=+⎪⎝⎭r代入,得出234m=,所以2m=±.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.12.已知复数z 1=3+4i,z 2=a+i,且z 12z 是实数,则实数a 等于( ) A .34B .43C .-43D .-34【答案】A 【解析】分析:计算2z a i =-,由z 1()2z 3a 44a 3i =++-,是实数得4a 30-=,从而得解. 详解:复数z 1=3+4i,z 2=a+i,2z a i =-.所以z 1()()()2z 34i a i 3a 44a 3i =+-=++-,是实数, 所以4a 30-=,即3a 4=. 故选A.点睛:本题主要考查了复数共轭的概念,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省邵阳市2021届新高考第四次模拟数学试题含解析

湖南省邵阳市2021届新高考第四次模拟数学试题含解析

湖南省邵阳市2021届新高考第四次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在正项等比数列{a n}中,a5-a1=15,a4-a2 =6,则a3=()A.2 B.4 C.12D.8【答案】B 【解析】【分析】根据题意得到4511115a a a q a-=-=,342116a a a q a q-=-=,解得答案. 【详解】4511115a a a q a-=-=,342116a a a q a q-=-=,解得11 2a q =⎧⎨=⎩或11612aq=-⎧⎪⎨=⎪⎩(舍去).故2314a a q==.故选:B.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.2.()cos sinx ef xx=在原点附近的部分图象大概是()A.B.C.D.【答案】A【解析】【分析】分析函数()y f x =的奇偶性,以及该函数在区间()0,π上的函数值符号,结合排除法可得出正确选项.【详解】令sin 0x ≠,可得{},x x k k Z π≠∈,即函数()y f x =的定义域为{},x x k k Z π≠∈,定义域关于原点对称, ()()()()cos cos sin sin x xe ef x f x x x--==-=--,则函数()y f x =为奇函数,排除C 、D 选项; 当0πx <<时,cos 0x e>,sin 0x >,则()cos 0sin x e f x x=>,排除B 选项. 故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( )A .12B .21C .24D .36 【答案】B【解析】【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果.【详解】因为数列{}n a 是等差数列,1356a a a ++=,所以336a =,即32a =,又76a =, 所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.4.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( )A .12B .13C .4D .3【答案】C【解析】【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以 211d k =≤+,解得2244k -≤≤ 所以相交的概率22224P ==,故选C. 【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.5.函数()cos 22x x x f x -=+的部分图像大致为( ) A . B .C .D .【答案】A【解析】【分析】根据函数解析式,可知()f x 的定义域为x ∈R ,通过定义法判断函数的奇偶性,得出()()f x f x -=,则()f x 为偶函数,可排除,C D 选项,观察,A B 选项的图象,可知代入0x =,解得()00f >,排除B 选项,即可得出答案.【详解】解:因为()cos 22x x x f x -=+, 所以()f x 的定义域为x ∈R ,则()()()cos cos 2222x x x x x x f x f x ----===++,∴()f x 为偶函数,图象关于y 轴对称,排除,C D 选项,且当0x =时,()1002=>f ,排除B 选项,所以A 正确. 故选:A.【点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.6.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( )AB.7 C.12 D【答案】B【解析】【分析】利用两角差的正弦公式和边角互化思想可求得tan 3B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值.【详解】1sin sin cos sin 322b A a B a B a B π⎛⎫=-=- ⎪⎝⎭Q ,即1sin sin cos sin sin 2A B A B A B =-,即3sin sin cos A B A A =, sin 0A >Q,3sin B B ∴=,得tan B =,0B Q π<<,6B π∴=.由余弦定理得b === 由正弦定理sin sin c b C B =,因此,1sin sin 7c B C b ===. 故选:B.【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.7.若不等式22ln x x x ax -+…对[1,)x ∈+∞恒成立,则实数a 的取值范围是( )A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞【答案】B【解析】【分析】 转化22ln ,[1,)x x x ax x -+∈+∞…为2ln a x x +„,构造函数()2ln ,[1,)h x x x x =+∈+∞,利用导数研究单调性,求函数最值,即得解.【详解】由22ln ,[1,)x x x ax x -+∈+∞…,可知2ln a x x +„.设()2ln ,[1,)h x x x x =+∈+∞,则2()10h x x'=+>, 所以函数()h x 在[1,)+∞上单调递增,所以min ()(1)1h x h ==.所以min ()1a h x =„.故a 的取值范围是(,1]-∞.故选:B【点睛】 本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 8.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 【答案】D【解析】选项A ,否命题为“若1a ≤,则21a ≤”,故A 不正确.选项B ,逆命题为“若a b <,则22am bm <”,为假命题,故B 不正确.选项C ,由题意知对x ∀()0,∈+∞,都有34x x <,故C 不正确.选项D ,命题的逆否命题“若6πα=,则1sin 2α=”为真命题,故“若1sin 2α≠,则6πα≠”是真命题,所以D 正确.选D .9.已知集合{}{13,},|2x A x x x Z B x Z A =|-≤∈=∈∈,则集合B =( )A .{}1,0,1-B .{}0,1C .{}1,2D .{}0,1,2 【答案】D【解析】【分析】弄清集合B 的含义,它的元素x 来自于集合A ,且2x 也是集合A 的元素.【详解】因|1|3x -≤,所以24x -≤≤,故{}2,1,0,1,2,3,4A =--,又x ∈Z ,2x A ∈ ,则0,1,2x =, 故集合B ={}0,1,2.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.10.