2016年四川省绵阳市中考数学试卷(含详细答案及解析)
(中考精品)四川省绵阳市中考数学真题(解析版)

绵阳市2022年高中阶段学校招生暨初中学业水平考试数学满分:150分考试时间:120分钟注意事项:1.答题前,考生务必将自己的姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并认真核对条形码上的姓名、准考证号、考点、考场号.2.选择题答案使用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题答案使用0.5毫米的黑色墨迹签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.考试结束后,将试题卷和答题卡一并交回.第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,每小题3分,共36分,每个小题只有一个选项符合题目要求.1. 的绝对值是()A. B. C. D.【答案】B【解析】【分析】根据绝对值的性质解答即可.【详解】解:.故选:B.【点睛】本题主要考查了绝对值的性质,掌握绝对值的性质是解答本题的关键.2. 下图所示几何体是由7个完全相同的正方体组合而成,它的俯视图为().A. B. C. D.【答案】D【解析】【分析】根据俯视图是从上面看到的图形,且看得见的棱是实线,看不见的棱是虚线,即可得出答案.【详解】解:如图所示几何体的俯视图是:故选:D.【点睛】本题考查了简单组合体的三视图,熟知三视图的相关概念,明确从上面看到的图形是俯视图是解题的关键.3. 中国共产主义青年团是中国青年的先锋队,是中国共产党的忠实助手和可靠后备军、截止至2021年12月31日,全国共有共青团员7371.5万名,将7371.5万用科学记数法表示为()A. 0.73715×108B. 7.3715×108C. 7.3715×107D. 73.715×106【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|< 10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n是正数,当原数的绝对值< 1时,n是负数.【详解】7371.5万= 7371.5×104 = 7.3715×107故选:C.【点睛】此题考查了科学记数法,解题的关键是掌握科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列关于等边三角形的描述不正确的是()A. 是轴对称图形B. 对称轴的交点是其重心C. 是中心对称图形D. 绕重心顺时针旋转120°能与自身重合【答案】C【解析】【分析】根据等边三角形的轴对称性,三线合一的性质逐一判断选项,即可.【详解】解:A. 等边三角形是轴对称图形,正确,不符合题意,B. 等边三角形的对称轴的交点是其重心,正确,不符合题意,C.等边三角形不是中心对称图形,符合题意,D. 等边三角形绕重心顺时针旋转120°能与自身重合,正确,不符合题意.故选C.【点睛】本题考查了等边三角形的性质,三角形重心,中心对称图形与轴对称图形的定义,正确掌握相关定义是解题关键.5. 某中学青年志愿者协会的10名志愿者,一周的社区志愿服务时间如下表所示:时间/h 2 3 4 5 6人数 1 3 2 3 1关于志愿者服务时间的描述正确的是()A. 众数是6B. 平均数是4C. 中位数是3D. 方差是1【答案】B【解析】【分析】根据中位数,众数,平均数和方差的定义,逐一判断选项即可.【详解】解:∵志愿者服务时间为3小时的人数为3个人,志愿者服务时间为5小时的人数为3个人,∴志愿者服务时间的众数为3和5,故A错误;∵2133425361410⨯+⨯+⨯+⨯+⨯=,∴平均数是4,故B正确;∵时间从小到大排序,第5、6个数都是4,∴中位数为4,故C错误;∵()()()()()22222 1243342443541641.410⨯-+⨯-+⨯-+⨯-+⨯-=,∴方差为1.4,故D错误,故选B.【点睛】本题主要考查中位数,众数,平均数和方差的定义,熟练掌握上述定义和计算方法是解题的关键.6. 在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF )放在平面直角坐标系中,若AB 与x 轴垂直,顶点A 的坐标为(2,-3).则顶点C 的坐标为( )A. (2-B. (0,1+C. (2D.(22-+【答案】A 【解析】【分析】根据正六边形的性质以及坐标与图形的性质进行计算即可.【详解】解:如图,连接BD 交CF 于点M ,交y 轴于点N ,设AB 交x 轴于点P ,根据题意得:BD ∥x 轴,AB ∥y 轴,BD ⊥AB ,∠BCD =120°,AB =BC =CD =4, ∴BN =OP ,∠CBD =CDB =30°,BD ⊥y 轴, ∴122BM BC ==,∴BM ==∵点A 的坐标为(2,-3),∴AP =3,OP =BN =2,∴2MN =-,BP =1, ∴点C 的纵坐标为1+2=3,∴点C 的坐标为(2-. 故选:A【点睛】本题考查正多边形,勾股定理,直角三角形的性质,掌握正六边形的性质以及勾股定理是正确计算的前提,理解坐标与图形的性质是解决问题的关键.7. 正整数a 、b a <<b <<,则a b =( )A. 4B. 8C. 9D. 16【答案】D 【解析】【分析】根据a 、b 的取值范围,先确定a 、b ,再计算a b .【详解】解:<<<<,4a ∴=,2b =,4216a b ∴==.故选:D .【点睛】本题主要考查无理数的估值,掌握立方根,平方根的意义,并能根据a 、b 的取值范围确定的值是解题的关键.8. 某校开展岗位体验劳动教育活动,设置了“安全小卫士”“环卫小卫士”“图书管理小卫士”“宿舍管理小卫士”共四个岗位,每个岗位体验人数不限且每位同学只能从中随机选择一个岗位进行体验、甲、乙两名同学都参加了此项活动,则这两名同学恰好在同一岗位体验的概率为( ) A.14B.16C.18D.116【答案】A 【解析】【分析】设“安全小卫士”“环卫小卫士”“图书管理小卫士”“宿舍管理小卫士”四个岗位为A 、B 、C 、D ,画出树状图,即可求解.【详解】解:设“安全小卫士”“环卫小卫士”“图书管理小卫士”“宿舍管理小卫士”四个岗位为A 、B 、C 、D , 画树状图如下:∵一共有16种等可能的结果,两名同学恰好在同一岗位体验有4种, ∴这两名同学恰好在同一岗位体验的概率=4÷16=14, 故选A .【点睛】本题主要考查随机事件的概率,画出树状图是解题的关键.9. 如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm ).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)( )A. 282.6B. 282600000C. 357.96D.357960000 【答案】A 【解析】【分析】求出圆锥的表面积210.30.5=0.15m S r AB πππ=⋅⋅=⋅⨯,圆柱的表面积222120.31=0.6m S r πππ=⋅⋅=⨯⨯,进一步求出组合体的表面积为:21220.9m π=+=S S S ,即可求出答案.【详解】解:如图:由勾股定理可知:圆锥的母线长500mm 0.5m ===AB ,设底圆半径为r ,则由图可知300mm=0.3m =r , 圆锥的表面积:210.30.5=0.15m S r AB πππ=⋅⋅=⨯⨯, 圆柱的表面积:222120.31=0.6m S r πππ=⋅⋅=⨯⨯, ∴组合体的表面积为:21220.9m π=+=S S S , ∵每平方米用锌0.1千克,∴电镀1000个这样的锚标浮筒,需要锌0.90.1100090282.6kg ππ⨯⨯==. 故选:A【点睛】本题考查组合体的表面积,解题的关键是求出圆锥的表面积和圆柱的表面积,掌握勾股定理,表面积公式.10. 如图1,在菱形ABCD 中,∠C =120°,M 是AB 的中点,N 是对角线BD 上一动点,设DN 长为x ,线段MN 与AN 长度的和为y ,图2是y 关于x 的函数图象,图象右端点F的坐标为,则图象最低点E 的坐标为( )A. 2⎫⎪⎪⎭B. C. D.2)【答案】C【解析】【分析】根据点F的坐标,可得MB=1,AB=2,连接AC,CM,交BD于点N1,连接A N1,此时MN+AN的最小值=M N1+A N1=CM,根据菱形和直角三角形的性质可得CM==,DN1,进而即可得到答案.【详解】解:∵图象右端点F的坐标为,M是AB的中点,∴BD=,MN+AN=AB+MB=3MB=3,∴MB=1,AB=2,连接AC,CM,交BD于点N1,连接A N1,此时MN+AN的最小值=M N1+A N1=CM,∵在菱形ABCD中,∠C=120°,∴∠ABC=60°,是等边三角形,∴ABC∴CM⊥AB,∠BCM=30°,∴BC=2×1=2,CM=,∵AB∥CD,∴CM⊥CD,∵∠ADC=∠ABC=60°,∴∠BDC=30°,∴DN1=CD÷cos30°=2,∴E的坐标为,故选C.【点睛】本题主要考查菱形的性质,含30°角的直角三角形的性质,勾股定理,函数的图像,添加辅助线,构造直角三角形是解题的关键.11. 如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,②320a b +>,③24b a c ac >++,④a c b >>.正确结论的个数为( ) A. 1个 B. 2个C. 3个D. 4个【答案】B 【解析】【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x 轴的交点已经x =-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y 轴的交点以及a -b +c <0,即可判断④. 【详解】∵对称轴为直线x =1,-2<x 1<-1, ∴3<x 2<4,①正确, ∵2ba-= 1, ∴b =- 2а,∴3a +2b = 3a -4a = -a ,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,∴a-b+c<0,∴a+c<b,∵a>0,∴b=-2a<0,∴a+c<0,∴b2 -4ac > a+ c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b=–2a,∴b>c,以④错误;故选B【点睛】本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.12. 如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°.若AH=2,AD=5EFGH的周长为()+ C. + D.A. 4(2+B. 1)+2)【答案】A 【解析】【分析】证明四边形EFGH 为平行四边形,作⊥EP HF 交于点P ,HK BC ⊥交于点K ,设=HP a ,表示出2EH a =,=EP,PF =,==EF HG ,进一步表示出==HKAB ,)1=HF a,321=+-=+KF ,利用勾股定理即可求出a 的值,进一步可求出边形EFGH 的周长.【详解】解:∵四边形ABCD 为矩形, ∴AD BC =,AB CD =, ∵AH CF =,AE CG =, ∴HD BF =,GD BE =, 在AEH △和CGF △中,AE CG A C AH CF =⎧⎪∠=∠⎨⎪=⎩∴()AEH CGF SAS ≌, ∴EH FG =,同理:()BEF DGH SAS ≌, ∴EF HG =,∴四边形EFGH 为平行四边形,作⊥EP HF 交于点P ,HK BC ⊥交于点K ,设=HP a ,∵60EHF ∠=︒,45GHF ∠=︒,2AH =,5=AD , ∴2EHa =,=EP,PF=,==EF HG,∴=AE==BE DG ,∴=+=+AB AE BE∵HK BC ⊥,∴ABKH为矩形,即==HK AB∵)1=+HFa,321=+-=+KF ,∴222+=HK KF HF,即))222211+=a ,解得:2a =,∴四边形EFGH的周长为:()((22442+=+=+EH HG , 故选:A .