已知数列{}n a 满足:11,a =13,21,n n n n n a a a a a ++⎧=⎨+⎩为奇数为偶数,则6a =( ) A .16B .25C .28D .33【答案】C【解析】【分析】依次递推求出6a 得解.【详解】n=1时,2134a =+=,n=2时,32419a =⨯+=,n=3时,49312a =+=,n=4时,5212125a =⨯+=,n=5时,625328a =+=.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.11.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r ,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( ) A .13 B .223- C .23- D .13- 【答案】D【解析】【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】//a b∴r r 1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.12.下列四个图象可能是函数35log |1|1x y x +=+图象的是( ) A . B . C .D .【答案】C【解析】【分析】首先求出函数的定义域,其函数图象可由35log ||x y x=的图象沿x 轴向左平移1个单位而得到,因为35log ||x y x=为奇函数,即可得到函数图象关于(1,0)-对称,即可排除A 、D ,再根据0x >时函数值,排除B ,即可得解.【详解】∵35log |1|1x y x +=+的定义域为{}|1x x ≠-, 其图象可由35log ||x y x=的图象沿x 轴向左平移1个单位而得到, ∵35log ||x y x=为奇函数,图象关于原点对称, ∴35log |1|1x y x +=+的图象关于点(1,0)-成中心对称. 可排除A 、D 项.当0x >时,35log |1|01x y x +=>+,∴B 项不正确. 故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

湖南省益阳市2021届新高考第四次模拟数学试题含解析

湖南省益阳市2021届新高考第四次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线222:1(0)3-=>y x C a a 的一个焦点与抛物线28x y =的焦点重合,则双曲线C 的离心率为( )A .2 BC .3D .4【答案】A 【解析】 【分析】根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得234a +=,解可得1a =,由离心率公式计算可得答案.【详解】根据题意,抛物线28x y =的焦点为(0,2),则双曲线22213y x a -=的焦点也为(0,2),即2c =,则有234a +=,解可得1a =, 双曲线的离心率2ce a==. 故选:A . 【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.2.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( ) A .2 B .2iC .4D .4i【答案】A 【解析】 【分析】对复数z 进行乘法运算,并计算得到42z i =+,从而得到虚部为2. 【详解】因为(1)(3)42z i i i =+-=+,所以z 的虚部为2. 【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意21i =-.3.已知某口袋中有3个白球和a 个黑球(*a N ∈),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是ξ.若3E ξ=,则D ξ= ( )A .12B .1C .32D .2【答案】B 【解析】由题意2ξ=或4,则221[(23)(43)]12D ξ=-+-=,故选B . 4.已知点()2,0A 、()0,2B -.若点P在函数y =PAB △的面积为2的点P 的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】设出点P 的坐标,以AB 为底结合PAB △的面积计算出点P 到直线AB 的距离,利用点到直线的距离公式可得出关于a 的方程,求出方程的解,即可得出结论. 【详解】设点P的坐标为(a ,直线AB 的方程为122x y-=,即20x y --=, 设点P 到直线AB 的距离为d,则11222PAB S AB d d =⋅=⨯=V,解得d =另一方面,由点到直线的距离公式得d ==整理得0a =或40a =,0a ≥Q ,解得0a =或1a =或92a +=. 综上,满足条件的点P 共有三个. 故选:C. 【点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题. 5.己知全集为实数集R ,集合A={x|x 2 +2x-8>0},B={x|log 2x<1},则()R A B ⋂ð等于( ) A .[-4,2] B .[-4,2)C .(-4,2)D .(0,2)【答案】D 【解析】 【分析】求解一元二次不等式化简A ,求解对数不等式化简B ,然后利用补集与交集的运算得答案. 【详解】解:由x 2 +2x-8>0,得x <-4或x >2, ∴A={x|x 2 +2x-8>0}={x| x <-4或x >2}, 由log 2x<1,x >0,得0<x <2, ∴B={x|log 2x<1}={ x |0<x <2}, 则{}|42R A x x =-≤≤ð, ∴()()0,2R A B =I ð. 故选:D. 【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.6.设集合{}2320M x x x =++>,集合1{|()4}2xN x =≤ ,则 M N ⋃=( )A .{}2x x ≥- B .{}1x x >-C .{}2x x ≤-D .R【答案】D 【解析】试题分析:由题{}{}2320|21M x x x x x x =++=--或,{}2111|()4|()|2222x x N x x N x x -⎧⎫⎪⎪⎧⎫⎛⎫=≤=≤==≥-⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎪⎪⎩⎭,M N R ∴⋃=,选D考点:集合的运算7.已知函数()cos(2)(0)f x A x ϕϕ=+>的图像向右平移8π个单位长度后,得到的图像关于y 轴对称,(0)1f =,当ϕ取得最小值时,函数()f x 的解析式为( )A .())4f x x π=+B .()cos(2)4f x x π=+C .())4f x x π=-D .()cos(2)4f x x π=-【答案】A 【解析】 【分析】先求出平移后的函数解析式,结合图像的对称性和()01f =得到A 和ϕ. 【详解】因为()cos 2cos 284f x A x A x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦关于y 轴对称,所以()4k k Z πϕπ-+=∈,所以4k πϕπ=+,ϕ的最小值是4π.()0cos 14f A π==,则A =()24f x x π⎛⎫=+ ⎪⎝⎭.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x 的系数和平移量之间的关系. 8.等差数列{}n a 的前n 项和为n S ,若13a =,535S =,则数列{}n a 的公差为( ) A .-2 B .2 C .4 D .7【答案】B 【解析】 【分析】在等差数列中由等差数列公式与下标和的性质求得3a ,再由等差数列通项公式求得公差. 【详解】在等差数列{}n a 的前n 项和为n S ,则()155********a a S a a +===⇒=则3123272a a d d d =+=+=⇒= 故选:B 【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.9.已知函数()log (|2|)(0a f x x a a =-->,且1a ≠),则“()f x 在(3,)+∞上是单调函数”是“01a <<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】先求出复合函数()f x 在(3,)+∞上是单调函数的充要条件,再看其和01a <<的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案. 【详解】()log (|2|)(0a f x x a a =-->,且1a ≠),由20x a -->得2x a <-或2x a >+,即()f x 的定义域为{2x x a <-或2}x a >+,(0,a >且1a ≠)令2t x a =--,其在(,2)a -∞-单调递减,(2,)a ++∞单调递增,()f x 在(3,)+∞上是单调函数,其充要条件为2301a a a +≤⎧⎪>⎨⎪≠⎩即01a <<. 故选:C. 【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题. 10.已知复数z 满足i•z =2+i ,则z 的共轭复数是() A .﹣1﹣2i B .﹣1+2iC .1﹣2iD .1+2i【答案】D 【解析】 【分析】两边同乘-i ,化简即可得出答案. 【详解】i•z =2+i 两边同乘-i 得z=1-2i,共轭复数为1+2i ,选D. 【点睛】(,)z a bi a b R =+∈的共轭复数为z a bi =-11.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A .18种 B .36种 C .54种 D .72种【答案】B 【解析】 【分析】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得. 【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有234336C A =种.故选:B . 【点睛】本题考查排列组合,属于基础题.12.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo )、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( ) A .314B .1114C .114D .27【答案】B 【解析】 【分析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果. 【详解】从“八音”中任取不同的“两音”共有2828C =种取法;“两音”中含有打击乐器的取法共有228422C C -=种取法;∴所求概率22112814p ==. 故选:B . 【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.二、填空题:本题共4小题,每小题5分,共20分。

湖南省益阳市2021届新高考数学四模考试卷含解析

湖南省益阳市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在棱长均相等的正三棱柱111ABC A B C =中,D 为1BB 的中点,F 在1AC 上,且1DF AC ⊥,则下述结论:①1AC BC ⊥;②1AF FC =;③平面1DAC ⊥平面11ACC A :④异面直线1AC 与CD 所成角为60︒其中正确命题的个数为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断F 是1AC 的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线1AC 与CD 所成角判断④的正误.【详解】解:不妨设棱长为:2,对于①连结1AB ,则1122AB AC ==1190AC B ∴∠≠︒即1AC 与11B C 不垂直,又11//BC B C ,∴①不正确;对于②,连结AD ,1DC ,在1ADC ∆中,15AD DC ==而1DF AC ⊥,F ∴是1AC 的中点,所以1AF FC =,∴②正确;对于③由②可知,在1ADC ∆中,3DF =,连结CF ,易知2CF =Rt CBD ∆中,5CD =,222DF CF CD ∴+=,即DF CF ⊥,又1DF AC ⊥,DF ⊥∴面11ACC A ,∴平面1DAC ⊥平面11ACC A ,∴③正确; 以1A 为坐标原点,平面111A B C 上过1A 点垂直于11A C 的直线为x 轴,11A C 所在的直线为y 轴,1A A 所在的直线为z 轴,建立如图所示的直角坐标系;()10,0,0A , )13,1,0B ,()10,2,0C , ()0,0,2A , ()0,2,2C , )3,1,1D;()10,2,2AC =-u u u u r, ()3,1,1CD =--u u u r ;异面直线1AC 与CD 所成角为θ,11cos 0||||AC CD AC CD θ==u u u u r u u u r g u u u ur u u u r ,故90θ=︒.④不正确. 故选:B .【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.2.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,3520a a +=,2664a a =,则5S =( ) A .48 B .36C .42D .31【答案】D 【解析】试题分析:由于在等比数列{}n a 中,由2664a a =可得:352664a a a a ==, 又因为3520a a +=,所以有:35,a a 是方程220640x x -+=的二实根,又0n a >,1q >,所以35a a <, 故解得:354,16a a ==,从而公比5132,1a q a a ===; 那么55213121S -==-,故选D .考点:等比数列. 3. “1cos 22α=-”是“3k παπ=+,k Z ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件【答案】B 【解析】 【分析】先求出满足1cos 22α=-的α值,然后根据充分必要条件的定义判断. 【详解】 由1cos 22α=-得2223k παπ=±,即3k παπ=±,k Z ∈ ,因此“1cos 22α=-”是“3k παπ=+,k Z ∈”的必要不充分条件.故选:B . 【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.4.已知命题p :,x R ∃∈使1sin 2x x <成立. 则p ⌝为( ) A .,x R ∀∈1sin 2x x ≥均成立 B .,x R ∀∈1sin 2x x <均成立 C .,x R ∃∈使1sin 2x x ≥成立D .,x R ∃∈使1sin 2x x =成立【答案】A 【解析】试题分析:原命题为特称命题,故其否定为全称命题,即:p ⌝,sin 2x x x ∀∈≥R . 考点:全称命题.5.已知AM BN ,分别为圆()221:11O x y ++=与()222:24O x y -+=的直径,则AB MN ⋅u u u r u u u u r的取值范围为( ) A .[]0,8 B .[]0,9 C .[]1,8 D .