【点睛】本题考查矩形的判定及性质,平行四边形的判定及性质,勾股定理,全等三角形的判定及性质,解题的关键是利用222+=HK KF HF 求出a 的值.第Ⅱ卷(非选择题,共114分)二、填空题:本大题共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上.13. 因式分解:32312x xy -=_________. 【答案】()()322x x y x y +- 【解析】【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解. 【详解】解:原式=()()()2234322x x yx x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键. 14. 分式方程131x x x x +=--的解是_________. 【答案】3x =- 【解析】【详解】分式方程化:x 2-x =(x +1)(x -3), 整理得x +3=0, 求根为x =-3,经检验3x =-是方程的根.为15. 两个三角形如图摆放,其中∠BAC=90°,∠EDF=100°,∠B=60°,∠F=40°,DE与∥,则∠DMC的大小为_________.AC交于M,若BC EF【答案】110°##110度【解析】【分析】延长ED交BC于点G,利用三角形内角和定理求出∠C=30°,∠E=40°,再利用平行的性质求出∠EGC=∠E= 40°,再利用三角形内角和即可求出∠DMC=110°.【详解】解:延长ED交BC于点G,∵∠BAC=90°,∠EDF=100°,∠B=60°,∠F=40°,∴∠C=30°,∠E=40°,∥,∵BC EF∴∠EGC=∠E= 40°,∴∠DMC=180°-∠EGC-∠C= 110°.故答案为:110°【点睛】本题考查三角形内角和定理以及平行线的性质,解题的关键是求出∠C=30°,∠E =40°,证明∠EGC=∠E= 40°.16. 如图,测量船以20海里每小时的速度沿正东方向航行并对某海岛进行测量,测量船在A处测得海岛上观测点D位于北偏东15°方向上,观测点C位于北偏东45°方向上,航行半个小时到达B点,这时测得海岛上观测点C位于北偏西45°方向上,若CD与AB平行,则CD=_________海里(计算结果不取近似值).【答案】5)-##(5-+ 【解析】【分析】过点D 作DE 上AB ,垂足为E ,根据题意求得10AB =,1545,90,FAD F F A AB C ︒︒︒==∠=∠∠,进而求得ACB =∠90°,然后在Rt △ACB 中,利用锐角三角函数的定义求出AC 的长,设DE =x 海里,再在Rt △ADE 中,利用锐角三角函数的定义求出AE 的长,在Rt △DEC 中,利用锐角三角函数的定义求出EC ,DC 的长,最后根据AC =52海里,列出关于x 的方程,进行计算即可解答. 【详解】如图:过点D 作DE 上AB ,垂足为E ,依题意得,120102AB =⨯=,1545,90,FAD F F A AB C ︒︒︒==∠=∠∠, 904545,CBA ︒︒︒=-=∴∠30DAC FAC FAD ︒∴∠=∠-∠=,45,FA A C B B A F C ︒=∠-∠=∠180ACB CAB CBA ︒∴∠=-∠-∠=90°,在Rt ACB △中,sin 4510AC AB =⋅︒==, 设DE x =海里,在Rt DAE中,tan 30DE AE ︒===海里, DE AB ∥ ,45DCA CAB ︒∠∴∠==,在Rt DEC △中,tan 45DECE x ︒==海里,sin 45DE DC ︒===海里, ,EC A AE C +=∴x +=海里,x =∴海里,5)DC ==∴-海里,故答案为:5)-.【点睛】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17. 已知关于x 的不等式组2325323x x mx x +≥+⎧⎪+⎨-<-⎪⎩无解,则1m 的取值范围是_________.【答案】1105m <≤ 【解析】【分析】分别求出每一个不等式的解集,根据口诀:大大小小找不到并结合不等式组的解集可得答案.【详解】解∶ 2325323x x m x x +≥+⎧⎪⎨+-<-⎪⎩①②,解不等式①得:3x m ≥-, 解不等式②得:2x <, ∵不等式组无解,∴32m -≥,解得:5m ≥, ∴1105m <≤. 故答案为:1105m <≤ 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. 如图,四边形ABCD 中,∠ADC =90°,AC ⊥BC ,∠ABC =45°,AC 与BD 交于点E ,若AB=,CD =2,则△ABE 的面积为_________.【答案】607【解析】【分析】过点D 作DF ⊥AC 于点F ,解Rt △ABC 求出AC 、BC ,再由勾股定理求得AD ,根据三角形的面积公式求得DF ,由勾股定理求得AF ,再证明△DEF ∽△BEC ,求得EF ,进而求得AE ,最后由三角形面积公式求得结果. 【详解】解:过点D 作DF ⊥AC 于点F ,∵AC ⊥BC ,∠ABC =45°, ∴△ABC 等腰直角三角形,∴AC BC AB ===, ∵∠ADC =90°,CD =2,∴4AD ==,∵1122ACD S AC DF AD CD ∆=⋅=⋅,∴DF =,∴AF ==,∴CF =,为∵DF ∥BC , ∴△DEF ∽△BEC ,∴EF DF EC BC ==,解得:EF =,∴AE =,∴1160227ABE S AE BC ∆=⋅==. 故答案为:607【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,相似三角形的性质与判定,三角形的面积公式,关键是作辅助线构造相似三角形与直角三角形.三、解答题:本大题共7个小题,共90分,解答应写出文字说明,证明过程或演算步骤.19. (1)计算:112tan 60|2|2022-⎛⎫+-+- ⎪⎝⎭; (2)先化简,再求值:3x y x y x yx x y x y ⎛⎫--+-÷⎪--⎝⎭,其中1x =,100y = 【答案】(1)2024(2)化简的结果:,yx当1x =,100y =时,值为100 【解析】【分析】(1)先计算三角函数值、绝对值化简、负指数幂、二次根式化简,再进行加减计算即可.(2)先化简分式,再代入求值.【详解】(1)原式222022=+-+22022=++22022=+ 2024=(2)原式()()(3)()()x y x y x x y x yx x y x x y x y ⎡⎤---+=-÷⎢⎥---⎣⎦2222(3)()x xy y x xy x y x x y x y -+---=⋅-+22223()x xy y x xy x yx x y x y -+-+-=⋅-+2()xy y x yx x y x y+-=⋅-+ ()()y x y x yx x y x y+-=⋅-+y x=将1x =,100y =代入上式,得1001001y x == 故原式的值为100.【点睛】本题考查实数的运算、分式的化简求值,解决本题的关键是熟悉各计算法则. 20. 目前,全球淡水资源分布不均、总量不足是人类面临共同问题,某市在实施居民用水定额管理前,通过简单随机抽样对居民生活用水情况进行了调查,获得了若干个家庭去年的月均用水量数据(单位:t ),整理出了频数分布表,频数分布直方图和扇形统计图,部分信息如下: 月均用水量(t )2≤x <3.53.5≤x <55≤x<6.56.5≤x <88≤x <9.5频数 7 6 对应的扇形区域ABCDE根据以上信息,解答下列问题:(1)补全频数分布直方图,并求出扇形图中扇形E 对应的圆心角的度数;(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收的费,若要使该市60%的家庭水费支出不受影响,你觉得家庭月均用水量应该定为多少?并说明理由.【答案】(1)频数分布直方图见解析,E对应的圆心角的度数为:14.4°(2)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,理由见解析【解析】【分析】(1)根据题A的频数和百分比得到抽取的总数,进而求得B、C的频数即可补全频数分布直方图,求出E的频数,360°乘以E所占的比例即可求解;(2)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而7+23=30,故家庭月均用水量应该定为5吨.【小问1详解】抽取的总数为:7÷14%=50,B的频数为:50×46%=23,C的频数为:50×24%=12,频数分布直方图如下:扇形图中扇形E对应的圆心角的度数为:360°250=14.4°;【小问2详解】要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,理由如下:因为月平均用水量不超过5吨的有7+23=30(户),30÷50=60%.【点睛】本题考查了读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21. 某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:水果品种梨子菠萝苹果车厘子批发价格(元/kg) 4 5 6 40零售价格(元/kg ) 5 6 8 50请解答下列问题:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg ,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg ,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些? 【答案】(1)500元;(2)方案一购进88kg 菠萝,210kg 苹果;方案二购进94kg 菠萝,205kg 苹果. 【解析】【分析】(1)设第一天,该经营户批发了菠萝xkg ,苹果ykg ,根据该经营户用1700元批发了菠萝和苹果共300kg ,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论; (2)设购进菠萝mkg ,则购进苹果17005kg 6m-,根据“菠梦进货量不低于88kg ,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m ,170056m-均为正整数,即可得出各进货方案. 【小问1详解】解:设第一天,该经营户批发菠萝xkg ,苹果ykg ,根据题意得:300561700x y x y +=⎧⎨+=⎩, 解得:100200x y =⎧⎨=⎩,∴(65)(86)(65)100(86)200500x y -+-=-⨯+-⨯=元, 答:这两种水果获得的总利润为500元; 【小问2详解】解:设购进菠萝mkg ,则购进苹果17005kg 6m-,根据题意: 8817005(65)(86)5006m m m ≥⎧⎪-⎨-+-⨯>⎪⎩,解得:88100m ≤<, 的∵m ,170056m -均为正整数, ∴m 取88,94,∴该经营户第二天共有2种批发水果的方案,方案一购进88kg 菠萝,210kg 苹果;方案二购进94kg 菠萝,205kg 苹果.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.22. 如图,一次函数1y k x b =+与反比例函数2k y x=在第一象限交于(2,8)M 、N 两点,NA 垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内图象上一动点,请简要描述使PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和PMN 面积的最小值.【答案】(1)16y x=,10y x =-+; (2)(4,4)P --,=54PMN S △.【解析】【分析】(1)利用待定系数法即可求出反比例函数解析式,再利用四边形OANM 的面积为38.求出()8,2N ,进一步利用待定系数法即可求出一次函数解析式;(2)平移一次函数与16y x=在第三象限有唯一交点P ,此时P 到MN的距离最短,的PMN 的面积最小,设平移后的一次函数解析式为:y x a =-+,联立16y x=,解得:=8-a ,进一步求出:=4x -,即(4,4)P --,连接PM ,PN ,过点P 作⊥PB NA 的延长线交于点B ,作MC PB ⊥交于点C ,根据PMN PMC PNB MCBN S S S S 四边形=+-△△△以及点的坐标即可求出PMN 的面积.【小问1详解】解:∵(2,8)M 在2k y x=上, ∴216k =,即反比例函数解析式为:16y x =, 设16(,N n n, ∵四边形OANM 的面积为38. ∴()111628823822⎛⎫⨯⨯++⨯-= ⎪⎝⎭n n ,整理得:221580--=n n , 解得:1=2-n (舍去),=8n , ∴()8,2N ,将()8,2N 和(2,8)M 代入1y k x b =+可得:112882k b k b +=⎧⎨+=⎩解得:1110k b =-⎧⎨=⎩, ∴一次函数解析式为:10y x =-+.【小问2详解】解:平移一次函数10y x =-+到第三象限,与16y x =在第三象限有唯一交点P ,此时P 到MN 的距离最短,PMN 的面积最小,设平移后的一次函数解析式为:y x a =-+,联立16y x =可得:16-+=x a x,整理得:216=0-+x ax ,∵有唯一交点P ,∴2=416=01∆-⨯⨯a ,解得:=8-a 或=8a (舍去),将=8-a 代入216=0-+x ax 得:2168=0-+x x ,解得:=4x -经检验:=4x -是分式方程16-+=x a x的根, ∴(4,4)P --,连接PM ,PN ,过点P 作⊥PB NA 的延长线交于点B ,作MC PB ⊥交于点C ,则:PMN PMC PNB MCBN S S S S 四边形=+-△△△,∵(4,4)P --,()8,2N ,(2,8)M , ∴()()1=4284=362⨯+⨯+PMC S △, ()1=6126=542MCBN S 四边形⨯+⨯, ()()1=2484=362⨯+⨯+PNB S △, ∴=365436=54PMN PMC PNB MCBN S S S S 四边形=+-+-△△△.【点睛】本题考查一次函数和反比例函数的综合,难度较大,解题的关键是掌握待定系数法求函数解析式,掌握平行线之间的距离,解分式方程,解一元二次方程知识点.23. 如图,AB 为⊙O 的直径,C 为圆上的一点,D 为劣弧 BC的中点,过点D 作⊙O 的切线与AC 的延长线交于点P ,与AB 的延长线交于点F ,AD 与BC 交于点E .(1)求证:BC PF ∥;(2)若⊙O DE =1,求AE 的长度;(3)在(2)的条件下,求DCP 的面积.【答案】(1)见解析(2)3 (3)45【解析】【分析】(1)连接OD ,利用垂径定理可得OD BC ^,由PF 为⊙O 的切线可得OD PF ⊥,由平行线的判定定理可得结论;(2)连接OD ,BD ,设AE x =,则1AD x =+,由DCE DAC △∽△可得21CD x =+,221BD CD x ==+,在Rt ADB 中,利用勾股定理可得3x =,即3AE =;(3)连接OD ,BD ,设OD 与BC 交于点H ,利用cos cos EDH DAB ∠=∠=可得DH =,在Rt OHB △中利用勾股定理可得BH =CH BH ==明四边形HDPC 为矩形,所以DCP 面积为矩形HDPC 面积的一半,进而可得DCP 的面积.【小问1详解】解:证明:如图,连接OD ,D Q 为劣弧 BC的中点, CDBD ∴=, OD BC ∴⊥,又 PF 为⊙O 的切线,OD PF ∴⊥,//BC PF ∴;【小问2详解】解:如图,连接OD ,BD ,设AE x =,则1AD x =+,D Q 为劣弧 BC的中点,CDBD ∴=, CD BD DCE DAC ∴=∠=∠,,又CDE ADC ∠=∠ ,DCE DAC ∴△∽△,DE CD CD AD∴=, 21(1)1CD DE AD x x ∴=⋅=⨯+=+,221BD CD x ==+,AB Q 为⊙O 的直径,90ADB ∴∠=︒,又 ⊙OAB ∴=,∴由222AD BD AB +=得22(1)(1)x x +++=,解得3x =或6x =-(舍),3AE ∴=;【小问3详解】解:如图,设OD 与BC 交于点H ,由(2)知3AE =,314AD ∴=+=,2BD ==,在Rt ADB 中,cos AD DAB AB ∠=== OA OD = ,EDH DAB ∴∠=∠,cos cos EDH DAB ∴∠=∠=, 又1DE = ,DH DE ∴==,OH OD DH ∴=-=-= OH BC ⊥ ,CH BH ∴===, AB Q 为⊙O 的直径,90ACB ∴∠=︒,由(1)可知OD PD ⊥,OH BC ⊥,∴四边形HDPC 为矩形,CP DH ∴==DP CH ==,114225DCP HDPC S S ∴=== 矩形.【点睛】本题考查了圆的有关性质,圆周角定理,垂径定理及其推论,勾股定理,相似三角形的判定与性质,圆的切线的判定与性质,矩形的判定与性质,平行线的判定与性质,熟练掌握这些性质并能灵活运用是解题的关键.24. 如图,抛物线y =ax 2+bx +c 交x 轴于A (-1,0),B 两点,交y 轴于点C (0,3),顶点D 的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°.若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与ΔADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+3;(2)存在,P(0,-1)使∠APB+∠ACB=180°,理由见解析;(3)存在点M,使以M,F,E三点为顶点的三角形与ΔADE相似,此时点M的坐标为(3,0)或(-3,-12)或120,39⎛⎫-⎪⎝⎭【解析】【分析】(1)由抛物线的对称轴可得点B的坐标,由此设出交点式,代入点C的坐标,即可得出抛物线的解析式;(2)由题意可知,点A,C,B,P四点共圆,画出图形,即可得出点P的坐标;(3)由抛物线的对称性可得出点E的坐标,点D的坐标,根据两点间的距离公式可得出AD,DE,AE的长,可得出△ADE是直角三角形,且DE∶AE=1:3,再根据相似三角形的性质可得出EF和FM的比例,由此可得出点M的坐标.【小问1详解】解:∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(-1,0),∴B(3,0),设抛物线的解析式为:y=a(x+1)(x-3),把C(0,3)代入抛物线的解析式得:-3a=3,解得a=-1,∴抛物线的解析式为:y=-(x+1)(x-3)=-x2+2x+3;【小问2详解】存在,P(0,-1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,∵点A (0,-1),B (3,0),C (0,3),∴OB =OC =3,∴∠OCB =∠OBC =45°,∴∠APC =∠ABC =45°,∴△AOP 是等腰直角三角形,∴OP =OA =1,∴P (0,-1);【小问3详解】解:存在,理由如下:∵y =-x 2+2x +3=-(x -1)2+4,∴D (1,4),由抛物线的对称性得:E (2,3),∵A (-1,0),∴AD DE AE ===∴222AD DE AE =+,∴△ADE 是直角三角形,且∠AED =90°,DE ∶AE =1∶3,∵点M 在直线l 下方的抛物线上,设2(,23)M t t t -++,则t >2或t <0,∵MF ⊥l ,∴点F (t ,3),∴|2|EF t =-,()223232MF t t t t =--++=-,∵以M ,F ,E 三点为顶点的三角形与ΔADE 相似,∴::1:3EF MF DE AE ==或::1:3MF EF DE AE ==,∴2|2|:(2)1:3t t t --=或2(2):|2|1:3t t t --=,解得t =2(舍去) 或t =3或t =-3或13t =(舍去)或13t =-, ∴点M 的坐标为(3,0)或(-3,-12)或120,39⎛⎫- ⎪⎝⎭, 综上所述,存在点M ,使以M ,F ,E 三点为顶点的三角形与ΔADE 相似,此时点M 的坐标为(3,0)或(-3,-12)或120,39⎛⎫- ⎪⎝⎭. 【点睛】本题属于二次函数综合题,主要考查待定系数法求函数解析式,圆内四边形的性质,相似三角形的性质与判定,分类讨论思想等,第(2)问得出四点共固是解题关键;第(3)问得出△ADE 是直角三角形并得出AD ∶AE 的值是解题关键.25. 如图,平行四边形ABCD 中,DB =AB =4,AD =2,动点E ,F 同时从A 点出发,点E 沿着A →D →B 的路线匀速运动,点F 沿着A →B →D 的路线匀速运动,当点E ,F 相遇时停止运动.(1)如图1,设点E 的速度为1个单位每秒,点F 的速度为4个单位每秒,当运动时间为23秒时,设CE 与DF 交于点P ,求线段EP 与CP 长度的比值; (2)如图2,设点E 的速度为1个单位每秒,点Fx 秒,ΔAEF 的面积为y ,求y 关于x 的函数解析式,并指出当x 为何值时,y 的值最大,最大值为多少?(3)如图3,H 在线段AB 上且AH =13HB ,M 为DF 的中点,当点E 、F 分别在线段AD 、AB 上运动时,探究点E 、F 在什么位置能使EM =HM .并说明理由.【答案】(1)49EP PC =; (2)y 关于x 的函数解析式为()2230243226x x y x x x x x x ⎧⎪≤≤⎪⎪⎛⎪=++≤≤ ⎨ ⎝⎪⎪⎪+≤≤⎪⎩;当x =时,y的最大值为2+; (3)当EF ∥BD 时,能使EM =HM .理由见解析【解析】【分析】(1)延长DF 交CB 的延长线于点G ,先证得~AFD BFG ,可得AF AD FB BG=,根据题意可得AF =83,AE =23,可得到CG =3,再证明△PDE ∽△PGC ,即可求解;(2)分三种情况讨论:当0≤x ≤2时,E 点在AD 上,F 点在AB上;当2x ≤≤时,E 点在BD 上,F 点在ABx ≤≤时,点E 、F 均在BD 上,即可求解; (3)当EF ∥BD 时,能使EM =HM .理由:连接DH ,根据直角三角形的性质,即可求解 .