[]1,9【答案】A 【解析】 【分析】由题先画出基本图形,结合向量加法和点乘运算化简可得()()212121212129AB MN O O AO O B O O AO O B AO O B -⎡⎤⋅=++⎡⎤⋅=⎣⎦-⎣⎦++u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u u u u u r u u u u r u v u u u r u u u v u ,结合12AO O B +u u u u v u u u u v的范围即可求解【详解】 如图,()()()()1122112212121212AB MN AO O O O B MO O O O N O O AO O B O O AO O B ⎡⎤⎡⎤⋅⎣⎦⎣⎦⋅=++⋅++=++-+u u u r u u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u r u u u u r u u u u u r u u u u r u u u u r u u u u u r u u u u r u u u u r2221212129O O AO O B AO O B =-+=-+u u u u u v u u u u v u u u u v u u u u v u u u u v 其中[][]1221,211,3AO O B +∈-+=u u u u v u u u u v ,所以[]2293,910,8AB MN ⋅∈-⎡⎤⎣-=⎦u u u r u u u u r .故选:A 【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题 6.下列函数中,值域为R 且为奇函数的是( ) A .2y x =+ B .y sinx =C .3y x x =-D .2x y =【答案】C 【解析】 【分析】依次判断函数的值域和奇偶性得到答案. 【详解】A. 2y x =+,值域为R ,非奇非偶函数,排除;B. y sinx =,值域为[]1,1-,奇函数,排除;C. 3y x x =-,值域为R ,奇函数,满足;D. 2x y =,值域为()0,∞+,非奇非偶函数,排除; 故选:C . 【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用. 7.已知向量(3sin ,2)a x =-r,(1,cos )b x =r,当a b ⊥rr时,cos 22x π⎛⎫+= ⎪⎝⎭( ) A .1213-B .1213C .613-D .613【答案】A 【解析】 【分析】根据向量的坐标运算,求出tan x ,22tan cos 22tan 1x x x π⎛⎫+=- ⎪+⎝⎭,即可求解. 【详解】a b⊥Q r r ,23sin 2cos 0,tan 3a b x x x ⋅=-=∴=r r 222sin cos cos 2sin 22sin cos x x x x x x π⎛⎫∴+=-=- ⎪+⎝⎭22tan 12tan 113x x =-=-+.故选:A. 【点睛】本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.8.已知()()()[)3log 1,1,84,8,6x x f x x x ⎧+∈-⎪=⎨∈+∞⎪-⎩若()()120f m f x ⎡⎤--≤⎣⎦在定义域上恒成立,则m 的取值范围是( ) A .()0,∞+ B .[)1,2C .[)1,+∞D .()0,1【答案】C 【解析】 【分析】先解不等式()2f x ≤,可得出89x ≥-,求出函数()y f x =的值域,由题意可知,不等式()()819m f x -≥-在定义域上恒成立,可得出关于m 的不等式,即可解得实数m 的取值范围. 【详解】()()()[)3log 1,1,84,8,6x x f x x x ⎧+∈-⎪=⎨∈+∞⎪-⎩Q ,先解不等式()2f x ≤.①当18x -<<时,由()()3log 12f x x =+≤,得()32log 12x -≤+≤,解得889x -≤≤,此时889x -≤<; ②当8x ≥时,由()426f x x =≤-,得8x ≥. 所以,不等式()2f x ≤的解集为89x x ⎧⎫≥-⎨⎬⎩⎭.下面来求函数()y f x =的值域.当18x -<<时,019x <+<,则()3log 12x +<,此时()()3log 10f x x =+≥;当8x ≥时,62x -≥,此时()(]40,26f x x =∈-. 综上所述,函数()y f x =的值域为[)0,+∞, 由于()()120f m f x ⎡⎤--≤⎣⎦在定义域上恒成立,则不等式()()819m f x -≥-在定义域上恒成立,所以,10m -≥,解得m 1≥. 因此,实数m 的取值范围是[)1,+∞. 故选:C. 【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.9.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43B .916C .34D .169【答案】D 【解析】 【分析】分别求出球和圆柱的体积,然后可得比值. 【详解】设圆柱的底面圆半径为r,则r,所以圆柱的体积2126V =π⋅⨯=π.又球的体积32432233V =π⨯=π,所以球的体积与圆柱的体积的比213216369V V ππ==,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.10.52mx ⎫+⎪⎭的展开式中5x 的系数是-10,则实数m =( )A .2B .1C .-1D .-2【答案】C 【解析】 【分析】利用通项公式找到5x 的系数,令其等于-10即可. 【详解】二项式展开式的通项为15552222155()()r r rr rr r TC x mx m C x---+==,令55522r -=,得3r =, 则33554510T m C x x ==-,所以33510m C =-,解得1m =-. 故选:C 【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题. 11.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<<I B .{|e}A B x x =<I C .{|0e}A B x x =<<U D .{|1e}A B x x =-<<U【答案】D 【解析】 【分析】 【详解】因为2{|1}{|11}A x x x x =<=-<<,{|ln 1}{|0e}B x x x x =<=<<, 所以{|01}A B x x =<<I ,{|1e}A B x x =-<<U ,故选D .12.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( ) A .12πB .3π C .6π D .9π 【答案】C 【解析】 【分析】利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解. 【详解】10=, 利用等面积法,可得其内切圆的半径为6826810⨯==++r ,所以向次三角形内投掷豆子,则落在其内切圆内的概率为2216682ππ⋅=⨯⨯.故选:C. 【点睛】本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省岳阳市2021届新高考第四次模拟数学试题含解析

湖南省岳阳市2021届新高考第四次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x f x -=-⋅+(02x <<),则函数[]()y f x =的值域为( ) A .13,22⎡⎫-⎪⎢⎣⎭ B .{}1,0,1- C .{}1,0,1,2- D .{}0,1,2【答案】B 【解析】 【分析】利用换元法化简()f x 解析式为二次函数的形式,根据二次函数的性质求得()f x 的取值范围,由此求得[]()y f x =的值域.【详解】 因为12()4324x x f x -=-⋅+(02x <<),所以()21241324232424x xx x y =-⋅+=-⋅+,令2x t=(14t <<),则21()342f t t t =-+(14t <<),函数的对称轴方程为3t =,所以min 1()(3)2f t f ==-,max 3()(1)2f t f ==,所以13(),22f x ⎡⎫∈-⎪⎢⎣⎭,所以[]()y f x =的值域为{}1,0,1-. 故选:B 【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识. 2.已知集合A={x|x<1},B={x|31x <},则 A .{|0}A B x x =<I B .A B R =U C .{|1}A B x x =>U D .A B =∅I【答案】A 【解析】∵集合{|31}x B x =< ∴{}|0B x x =<∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=< 故选A3.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( ) A .2 B .2iC .4D .4i【答案】A 【解析】 【分析】对复数z 进行乘法运算,并计算得到42z i =+,从而得到虚部为2. 【详解】因为(1)(3)42z i i i =+-=+,所以z 的虚部为2. 【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意21i =-.4.已知函数()222cos 1f x x x =-+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 【答案】C 【解析】 【分析】利用二倍角公式与辅助角公式将函数()y f x =的解析式化简,然后利用图象变换规律得出函数()y g x =的解析式为()2sin 416g x x π⎛⎫=-+ ⎪⎝⎭,可得函数()y g x =的值域为[]1,3-,结合条件()()129g x g x ⋅=,可得出()1g x 、()2g x 均为函数()y g x =的最大值,于是得出12x x -为函数()y g x =最小正周期的整数倍,由此可得出正确选项. 【详解】函数()222cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=- ⎪⎝⎭,将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,易知函数()y g x =的值域为[]1,3-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由()4262x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==.故选C . 【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定()1g x 、()2g x 均为函数()y g x =的最大值,考查分析问题和解决问题的能力,属于中等题.5.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A .5.45B .4.55C .4.2D .5.8【答案】B 【解析】如图,已知10AC AB +=,3BC =,2229AB AC BC -== ∴()()9AB AC AB AC +-=,解得0.9AB AC -= ,∴100.9AB AC AB AC +=⎧⎨-=⎩,解得 5.454.55AB AC =⎧⎨=⎩. ∴折断后的竹干高为4.55尺 故选B.6.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3 B .()1,2C .()0,3D .()0,2【答案】C 【解析】 【分析】显然函数()22xf x a x=--在区间()1,2内连续,由()f x 的一个零点在区间()1,2内,则()()120f f <,即可求解. 【详解】由题,显然函数()22xf x a x=--在区间()1,2内连续,因为()f x 的一个零点在区间()1,2内,所以()()120f f <,即()()22410a a ----<,解得0<<3a ,故选:C 【点睛】本题考查零点存在性定理的应用,属于基础题.7.已知11()x x f x e e x --=-+,则不等式()(32)2f x f x +-≤的解集是( ) A .[)1,+∞ B .[)0,+∞ C .(],0-∞ D .(],1-∞【答案】A 【解析】 【分析】构造函数()()1g x f x =-,通过分析()g x 的单调性和对称性,求得不等式()(32)2f x f x +-≤的解集. 【详解】构造函数()()()11111x x g x f x ex e--=-=-+-,()g x 是单调递增函数,且向左移动一个单位得到()()11x xh x g x e x e =+=-+, ()h x 的定义域为R ,且()()1x x h x e x h x e-=--=-, 所以()h x 为奇函数,图像关于原点对称,所以()g x 图像关于()1,0对称. 不等式()(32)2f x f x +-≤等价于()()13210f x f x -+--≤, 等价于()()320g x g x +-≤,注意到()10g =,结合()g x 图像关于()1,0对称和()g x 单调递增可知3221x x x +-≤⇒≥. 所以不等式()(32)2f x f x +-≤的解集是[)1,+∞.故选:A【点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题. 8.一个几何体的三视图如图所示,则该几何体的体积为()A.103B.3C.83D.73【答案】A【解析】【分析】根据题意,可得几何体,利用体积计算即可. 【详解】由题意,该几何体如图所示:该几何体的体积11110222222323 V=⨯⨯⨯-⨯⨯⨯=.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.9.设双曲线22221x ya b-=(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于22a a b+渐近线斜率的取值范围是()A.(1,0)(0,1)-UB .(,1)(1,)-∞-+∞UC .(2,0)(0,2)-UD .(,2)(2,)-∞-+∞U 【答案】A 【解析】 【分析】 【详解】 由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于22a a b ++,所以,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A . 10.在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线11B D ⋂平面M α=,则11MD MB 的值为( ) A .14B .13C .12 D .23【答案】B 【解析】 【分析】作出图形,设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,推导出11//B P C G ,由线面平行的性质定理可得出1//C G DF ,可得出点F 为11C D 的中点,同理可得出点E 为11A D 的中点,结合中位线的性质可求得11MD MB 的值. 