【小问1详解】解:如图,延长DF 交CB 的延长线于点G ,∵四边形ABCD 是平行四边形,∴CG AD ∥,∴~AFD BFG , ∴AF AD FB BG=, ∵点E 的速度为1个单位每秒,点F 的速度为4个单位每秒,运动时间为23秒, ∴AF =83,AE =23, ∵AB =4,AD =2,∴BF =43, ED =43, ∴82343BG=, ∴BG =1,∴CG =3,∵CG AD ∥,∴△PDE ∽△PGC , ∴EP ED PC GC=, ∴49EP PC =; 【小问2详解】解:根据题意得:当0≤x ≤2时,E 点在AD 上,F 点在AB 上,此时AE =x,AF =,∵DB =, AB =4,AD =2,∴222AD BD AB +=,∴△ABD 是直角三角形, ∵12AD AB =, ∴∠ABD =30°,∴∠A =60°,如图,过点E 作EH AB ⊥交于H ,∴sin 60EH AE x ︒=⋅=,∴2113224y AF EH x x =⨯⨯==; ∴当x >0时,y 随x 的增大而增大,此时当x =2时,y 有最大值3;当2x ≤≤时,E 点在BD 上,F 点在AB 上, 如图, 过点E 作EN AB ⊥交于N ,过点D 作DM AB ⊥交于M ,则EN ∥DM ,根据题意得:DE =x -2,∴2BE x =+-,在Rt △ABD 中,sin DM AD A =⋅=,AM =1, ∵EN ∥DM ,∴△BEN ∽△BDM , ∴EN BE DM BD=,=∴112EN x =+-,∴2111)(1)222y AF EN x x x =⨯⨯=-⨯⨯+=,此时该函数图象的对称轴为直线1x =- ,∴当1x >-时,y 随x 的增大而减小,此时当x =2时,y 有最大值3;x ≤≤时,点E 、F 均在BD 上, 过点E 作EQ AB ⊥交于Q ,过点F 作FP AB ⊥交于P ,过点D 作DM ⊥AB 于点M ,∴AB BF +=,DA +DE =x ,∵AB =4,AD =2,∴2BE x =-+,4DF =∵PF ∥DM ,∴△BFP ∽△BDM ,∴BF PF BD DM ==∴2PF x =-, ∵//EQ DM ,∴△BEQ ∽△BDM ,∴BE EQ BD DM ==∴112EQ x =-,。
四川省绵阳市中考数学试卷含答案

四川省绵阳市中考数学试卷一、选择题(共12小题,每题3分,满分36分)1.(3分)(•绵阳)2相反数是()C.D.2A.﹣2 B.﹣考点:相反数分析:运用相反数概念:只有符号不一样两个数叫做互为相反数,进而得出答案.解答:解:2相反数是﹣2.故选:A.点评:此题重要考察了相反数概念,对把握定义是解题关键.2.(3分)(•绵阳)下列四个图案中,属于中心对称图形是()A.B.C.D.考点:中心对称图形.分析:根据中心对称概念和各图形特点即可求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项对.故选D.点评:本题考察中心对称图形概念:在同一平面内,假如把一种图形绕某一点旋转180度,旋转后图形能和原图形完全重叠,那么这个图形就叫做中心对称图形.3.(3分)(•绵阳)下列计算对是()A.a2•a=a2B.a2÷a=a C.a2+a=a3D.a2﹣a=a考点:同底数幂除法;合并同类项;同底数幂乘法.分析:根据合并同类项法则,同底数幂乘法与除法知识求解即可求得答案.解答:解:A、a2a=a3,故A选项错误;B、a2÷a=a,故B选项对;C、a2+a=a3,不是同类项不能计算,故错误;D、a2﹣a=a,不是同类项不能计算,故错误;故选:B.点评:本题重要考察合并同类项法则,同底数幂乘法与除法知识,熟记法则是解题关键.4.(3分)(•绵阳)若代数式故意义,则x取值范围是()A.x <B.x ≤C.x >D.x ≥考点:二次根式故意义条件.分析:根据被开方数不小于等于0列式计算即可得解.解答:解:由题意得,3x﹣1≥0,解得x ≥.故选D.点评:本题考察知识点为:二次根式被开方数是非负数.5.(3分)(•绵阳)一小朋友行走在如图所示地板上,当他随意停下时,最终停在地板上阴影部分概率是()A.B.C.D.考点:几何概率.分析:根据几何概率求法:最终停留在黑色方砖上概率就是黑色区域面积与总面积比值.解答:解:观测这个图可知:黑色区域(3块)面积占总面积(9块),故其概率为.故选:A.点评:本题考察几何概率求法:首先根据题意将代数关系用面积表达出来,一般用阴影区域表达所求事件(A);然后计算阴影区域面积在总面积中占比例,这个比例即事件(A)发生概率.6.(3分)(•绵阳)如图所示正三棱柱,它主视图是()A.B.C.D.考点:简朴几何体三视图.分析:根据主视图是从物体正面看所得到图形求解.解答:解:从几何体正面看所得到形状是矩形.故选B.点评:本题考察了几何体三视图,掌握定义是关键.注意所有看到棱都应表目前三视图中.7.(3分)(•绵阳)线段EF是由线段PQ平移得到,点P(﹣1,4)对应点为E(4,7),则点Q(﹣3,1)对应点F坐标为()A.(﹣8,﹣2)B.(﹣2,﹣2)C.(2,4)D.(﹣6,﹣1)考点:坐标与图形变化-平移分析:首先根据P点对应点为E可得点坐标变化规律,则点Q坐标变化规律与P点坐标变化规律相似即可.解答:解:∵点P(﹣1,4)对应点为E(4,7),∴P点是横坐标+5,纵坐标+3得到,∴点Q(﹣3,1)对应点N坐标为(﹣3+5,1+3),即(2,4).故选:C.点评:此题重要考察了坐标与图形变化﹣平移,关键是掌握把一种图形平移后,个点变化规律都相似.8.(3分)(•绵阳)如图,一艘海轮位于灯塔P北偏东30°方向,距离灯塔80海里A处,它沿正南方向航行一段时间后,抵达位于灯塔P南偏东45°方向上B处,这时,海轮所在B 处与灯塔P距离为()A.40海里B.40海里C.80海里D.40海里考点:解直角三角形应用-方向角问题.分析:根据题意画出图形,进而得出PA,PC长,即可得出答案.解答:解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.点评:此题重要考察了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.9.(3分)(•绵阳)下列命题中对是()A.对角线相等四边形是矩形B.对角线互相垂直四边形是菱形C.对角线互相垂直平分且相等四边形是正方形D.一组对边相等,另一组对边平行四边形是平行四边形考点:命题与定理.分析:根据根据矩形、菱形、正方形和平行四边形鉴定措施对各选项进行判断.解答:解:A、对角线相等平行四边形是矩形,因此A选项错误;B、对角线互相垂直平行四边形是菱形,因此B选项错误;C、对角线互相垂直平分且相等四边形是正方形,因此C选项对;D、一组对边相等且平行四边形是平行四边形,因此D选项错误.故选C.点评:本题考察了命题与定理:判断事物语句叫命题;对命题称为真命题,错误命题称为假命题;通过推理论证真命题称为定理.10.(3分)(•绵阳)某商品标价比成本价高m%,根据市场需要,该商品需降价n%发售,为了不赔本,n应满足()A.n≤m B.n≤C.n≤D.n≤考点:一元一次不等式应用分析:根据最大降价率即是保证售价不小于等于成本价相等,进而得出不等式即可.解答:解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)﹣1≥0,整顿得:100n+mn≤100m,故n≤.故选:B.点评:此题重要考察了一元一次不等式应用,得出对不等关系是解题关键.11.(3分)(•绵阳)在边长为正整数△ABC中,AB=AC,且AB边上中线CD将△ABC周长分为1:2两部分,则△ABC面积最小值为()A.B.C.D.考点:勾股定理;三角形面积;三角形三边关系;等腰三角形性质.分析:设这个等腰三角形腰为x,底为y,分为两部分边长分别为n和2n,再根据题意列出有关x、n、y方程组,用n表达出x、y值,由三角形三边关系舍去不符合条件x、y 值,由n是正整数求出△ABC面积最小值即可.解答:解:设这个等腰三角形腰为x,底为y,分为两部分边长分别为n和2n,得或,解得或,∵2×<(此时不能构成三角形,舍去)∴取,其中n是3倍数∴三角形面积S△=××=n2,对于S△=n2=n2,当n≥0时,S△伴随n增大而增大,故当n=3时,S△=取最小.故选:C.点评:本题考察是三角形面积及三角形三边关系,根据题意列出有关x、n、y方程组是解答此题关键.12.(3分)(•绵阳)如图,AB是半圆O直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O切线,交OQ延长线于点P,PA交半圆O于R,则下列等式中对是()A.=B.=C.=D.=考点:切线性质;平行线鉴定与性质;三角形中位线定理;垂径定理;相似三角形鉴定与性质专题:探究型.分析:(1)连接AQ,易证△OQB∽△OBP,得到,也就有,可得△OAQ∽OPA,从而有∠OAQ=∠APO.易证∠CAP=∠APO,从而有∠CAP=∠OAQ,则有∠CAQ=∠BAP,从而可证△ACQ∽△ABP,可得,因此A对.(2)由△OBP∽△OQB得,即,由AQ≠OP得,故C不对.(3)连接OR,易得=,=2,得到,故B不对.(4)由及AC=2OQ,AB=2OB,OB=OR可得,由AB≠AP得,故D不对.解答:解:(1)连接AQ,如图1,∵BP与半圆O于点B,AB是半圆O直径,∴∠ABP=∠ACB=90°.∵OQ⊥BC,∴∠OQB=90°.∴∠OQB=∠OBP=90°.又∵∠BOQ=∠POB,∴△OQB∽△OBP.∴.∵OA=OB,∴.又∵∠AOQ=∠POA,∴△OAQ∽△OPA.∴∠OAQ=∠APO.∵∠OQB=∠ACB=90°,∴AC∥OP.∴∠CAP=∠APO.∴∠CAP=∠OAQ.∴∠CAQ=∠BAP.∵∠ACQ=∠ABP=90°,∴△ACQ∽△ABP.∴.故A对.(2)如图1,∵△OBP∽△OQB,∴.∴.∵AQ≠OP,∴.故C不对.(3)连接OR,如图2所示.∵OQ⊥BC,∴BQ=CQ.∵AO=BO,∴OQ=AC.∵OR=AB.∴=,=2.∴≠.∴.故B不对.(4)如图2,∵,且AC=2OQ,AB=2OB,OB=OR,∴.∵AB≠AP,∴.故D不对.故选:A.点评:本题考察了切线性质,相似三角形鉴定与性质、平行线鉴定与性质、垂径定理、三角形中位线等知识,综合性较强,有一定难度.二、填空题(共6小题,每题4分,满分24分)13.(4分)(•绵阳)2﹣2=.考点:负整数指数幂分析:根据负整数指数幂运算法则直接进行计算即可.解答:解:2﹣2==.故答案为:.点评:本题重要考察负整数指数幂,幂负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正进行计算.14.(4分)(•绵阳)“五一”小长假,以生态休闲为特色绵阳近郊游倍受青睐.假期三天,本市重要景区景点人气火爆,据市旅游局记录,本次小长假共实现旅游收入5610万元,将这一数据用科学记数法表达为 5.61×107元.考点:科学记数法—表达较大数分析:科学记数法表达形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相似.当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数.解答:解:将5610万元用科学记数法表达为:5.61×107.故答案为:5.61×107.点评:此题考察了科学记数法表达措施.科学记数法表达形式为a×10n形式,其中1≤|a|<10,n为整数,表达时关键要对确定a值以及n值.15.(4分)(•绵阳)如图,l∥m,等边△ABC顶点A在直线m上,则∠α=20°.考点:平行线性质;等边三角形性质分析:延长CB交直线m于D,根据根据两直线平行,内错角相等解答即可,再根据三角形一种外角等于与它不相邻两个内角和列式求出∠α.解答:解:如图,延长CB交直线m于D,∵△ABC是等边三角形,∴∠ABC=60°,∵l∥m,∴∠1=40°.∴∠α=∠ABC﹣∠1=60°﹣40°=20°.故答案是:20.点评:本题考察了平行线性质,等边三角形性质,熟记性质并作辅助线是解题关键,也是本题难点.16.