【详解】 如下图所示:设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,Q 四边形ABCD 为正方形,P 、G 分别为AB 、CD 的中点,则//BP CG 且BP CG =,∴四边形BCGP 为平行四边形,//PG BC ∴且PG BC =,11//B C BC Q 且11B C BC =,11//PG B C ∴且11PG B C =,则四边形11B C GP 为平行四边形, 11//B P C G ∴,1//B P Q 平面α,则存在直线a ⊂平面α,使得1//B P a ,若1C G ⊂平面α,则G ∈平面α,又D ∈平面α,则CD ⊂平面α, 此时,平面α为平面11CDD C ,直线1A Q 不可能与平面α平行, 所以,1C G ⊄平面α,1//C G a ∴,1//C G ∴平面α,1C G ⊂Q 平面11CDD C ,平面11CDD C I 平面DF α=,1//DF C G ∴,1//C F DG Q ,所以,四边形1C GDF 为平行四边形,可得1111122C E DG CD C D ===,F ∴为11C D 的中点,同理可证E 为11A D 的中点,11B D EF M =Q I ,11111124MD D N B D ∴==,因此,1113MD MB =. 故选:B. 【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面α与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.11.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭,则cos2α等于( )A .19B .79-C .23-D .13【答案】B 【解析】 【分析】先由三角函数的定义求出sin α,再由二倍角公式可求cos2α. 【详解】解:角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭1cos 3α=,2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭,故选:B 【点睛】考查三角函数的定义和二倍角公式,是基础题.12.已知抛物线2()20C x py p :=>的焦点为1(0)F ,,若抛物线C 上的点A 关于直线22l y x +:=对称的点B 恰好在射线()113y x ≤=上,则直线AF 被C 截得的弦长为( ) A .919B .1009C .1189D .1279【答案】B 【解析】 【分析】由焦点得抛物线方程,设A 点的坐标为2()14m m ,,根据对称可求出点A 的坐标,写出直线AF 方程,联立抛物线求交点,计算弦长即可. 【详解】抛物线2()20C x py p :=>的焦点为1(0)F ,, 则12p=,即2p =, 设A 点的坐标为2()14m m ,,B 点的坐标为()113n n ≤,,, 如图:∴2211114211142222m n m m m n ⎧-⎪=-⎪⎪-⎨⎪++⎪=⨯+⎪⎩, 解得62m n =⎧⎨=⎩,或343359m n ⎧=-⎪⎪⎨⎪=⎪⎩(舍去), ∴9(6)A ,∴直线AF 的方程为413y x +=, 设直线AF 与抛物线的另一个交点为D ,由24134y x x y ⎧=+⎪⎨⎪=⎩,解得69x y =⎧⎨=⎩或2319x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴21,39D ⎛⎫-⎪⎝⎭, ∴2221100||69399AD ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,故直线AF 被C 截得的弦长为1009. 故选:B . 【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

2021届新高考全国100所名校高考模拟示范卷(一)数学试题(word版,含解析)

2021年普通高等学校招生全国统一考试数学模拟测试一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,2z i i =-+则z= A.2-iB.1-2iC.-1+2iD.-2+i 2.已知集合2{|30},{2,2}A x x x a B =-+==-,若A∩B={2},则A ∪B=A.{-2,1,2}B.{-2,-1,2}C.{-2,3,2}D.{-2,2}3.62()x x-的展开式的常数项为 A.-120 B.-60 C.120 D.604.某实验室针对某种新型病毒研发了一种疫苗,并在500名志愿者身上进行了人体注射实验,发现注射疫苗的志愿者均产生了稳定的免疫应答。若这些志愿者的某免疫反应蛋白M 的数值X(单位:mg/L)近似服从正态分布2(15,),N σ且X 在区间(10,20)内的人数占总人数的19,25则这些志愿者中免疫反应蛋白M 的数值X 不低于20的人数大约为A.30B.60C.70D.140 5.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念。星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗。到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的亮度的概念。天体的明暗程度可以用星等或亮度来描述。两颗星的星等与亮度满足12212.5(lg lg )m m E E -=-,其中星等为i m 的星星的亮度为(1,2).i E i =已知"角宿一"的星等是0.97,"水委一"的星等是0.47.“水委一”的亮度是"角宿一"亮度的r 倍,则与r 最接近的是(当|x|较小时,2101 2.3 2.7x x x ≈++)A.1.56B.1.57C.1.58D.1.596.已知圆C:22(3)(3)9x y -++=,直线l:(m+1)x+(2-m)y-3m=0,则当圆心C 到直线l 的距离最大时,直线l 被圆C 所截得的弦长为A.4 .25B .23C .27D7.如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD,底面ABCD 是梯形,2//,,43AB CD BCD AB π∠==,PD=BC=CD=2,则四棱锥P-ABCD 的外接球的表面积为A.16πB.18πC.20πD.24π8.已知抛物线2:2(0)C y px p =>的焦点为F(1,0),准线为l,过焦点F 的直线交抛物线C 于点A 、B(A 在x 轴上方),且点A 的横坐标为3,D 是y 轴正半轴上一点,O 为坐标原点,∠ODA 的角平分线过AF 的中点,则点D 的坐标为A.(0,2) 53.(0,)2B C.(0,3) .(0,33)D二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。9.已知曲线C:221.x y a b+= A.若C 是双曲线,则ab<0B.若a>0,C 是离心率为2的双曲线,则3b a =- C.若ab>0,则C 是椭圆D.若C 是离心率为12的椭圆,则34b a = 10.已知()cos()(0,0,0)f x A x B A ωϕωϕπ=++>><<,其部分图象如图所示,M 、N 分别为最高点、最低点,则A.A=7B.B=29 .4C πϕ= D.f(11)=32.511.如图,平面α∩平面β=直线l,点A,C ∈α,点B,D ∈β,且A 、B 、C 、D ∉l,点M 、N 分别是线段AB 、CD 的中点。A.当直线AC 与BD 相交时,交点一定在直线l 上B.当直线AB 与CD 异面时,MN 可能与l 平行C.当A 、B 、C 、D 四点共面且AC//l 时,BD//lD.当M 、N 两点重合时,直线AC 与l 不可能相交12.已知数列{}n a 的通项公式是2,n n a =1a 和2a 之间插入1个数11,x 使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n n n x x x ,使121,,,,,n nn n n n a x x x a +成等差数列。这样得到新数列{}:n b 1112212233132334,,,,,,,,,a x a x x a x x x a …,记数列{}n b 的前n 项和为,n S 则836.A a b =B.112132n n n n n n n a x x x a n -++++++=⋅ 38.320C b = 45.6401D S =三、填空题:本题共4小题,每小题5分,共20分。把答案填在答题卡中的横线上。13.若向量a =(1,2),b -a =(-2,1),则a ·b =____.14.若函数21()7ln 2f x x x a x =-++在x=2处取极值,则a=____ ,f(x)的极大值为____.15.已知正实数a,b,c 满足22243,a b c +=则2c c a b +的最小值为____. 16.如图,在△ABC 中,,3BAC A π∠=B=3,AC=2,点D 为边BC 上一个动点,将△ABD 沿AD 翻折,使得点B到达B '的位置,且平面AB D '⊥平面ACD.当CD=_____时,B C '到最小值。四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)在3210,9,3a S b ==<-①②③这三个条件中任选一个,补充在下面问题中。设n S 为各项均为正数的数列{}n a 的前n 项和,满足____2,36nn n a a S b +=+是否存在实数b,使得数列{}n a 成为等差数列?若存在,求出b 和数列{}n a 的通项公式;若不存在,请说明理由。(注:如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)第七次全国人口普查是指中国在2020年开展的全国人口普查,普查标准时点是2020年11月1日零时,将彻查人口出生变动情况以及房屋情况。普查对象是普查标准时点在中华人民共和国境内的自然人以及在中华人民共和国境外但未定居的中国公民,不包括在中华人民共和国境内短期停留的境外人员。普查主要调查人口和住户的基本情况,内容包括:姓名、公民身份证号码、性别、年龄、民族、受教育程度、行业、职业、迁移流动、婚姻生育、死亡、住房情况等。普查登记方式全程电子化方式普查,由普查员使用手机上门入户登记或由普查对象通过互联网自主填报。某机构调查了100位居名的普查登记方式,数据统计如下表,部分数据缺失 普查员使用手机上门入户登记 通过互联网自主填报 年龄不超过40岁10 a 年龄超过40岁b 15已知从调查的居民中任取一人,其年龄不超过40岁的概率比其年龄超过40岁的概率大110. (1)求a,b 的值;(2)是否有99%的把握认为年龄与普查登记方式有关?附:22()()()()()n ad bc a b c K d a c b d -=++++其中n=a+b+c+d.P(K 2≥k 0) 0.050 0.010 0.001K 0 3.841 6.635 10.82819.(本小题满分12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知28sin 72cos2.2B C A -+-=(1)求A;(2)若7,a =b+c=5,求BC 边上的高.20.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,∠ACB=90°,1,.AC BC AB AA ==D 、E 分别是1CC 、1BB 的中点.(1)证明:1C E ⊥平面ACB 1;(2)求二面角1C AB D --的余弦值.21.(本小题满分12分)已知12F F 、分别为椭圆C:22184x y +=的左、右焦点,点M 是椭圆C 上异于左、右顶点的一点,过点1F 作12F MF ∠的外角平分线的垂线交2F M 的延长线于P 点.(1)当M 点在椭圆C.上运动时,求P 点的轨迹方程E.(2)设点N(t,0)(t≠0),过点N 作一条斜率存在且不为0的直线l 交椭圆C 于A,B 两点,点B 关于x 轴的对称点为B '直线AB '交x 轴于点T,O 是坐标原点,求证:|ON|·|OT|为定值.22.(本小题满分12分)已知函数2()ln 1.f x x x =-+(1)求曲线y= f(x)在点(1,f(1))处的切线方程;(2)若方程f(x)=b 有两个实数根12,,x x 且12,x x <证明:2112.x x b -<-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省湘潭市2021届新高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A .12个月的PMI 值不低于50%的频率为13B .12个月的PMI 值的平均值低于50%C .12个月的PMI 值的众数为49.4%D .12个月的PMI 值的中位数为50.3% 【答案】D 【解析】 【分析】根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案. 【详解】对A ,从图中数据变化看,PMI 值不低于50%的月份有4个,所以12个月的PMI 值不低于50%的频率为41123=,故A 正确; 对B ,由图可以看出,PMI 值的平均值低于50%,故B 正确; 对C ,12个月的PMI 值的众数为49.4%,故C 正确,; 对D ,12个月的PMI 值的中位数为49.6%,故D 错误 故选:D. 【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.2.已知偶函数()f x 在区间(],0-∞内单调递减,(2log 3a f =,sin 5b f π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭,2314c f ⎛⎫⎛⎫⎪= ⎪ ⎪⎝⎭,A .a b c <<B .c a b <<C .b c a <<D .c b a <<【答案】D 【解析】 【分析】首先由函数为偶函数,可得函数()f x 在[)0,+∞内单调递增,再由sin 5π⎛⎫>- ⎪⎝⎭2314⎛⎫> ⎪⎝⎭,即可判定大小 【详解】因为偶函数()f x 在(],0-∞减,所以()f x 在[)0,+∞上增,1>,1sin ,152π⎛⎫⎛⎫-∈ ⎪ ⎪⎝⎭⎝⎭,23110,42⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,∴c b a <<.故选:D 【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.3.已知数列{}n a 中,121,2a a ==,且当n 为奇数时,22n n a a +-=;当n 为偶数时,()2131n n a a ++=+.则此数列的前20项的和为( )A .1133902-+B .11331002-+C .1233902-+D .12331002-+【答案】A 【解析】 【分析】根据分组求和法,利用等差数列的前n 项和公式求出前20项的奇数项的和,利用等比数列的前n 项和公式求出前20项的偶数项的和,进而可求解. 【详解】当n 为奇数时,22n n a a +-=,则数列奇数项是以1为首项,以2为公差的等差数列, 当n 为偶数时,()2131n n a a ++=+,则数列中每个偶数项加1是以3为首项,以3为公比的等比数列. 所以201232013192420S a a a a a a a a a a =++++=+++++++L L L()1101313100101333902-=+--+=-.故选:A 【点睛】本题考查了数列分组求和、等差数列的前n 项和公式、等比数列的前n 项和公式,需熟记公式,属于基础题.4.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(),x y ;再统计两数能与1构成钝角三角形三边的数对(),x y 的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( ) A .4amB .2a m+ C .2a mm+ D .42a mm+ 【答案】D 【解析】 【分析】由试验结果知m 对0~1之间的均匀随机数,x y ,满足0101x y <<⎧⎨<<⎩,面积为1,再计算构成钝角三角形三边的数对(,)x y ,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值. 