(4分)(•绵阳)如图,⊙O半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(成果保留π)考点:正多边形和圆分析:根据题意得出△COW≌△ABW,进而得出图中阴影部分面积为:S进而得出扇形OBC 答案.解答:解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.点评:此题重要考察了正多边形和圆以及扇形面积求法,得出阴影部分面积=S是解扇形OBC 题关键.17.(4分)(•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上点,∠EAF=45°,△ECF周长为4,则正方形ABCD边长为2.考点:旋转性质;全等三角形鉴定与性质;勾股定理;正方形性质.分析:根据旋转性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.解答:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,∴2BC=4,∴BC=2.故答案为:2.点评:此题重要考察了旋转性质以及全等三角形鉴定与性质等知识,得出△FAE≌△EAF′是解题关键.18.(4分)(•绵阳)将边长为1正方形纸片按图1所示措施进行对折,记第1次对折后得到图形面积为S1,第2次对折后得到图形面积为S2,…,第n次对折后得到图形面积为S n,请根据图2化简,S1+S2+S3+…+S=1﹣.考点:规律型:图形变化类分析:观测图形变化发现每次折叠后面积与正方形关系,从而写出面积和通项公式.解答:解:观测发现S1+S2+S3+…+S=+++…+=1﹣,故答案为:1﹣.点评:本题考察了图形变化类问题,解题关键是仔细观测图形变化,并找到图形变化规律.三、解答题(共7小题,满分90分)19.(16分)(•绵阳)(1)计算:(﹣)0+|3﹣|﹣;(2)化简:(1﹣)÷(﹣2)考点:二次根式混合运算;分式混合运算;零指数幂.专题:计算题.分析:(1)根据零指数幂和分母有理化得到原式=1+2﹣3﹣2,然后合并即可;(2)先把前面括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.解答:解:(1)原式=1+2﹣3﹣2=﹣2;(2)原式=÷=•=.点评:本题考察了二次根式混合运算:先把各二次根式化为最简二次根式,再进行二次根式乘除运算,然后合并同类二次根式.也考察了零指数幂和分式混合运算.20.(12分)(•绵阳)四川省“单独两孩”政策于3月20日正式开始实行,该政策实行也许给我们生活带来某些变化,绵阳市人口计生部门抽样调查了部分市民(每个参与调查市民必须且只能在如下6种变化中选择一项),并将调查成果绘制成记录图:种类 A B C D E F变化有助于延缓社会老龄化现象导致人口暴增提高家庭抗风险能力增大社会基本公共服务压力环节男女比例不平衡现象增进人口与社会、资源、环境协调可持续发展根据记录图,回答问题:(1)参与调查市民一共有人;(2)参与调查市民中选择C人数是400人;(3)∠α=54°;(4)请补全条形记录图.考点:条形记录图;登记表;扇形记录图.分析:(1)根据A类有700人,所占比例是35%,据此即可求得总人数;(2)运用总人数乘以对应比例即可求解;(3)运用360°乘以对应比例即可求解;(4)运用总人数乘以对应比例求得D类人数,然后根据(1)即可作出记录图.解答:解:(1)参与调查市民一共有:700÷35%=(人);(2)参与调查市民中选择C人数是:(1﹣35%﹣5%﹣10%﹣15%﹣15%)=400(人);(3)α=360°×15%=54°;(4)D人数:×10%=200(人).点评:本题考察是条形记录图综合运用.读懂记录图,从记录图中得到必要信息是处理问题关键.条形记录图能清晰地表达出每个项目数据.21.(12分)(•绵阳)绵州大剧院矩形专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生业余文化生活,影剧院制定了两种优惠方案,方案1:购置一张成人票赠送一张学生票;方案2:按总价90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x函数关系式;(2)请计算并确定出最节省费用购票方案.考点:一次函数应用.分析:(1)首先根据优惠方案①:付款总金额=购置成人票金额+除去4人后小朋友票金额;优惠方案②:付款总金额=(购置成人票金额+购置小朋友票金额)×打折率,列出y 有关x函数关系式,(2)根据(1)函数关系式求出当两种方案付款总金额相等时,购置票数.再就三种状况讨论.解答:解:(1)按优惠方案①可得y1=20×4+(x﹣4)×5=5x+60(x≥4),按优惠方案②可得y2=(5x+20×4)×90%=4.5x+72(x≥4);(2)由于y1﹣y2=0.5x﹣12(x≥4),①当y1﹣y2=0时,得0.5x﹣12=0,解得x=24,∴当购置24张票时,两种优惠方案付款同样多.②当y1﹣y2<0时,得0.5x﹣12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案①付款较少.③当y1﹣y2>0时,得0.5x﹣12>0,解得x>24,当x>24时,y1>y2,优惠方案②付款较少.点评:本题根据实际问题考察了一次函数运用.处理本题关键是根据题意对列出两种方案解析式,进而计算出临界点x取值,再深入讨论.22.(12分)(•绵阳)如图,已知反比例函数y=(k>0)图象通过点A(1,m),过点A 作AB⊥y轴于点B,且△AOB面积为1.(1)求m,k值;(2)若一次函数y=nx+2(n≠0)图象与反比例函数y=图象有两个不一样公共点,求实数n取值范围.考点:反比例函数与一次函数交点问题.分析:(1)根据三角形面积公式即可求得m值;(2)若一次函数y=nx+2(n≠0)图象与反比例函数y=图象有两个不一样公共点,则方程=nx+2有两个不一样解,运用根鉴别式即可求解.解答:解:(1)由已知得:S△AOB=×1×m=1,解得:m=2,把A(1,2)代入反比例函数解析式得:k=2;(2)由(1)知反比例函数解析式是y=,则=nx+2有两个不一样解,方程去分母,得:nx2+2x﹣2=0,则△=4+8n>0,解得:n>﹣且n≠0.点评:本题综合考察反比例函数与方程组有关知识点.先由点坐标求函数解析式,然后解由解析式构成方程组求出交点坐标,体现了数形结合思想.23.(12分)(•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O直径,点F在⊙O上,且满足=,过点C作⊙O切线交AB延长线于D点,交AF延长线于E点.(1)求证:AE⊥DE;(2)若tan∠CBA=,AE=3,求AF长.考点:切线性质分析:(1)首先连接OC,由OC=OA,=,易证得OC∥AE,又由过点C作⊙O切线交AB延长线于D点,易证得AE⊥DE;(2)由AB是⊙O直径,可得△ABC是直角三角形,易得△AEC为直角三角形,AE=3,然后连接OF,可得△OAF为等边三角形,继而求得答案.解答:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵=,∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE且⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O直径,∴△ABC是直角三角形,∵tan∠CBA=,∴∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.点评:此题考察了切线性质、直角三角形性质、等边三角形鉴定与性质以及圆周角定理.此题难度适中,注意掌握辅助线作法,注意掌握数形结合思想应用.24.(12分)(•绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF值;(3)如图2,若P为线段EC上一动点,过点P作△AEC内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE长为何值时,矩形PQMN面积最大?并求出其最大值.考点:四边形综合题.分析:(1)由矩形性质可知△ADC≌△CEA,得出AD=CE,DC=EA,∠ACD=∠CAE,从而求得△DEC≌△EDA;(2)根据勾股定理即可求得.(3))有矩形PQMN性质得PQ∥CA,因此,从而求得PQ,由PN∥EG,得出=,求得PN,然后根据矩形面积公式求得解析式,即可求得.解答:(1)证明:由矩形性质可知△ADC≌△CEA,∴AD=CE,DC=EA,∠ACD=∠CAE,在△ADE与△CED中∴△DEC≌△EDA(SSS);(2)解:如图1,∵∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.(3)解:如图2,由矩形PQMN性质得PQ∥CA∴又∵CE=3,AC==5设PE=x(0<x<3),则,即PQ=过E作EG⊥AC 于G,则PN∥EG,∴=又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=∴=,即PN=(3﹣x)设矩形PQMN面积为S则S=PQ•PN=﹣x2+4x=﹣+3(0<x<3)因此当x=,即PE=时,矩形PQMN面积最大,最大面积为3.点评:本题考察了全等三角形鉴定和性质,勾股定理应用,平行线分线段成比例定理.25.(14分)(•绵阳)如图,抛物线y=ax2+bx+c(a≠0)图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线解析式;(2)点P为抛物线对称轴上动点,当△PBC为等腰三角形时,求点P坐标;(3)在直线AC上与否存在一点Q,使△QBM周长最小?若存在,求出Q点坐标;若不存在,请阐明理由.考点:二次函数综合题.分析:(1)先由抛物线顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,再将M(﹣2,)代入,得=a(﹣2+1)2+,解方程求出a值即可得到抛物线解析式;(2)先求出抛物线y=﹣x2﹣x+与x轴交点A、B,与y轴交点C坐标,再根据勾股定理得到BC==2.设P(﹣1,m),显然PB≠PC,因此当△PBC为等腰三角形时分两种状况进行讨论:①CP=CB;②BP=BC;(3)先由勾股定理逆定理得出BC⊥AC,连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,由轴对称性质可知此时△QBM周长最小,由B(﹣3,0),C(0,),根据中点坐标公式求出B′(3,2),再运用待定系数法求出直线MB′解析式为y=x+,直线AC解析式为y=﹣x+,然后解方程组,即可求出Q点坐标.解答:解:(1)由抛物线顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,将M(﹣2,)代入,得=a(﹣2+1)2+,解得a=﹣,故所求抛物线解析式为y=﹣x2﹣x+;(2)∵y=﹣x2﹣x+,∴x=0时,y=,∴C(0,).y=0时,﹣x2﹣x+=0,解得x=1或x=﹣3,∴A(1,0),B(﹣3,0),∴BC==2.设P(﹣1,m),显然PB≠PC,因此当CP=CB时,有CP==2,解得m=±;当BP=BC时,有BP==2,解得m=±2.综上,当△PBC为等腰三角形时,点P坐标为(﹣1,+),(﹣1,﹣),(﹣1,2),(﹣1,﹣2);(3)由(2)知BC=2,AC=2,AB=4,因此BC2+AC2=AB2,即BC⊥AC.连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,∵B、B′有关直线AC对称,∴QB=QB′,∴QB+QM=QB′+QM=MB′,又BM=2,因此此时△QBM周长最小.由B(﹣3,0),C(0,),易得B′(3,2).设直线MB′解析式为y=kx+n,将M(﹣2,),B′(3,2)代入,得,解得,即直线MB′解析式为y=x+.同理可求得直线AC解析式为y=﹣x+.由,解得,即Q(﹣,).因此在直线AC上存在一点Q(﹣,),使△QBM周长最小.点评:本题是二次函数综合题型,其中波及到运用待定系数法求二次函数、一次函数解析式,等腰三角形性质,轴对称性质,中点坐标公式,两函数交点坐标求法等知识,运用数形结合、分类讨论及方程思想是解题关键.。