【详解】解:根据题意知,m 名同学取m 对都小于1的正实数对(),x y ,即0101x y <<⎧⎨<<⎩,对应区域为边长为1的正方形,其面积为1,若两个正实数,x y 能与1构成钝角三角形三边,则有22110101x y x y x y ⎧+<⎪+>⎪⎨<<⎪⎪<<⎩,其面积142S π=-;则有142a m π=-,解得42a mmπ+= 故选:D . 【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭5.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为a 的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( )A .234a π⎛⎫-⎪⎝⎭B .262a π⎛⎫-⎪⎝⎭C .264a π⎛⎫-⎪⎝⎭D .2364a π⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】画出直观图,由球的表面积公式求解即可 【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉18个球而形成的,所以它的表面积为2222213346484a S a a a a πππ⎛⎫⎛⎫=+-+⨯=- ⎪ ⎪⎝⎭⎝⎭.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力. 6.已知集合{|4},{|2,}A x N y x B x x n n Z =∈=-==∈,则A B =I ( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]【答案】B 【解析】 【分析】{}{|4}0,1,2,3,4A x N y x =∈=-=,{|2,}B x x n n Z ==∈表示偶数,故{0,2,4}A B =I . 故选:B . 【点睛】本题考查了集合的交集,意在考查学生的计算能力.7.设x 、y 、z 是空间中不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;②x 、y 是直线,z 是平面;③z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x z ⊥且y z x y ⊥⇒∥”为真命题的是( ) A .③④ B .①③C .②③D .①②【答案】C 【解析】 【分析】①举反例,如直线x 、y 、z 位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x 、y 、z 位于正方体的三个共点侧面时. 【详解】①当直线x 、y 、z 位于正方体的三条共点棱时,不正确; ②因为垂直于同一平面的两直线平行,正确; ③因为垂直于同一直线的两平面平行,正确; ④如x 、y 、z 位于正方体的三个共点侧面时, 不正确. 故选:C. 【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目. 8.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A .8B .83C .822+D .82+根据三视图还原几何体为四棱锥,即可求出几何体的表面积. 【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2, 所以1122222222284222S =⨯+⨯⨯⨯+⨯⨯⨯=+, 故选:D 【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题. 9.把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移3π个单位,那么所得图象的一个对称中心为( ) A .(,0)3πB .(,0)4πC .(,0)12πD .(0,0)【答案】D 【解析】 【分析】 【详解】试题分析:把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得1sin()26y x π=+的图象;再将图象向右平移3π个单位,可得11sin[()]sin 2362y x x ππ=-+=的图象,那么所得图象的一个对称中心为(0,0),故选D. 考点:三角函数的图象与性质.10.已知函数()(1)(2)x e f x m x x e -=---(e 为自然对数底数),若关于x 的不等式()0f x >有且只有一个正整数解,则实数m 的最大值为( )A .32e e+B .22e e +C .32e e -D .22e e -若不等式()0f x >有且只有一个正整数解,则(1)y m x =-的图象在()y g x =图象的上方只有一个正整数值,利用导数求出()g x 的最小值,分别画出()y g x =与(1)y m x =-的图象,结合图象可得. 【详解】解:()(1)(2)0xf e e x m x x =--->-, ∴(1)(2)x m x x e e ->-+, 设()(2)xy g x x e e ==-+, ∴()(1)x g x x e '=-,当1x >时,()0g x '>,函数()g x 单调递增, 当1x <时,()0g x '<,函数()g x 单调递减, ∴()(1)0g x g ≥=,当x →+∞时,()f x →+∞,当x →-∞,()f x e →, 函数(1)y m x =-恒过点()1,0,分别画出()y g x =与(1)y m x =-的图象,如图所示,,若不等式()0f x >有且只有一个正整数解,则(1)y m x =-的图象在()y g x =图象的上方只有一个正整数值,∴32e ee m +<≤,故实数m 的最大值为32e e+,故选:A 【点睛】本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.11.已知函数())f x x R =∈,若关于x 的方程()10f x m -+=恰好有3个不相等的实数根,则实数m 的取值范围为( )A .1)B .(C .(11,1)e+D .1()+ 【答案】D 【解析】 【分析】讨论0x >,0x =,0x <三种情况,求导得到单调区间,画出函数图像,根据图像得到答案. 【详解】当0x >时,()xf x e =,故'()f x =10,2⎛⎫⎪⎝⎭上单调递增,在1,2⎡⎫+∞⎪⎢⎣⎭上单调递减,且122f e⎛⎫=⎪⎝⎭; 当0x =时,()00f =;当0x <时,()xf x e=,'()0f x =<,函数单调递减;如图所示画出函数图像,则1012m f ⎛⎫<-<= ⎪⎝⎭,故()1m +∈. 故选:D .【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.12.已知曲线11(0x y a a -=+>且1)a ≠过定点(),k b ,若m n b +=且0,0m n >>,则41m n+的最小值为( ). A .92B .9C .5D .52【答案】A 【解析】 【分析】根据指数型函数所过的定点,确定1,2k b ==,再根据条件2m n +=,利用基本不等式求41m n+的最小值. 【详解】Q 定点为(1,2),1,2k b ∴==,2m n ∴+=41141()()2m n m n m n +=++∴149(5+)22m n n m =+… 当且仅当4m nn m =时等号成立,即42,33m n ==时取得最小值92. 故选:A 【点睛】二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档