四川省绵阳市 中考数学模拟试卷(三)(解析版)

四川省绵阳市中考数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.222.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×10113.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣25.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,39.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:311.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<012.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为cm.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B点左侧),与y轴交于点C,对称轴为直线x=,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限);(1)求抛物线的解析式和点D的坐标;(2)点M是抛物线上的动点,在x轴上存在一点N,使得A、D、M、N四个点为顶点的四边形是平行四边形,求出点M的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.25.已知△ABC,AC=BC,CD⊥AB于点D,点F在BD上,连接CF,AM⊥CF于点M,AM交CD于点E.(1)如图1,当∠ACB=90°时,求证:DE=DF;(2)如图2,当∠ACB=60°时,DE与DF的数量关系是(3)在2的条件若tan∠EAF=,EM=,连接EF,将∠DEF绕点E逆时针旋转,旋转后角的两边交线段CF于N、G两点,交线段BC于P、T两点(如图3),若CN=3FN,求线段GT的长.四川省绵阳市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.22【考点】正数和负数.【分析】根据高于标准记为正,可得低于标准记为负.【解答】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作﹣0.15米,故选:A.【点评】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.2.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:331.92亿=331 9200 0000=3.3192×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、一星期有7天是必然事件,故A错误;B、袋中有三个红球,摸出一个球是红球是必然事件,故B错误;C、字母M是轴对称图形,字母N不是轴对称图形,故C错误;D、任意买一张车票,座位刚好靠窗口是随机事件,故D正确;故选:D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣2【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+2≥0且3x≠0,解得:x≥﹣2且x≠0.故选A.【点评】考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选:A.【点评】本题考查了三视图的知识,关键是掌握三视图所看的位置.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别利用平行四边形以及矩形、菱形和正方形的判定方法分别判断得出即可.【解答】解;A、若AB∥CD,AB=CD,则四边形ABCD是平行四边形,故此选项正确;B、若AC⊥BD,AC=BD,无法得到四边形ABCD是矩形,故此选项错误;C、若AC⊥BD,AB=AD,CB=CD,无法得到四边形ABCD是菱形,故此选项错误;D、若AB=BC=CD=AD,无法得到四边形ABCD是正方形,故此选项错误.故选:A.【点评】此题主要考查了平行四边形以及矩形、菱形和正方形的判定方法,正确掌握相关判定定理是解题关键.7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元【考点】二元一次方程组的应用.【专题】计算题.【分析】设每张甲票、每张乙票的价格分别是x元,y元,列方程组得,求解即可.【解答】解:设每张甲票、每张乙票的价格分别是x元,y元,则,解得,答:每张甲票、每张乙票的价格分别是10元,8元.故选A.【点评】本题考查了二元一次方程组的应用,找出等量关系,列出方程组,是解此题的关键.8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3【考点】中位数;加权平均数.【分析】根据平均数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,则平均数为:=3.5,中位数为:=3.5.故选C.【点评】本题考查了平均数和中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.【考点】列代数式.【分析】第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,第一块和第二块玻璃之间的距离是(﹣)×.窗子的通风面积为①中剩下的部分.【解答】解:[a﹣﹣﹣×(﹣)]×b=ab.故选B.【点评】此题有一定的难度,主要是不能准确的找到窗子的通风部位.应该根据图示找到窗子通风的部位在那里,是那个长方形,其长和宽式多少,都需要求出来,再进行面积计算.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:3【考点】相似三角形的判定与性质.【分析】由AD∥BC,GE∥BC,易证得△AOD∽△COB,△OGE∽△OBC,又由AD=1,BC=3,点G是BD 的中点,根据相似三角形的对应边成比例,易得OG=OD,继而求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∵AD=1,BC=3,∴OD:OB=AD:BC=1:3,∴OD=BD,∵点G是BD的中点,∴DG=BD,∴OD=OG,∵GE∥BC,∴△OGE∽△OBC,∴GE:BC=OG:OB=OD:OB=1:3.故选:B.【点评】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<0【考点】二次函数图象上点的坐标特征.【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值小于0,确定m ﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令y=x2﹣5x+6=0,解得:x=2或x=3.∵当自变量x取m时对应的值小于0,∴2<m<3,∴m﹣1<2,m+1>3,∴y1>0,y2>0.故选:A.【点评】此题考查了抛物线与x轴的交点和二次函数图象上的点的特征,解题的关键是求得抛物线与横轴的交点坐标.12.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD【考点】切线的性质.【分析】证明BC是⊙O的切线,进而得到P是CD的中点,利用中位线定理求出OE∥AB,据此判断A 正确;证明E是BC的中点,利用∠CDB是直角,据此得到BC=2DE,判断B选项正确;证明△ACD∽△EDF,即可得到AC•DF=DE•CD,判断C选项正确;只有当PE=PD时DE才等于PD,据此判断D选项错误.【解答】解:∵∠ACB=90°,∴BC是⊙O的切线,∵BC是⊙O的切线,∴OE垂直平分CD,∠OEC=∠OED,∴P是CD的中点,∴OP∥AB,∴OE∥AB,A选项正确,∵OE∥AB,O是AC的中点,∴E是BC的中点,∵AC是直径,∴∠ADC=90°,∴CD⊥AB,∴∠CDB=90°,∴BC=2DE,B选项正确;∵EF⊥AB,∴∠DFE=∠ADC=90°,∵DE=CD,BC是⊙O的切线,∴DE是⊙O的切线,∴∠EDF=∠CAD,∴△ACD∽△EDF∴,∴AC•DF=DE•CD,C选项正确.在四边形PDFE中,我们可以证明它是矩形,而不具备证明它是正方形的条件, ∴DE=,只有PE=PD时DE才等于PD,D选项错误,故选D.【点评】本题考查了圆的切线的性质、圆周角定理,相似三角形的判定与性质,切线长性质及三角形的中位线的运用,解答本题的关键是熟练掌握切线的判定定理以及切线的性质,此题有一定的难度.二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为160cm.【考点】有理数的加法.【专题】应用题.【分析】根据有理数的加法,即可解答.【解答】解:140+20=160(cm).故答案为:160.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数加法法则.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=65°.【考点】平行线的性质.【分析】由题意知,∠1+∠3=90°;然后根据“两直线平行,内错角相等”推知∠2=∠3.【解答】解:如图,根据题意,知∠1+∠3=90°.∵∠1=25°,∠3=65°.又∵AB∥CD,∴∠2=∠3=65°;故答案是“65°.【点评】本题考查了平行线的性质.解题时,要注意挖掘出隐含在题中的已知条件∠1+∠3=90°.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是3或4.【考点】三角形三边关系;一元一次不等式的整数解.【分析】先求出不等式的解集,再根据x是符合条件的正整数判断出x的可能值,再由三角形的三边关系求出x的值即可.【解答】解:2x﹣1<9,解得:x<5,∵x是它的正整数解,∴x可取1,2,3,4,根据三角形第三边的取值范围,得2<x<14,∴x=3,4.故答案为:3或4.【点评】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是2+2.【考点】剪纸问题.【专题】压轴题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.【点评】本题主要考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】根据旋转的性质可以得到∠P′CA=∠PCB,进而可以得到∠P′CP=∠ACB=90°,进而得到等腰直角三角形,求解即可.【解答】解:∵△AP′C是由△BPC绕着点C旋转得到的,∴∠P′CA=∠PCB,CP′=CP,∴∠P′CP=∠ACB=90°,∴△P′CP为等腰直角三角形,可得出∠AP′B=90°,∵PA=,PB=1,∴AP′=1,∴PP′==2,∴PC=,故答案为.【点评】本题考查了旋转的性质及勾股定理的知识,解题的关键是正确的利用旋转的性质得到相等的量.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是520.【考点】规律型:数字的变化类.【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第100次以后所产生的那个新数串的所有数之和.【解答】解:设A=3,B=9,C=8,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B﹣A)+B+(C﹣B)+C=B+2C=(A+B+C)+1×(C﹣A);n=2时,S2=A+(B﹣2A)+(B﹣A)+A+B+(C﹣2B)+(C﹣B)+B+C=﹣A+B+3C=(A+B+C)+2×(C﹣A);…故n=100时,S100=(A+B+C)+100×(C﹣A)=﹣99A+B+101C=﹣99×3+9+101×8=520.故答案为:520.【点评】此题主要考查了数字变化类,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)【考点】分式的混合运算;零指数幂;二次根式的混合运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值,绝对值,零指数次幂以及分母有理化进行计算即可;(2)根据运算顺序,先算括号里面的,再算除法即可.【解答】解:(1)原式=3×1+﹣1﹣1﹣=3﹣2=1;(2)原式=÷=•=﹣=﹣.【点评】本题考查了特殊角的三角函数值,二次根式的混合运算以及分式的混合运算,通分、因式分解和约分是解答分式混合运算的关键.20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了200名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由无所谓的人数除以所占的百分比即可求出学生家长的总数;(2)求出赞成的人数,补全统计图即可;(3)求出反对的人数占得百分比,乘以80000即可得到结果.【解答】解:(1)根据题意得:40÷20%=200(人),则共调查了200名中学生的家长;(2)赞成家长数为200﹣(40+120)=40(人),补全统计图,如图所示:(3)根据题意得:80000×=48000(人),则市区80000名中学生家长中有48000名家长持反对态度.【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题意是解本题的关键.21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)求出C的坐标,代入反比例函数的解析式,即可求出反比例函数的解析式,设直线AC的解析式是y=ax+b,把A、C的坐标代入即可求出直线AC的解析式;(2)设P的坐标是(x,y),根据三角形面积求出x的值,代入反比例函数的解析式,求出y即可.【解答】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣2),∴AB=4,∵BC的长是3,∴C点的坐标是(3,﹣2),∵反比例函数y=的图象经过点C,∴k=3×(﹣2)=﹣6,∴反比例函数的解析式是y=﹣;设直线AC的解析式是y=ax+b,把A(0,2),C(3,﹣2)代入得:,解得:b=2,k=﹣,即直线AC的解析式是y=﹣x+2;(2)设P的坐标是(x,y),∵△OAP的面积恰好等于△ABC的面积,∴×OA•|x|=×3×4,解得:x=±6,∵P点在反比例函数y=﹣上,∴当x=6时,y=﹣1;当x=﹣6时,y=1;即P点的坐标为(6,﹣1)或(﹣6,1).【点评】本题考查了三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每次降价的百分率为x,根据商家经过两次连续降价(两次降价百分率相等)后,该商品的利润为20%,列出方程,求解即可;(2)若每件商品定价为x(x为整数)元,根据物价局限定每件商品的利润不得超过20%和剩余170件商品全部卖出,商店预期至少盈利340元,列出不等式组,求解即可.【解答】解:(1)设每次降价的百分率为x,根据题意得:30(1﹣x)2=16(1+20%),解得:x1=0.2=20%,x2=1.8(不合题意,舍去),答:每次降价的百分率为20%.(2)若每件商品定价为x(x为整数)元,根据题意得:,解得:18≤x≤,∵x为整数,∴x=18,19,∴共有2种方案,方案①:每件商品定价为18元,方案②:每件商品定价为19元.【点评】此题考查了一元二次方程和一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程和不等式组,再求解;注意把不合题意的解舍去.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】切线的判定与性质;扇形面积的计算.【专题】综合题.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC 于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,利用垂径定理得到F为BD中点,连接AD,由EA=AO可得:AD是Rt△ODE 斜边的中线,利用直角三角形斜边上的中线等于斜边的一半得到AD=AE=AO,即三角形AOD为等边三角形,确定出∠DAB=60°,即∠OBD=30°,在直角三角形BOF中,利用30°所对的直角边等于斜边的一半求出OF的长,利用勾股定理求出BFO的长,得到BD的长,得出∠DOB为120°,由扇形BDO面积减去三角形BOD面积求出阴影部分面积即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD ⊥EC 于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE ;(3)解:作OF ⊥DB 于点F,连接AD,由EA=AO 可得:AD 是Rt △ODE 斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF ⊥BD,∴OF=1,BF=, ∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S 阴影=S 扇形OBD ﹣S △BOD =﹣×2×1=﹣.【点评】此题考查了切线的判定与性质,以及扇形面积的计算,熟练掌握切线的判定与性质是解本题的关键.24.如图,抛物线y=﹣x 2+bx+c 与x 轴交于A 、B 两点(A 在B 点左侧),与y 轴交于点C,对称轴为直线x=,OA=2,OD 平分∠BOC 交抛物线于点D (点D 在第一象限);(1)求抛物线的解析式和点D 的坐标;(2)点M 是抛物线上的动点,在x 轴上存在一点N,使得A 、D 、M 、N 四个点为顶点的四边形是平行四边形,求出点M 的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.。
四川省绵阳市中考数学真题试题含解析.docx

2019年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A. −4B. 4C. −2D. √22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10−3B. 0.2×10−4C. 2×10−3D. 2×10−43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中心对称图形C. 既是轴对称图形又是中心对称图形D. 既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A. B. C. D.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. 方差是88. 已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A. aa 2B. a +a 2C. a 2a 3D. a 2+a 39. 红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )A. 3种B. 4种C. 5种D. 6种10. 公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=( ) A. 15 B. √55 C. 3√55 D. 95 11. 如图,二次函数y =ax 2+bx +c (a >0)的图象与x 轴交于两点(x 1,0),(2,0),其中0<x 1<1.下列四个结论:①abc<0;②2a -c >0;③a +2b +4c >0;④4a a +aa <-4,正确的个数是( )A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG于点H 、K .若BG =32,∠FEG =45°,则HK =( ) A. 2√23 B. 5√26 C. 3√22 D. 13√26二、填空题(本大题共6小题,共18.0分)13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √a −1y 是同类项,则a b =______.16. 一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______km /h .17. 在△ABC 中,若∠B =45°,AB =10√2,AC =5√5,则△ABC 的面积是______.18. 如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本大题共7小题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0; (2)先化简,再求值:(a a 2−a 2-1a +a )÷aa −a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.如图,一次函数y=kx+b(k≠0)的图象与反比例函(m≠0且m≠3)的图象在第一象限交于数y=a2−3aa点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.⏜的中点,CF为⊙O的弦,23.如图,AB是⊙O的直径,点C为aa且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;PA的最小值.(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3525.如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.【答案】D【解析】解:将数0.0002用科学记数法表示为2×10-4,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B.直接利用中心对称图形的性质得出答案.此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最小值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK=x,再由相似三角形的性质列方程即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.首先提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′, ∴∠ABD′=∠CBE′, ∴△ABD′≌△CBE′(SAS ), ∴∠D′=∠CE′B=45°, 过B 作BH ⊥CE′于H , 在Rt △BHE′中,BH=E′H=BE′=, 在Rt △BCH 中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B 作BH ⊥CE′于H ,解直角三角形即可得到结论. 本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)=2√63+2-2√2×√33-1 =2√63+2-2√63-1 =1;(2)原式=a(a +a )(a −a )×a −a a -1a +a ×a −a a=-aa (a +a )-a −aa (a +a ) =-a a (a +a ) =-1a +a ,当a =√2,b =2-√2时,原式=-√2+2−√2=-12. 【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键. 20.【答案】解:(1)80~90的频数为36×50%=18, 则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5,补全图形如下:扇形统计图中扇形D 对应的圆心角度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12, 所以抽取的学生恰好是一名男生和一名女生的概率为1220=35. 【解析】(1)由B 组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案; (2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率. 21.【答案】解:设甲、乙两种客房每间现有定价分别是x 元、y 元, 根据题意,得:{10a +10a =500015a +20a =8500,解得{a =200a =300,答:甲、乙两种客房每间现有定价分别是300元、200元; (2)设当每间房间定价为x 元,m =x (20-a −20020×2)-80×20=−110(a −200)2+2400,∴当x =200时,m 取得最大值,此时m =2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m 最大,最大利润是2400元. 【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m 关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22.【答案】解:(1)将点A (4,1)代入y =a 2−3aa, 得,m 2-3m =4, 解得,m 1=4,m 2=-1,∴m 的值为4或-1;反比例函数解析式为:y =4a ;(2)∵BD ⊥y 轴,AE ⊥y 轴, ∴∠CDB =∠CEA =90°, ∴△CDB ∽△CEA , ∴aaaa =aaaa , ∵CE =4CD , ∴AE =4BD , ∵A (4,1), ∴AE =4, ∴BD =1, ∴x B =1, ∴y B =4a =4, ∴B (1,4),将A (4,1),B (1,4)代入y =kx +b , 得,{a +a =44a +a =1, 解得,k =-1,b =5, ∴y AB =-x +5,设直线AB 与x 轴交点为F , 当x =0时,y =5;当y =0时x =5, ∴C (0,5),F (5,0), 则OC =OF =5,∴△OCF 为等腰直角三角形, ∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即OM =12CF =5√22. 【解析】(1)将点A (4,1)代入y=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证△CDB ∽△CEA ,由CE=4CD 可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC 的解析式,直线AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值.本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质. 23.【答案】证明:(1)∵C 是aa ⏜的中点, ∴aa⏜=aa ⏜, ∵AB 是⊙O 的直径,且CF ⊥AB , ∴aa⏜=aa ⏜, ∴aa ⏜=aa ⏜, ∴CD =BF ,在△BFG 和△CDG 中,∵{∠a =∠aaa∠aaa =∠aaa aa =aa, ∴△BFG ≌△CDG (AAS );(2)如图,过C 作CH ⊥AD 于H ,连接AC 、BC ,∵aa⏜=aa ⏜, ∴∠HAC =∠BAC , ∵CE ⊥AB , ∴CH =CE , ∵AC =AC ,∴Rt △AHC ≌Rt △AEC (HL ), ∴AE =AH , ∵CH =CE ,CD =CB ,∴Rt △CDH ≌Rt △CBE (HL ), ∴DH =BE =2, ∴AE =AH =2+2=4, ∴AB =4+2=6,∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠ACB =∠BEC =90°, ∵∠EBC =∠ABC , ∴△BEC ∽△BCA , ∴aa aa =aaaa ,∴BC 2=AB •BE =6×2=12, ∴BF =BC =2√3. 【解析】(1)根据AAS 证明:△BFG ≌△CDG ;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt △AHC ≌Rt △AEC (HL ),得AE=AH ,再证明Rt △CDH ≌Rt △CBE (HL ),得DH=BE=2,计算AE 和AB 的长,证明△BEC ∽△BCA ,列比例式可得BC 的长,就是BF 的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.【答案】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x -1)2-2, ∵OA =1,∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0, ∴a =12,∴抛物线的解析式为y =12(a −1)2−2,即y =12a 2−a −32. 令y =0,解得x 1=-1,x 2=3, ∴B (3,0), ∴AB =OA +OB =4, ∵△ABD 的面积为5, ∴a △aaa =12aa ⋅a a =5,∴y D =52,代入抛物线解析式得,52=12a 2−a −32, 解得x 1=-2,x 2=4, ∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4a +a =52−a +a =0,解得:{a =12a =12,∴直线AD 的解析式为y =12a +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴aa =12a +12−12a 2+a +32=−12a 2+32a +2,∴S △ACE =S △AME -S △CME =12×aa ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516,∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158). (3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵E (32,−158),OA =1, ∴AG =1+32=52,EG =158,∴aaaa=52158=43,∵∠AGE =∠AHP =90°∴sin ∠aaa =aaaa =aaaa =35, ∴aa =35aa , ∵E 、F 关于x 轴对称, ∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小,∵EF=158×2=154,∠AEG=∠HEF,∴aaa∠aaa=aaa∠aaa=aaaa=aaaa=45,∴aa=45×154=3.∴PE+35PA的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点A(-1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S△ACE=S△AME-S△CME构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.【答案】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴aaaa =aaaa=√22,∴aa=√2t,又∵∠AEF =∠ADG ,∠EAF =∠DAG ,∴△AEF ∽△ADG , ∴aa aa =aa aa , ∴aa ⋅aa =aa ⋅aa =4√2a , 又∵AE =OA +OE =2√2+t ,∴aa =√2a 2√2+a, ∴EG =AE -AG =22√2+a , 当点H 恰好落在线段BC 上∠DFH =∠DFE +∠HFE =45°+45°=90°,∴△ADF ∽△BFH ,∴aaaa =aa aa =4−√2a 4, ∵AF ∥CD ,∴aa aa =aa aa =√2a 4, ∴aa aa =√2a 4+√2a , ∴4−√2a4=√2a4+√2a , 解得:t 1=√10−√2,t 2=√10+√2(舍去),∴EG =EH =22√2+a =(√10−√2)22√2+√10−√2=3√10−5√2;(3)过点F 作FK ⊥AC 于点K ,由(2)得EG =282√2+a, ∵DE =EF ,∠DEF =90°,∴∠DEO =∠EFK ,∴△DOE ≌△EKF (AAS ),∴FK =OE =t ,∴S △aaa =12aa ⋅aa =3+8a 2√2+a. 【解析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t ,连接OD ,证明△DOE ∽△DAF 可得AF=,证明△AEF ∽△ADG 可得AG=,可表示EG 的长,由AF ∥CD 得比例线段,求出t 的值,代入EG的表达式可求EH的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.本题属于四边形综合题,考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。
川省绵阳市中考数学试卷 含答案解析版

2017年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣的相反数是()A.B.±C.﹣D.52.(3分)下列图案中,属于轴对称图形的是()A.B.C.D.3.(3分)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.×107B.×106C.96×105D.×1024.(3分)如图所示的几何体的主视图正确的是()A.B.C.D.5.(3分)使代数式+√4−3x有意义的整数x有()√x+3A.5个B.4个C.3个D.2个6.(3分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.D.7.(3分)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣168.(3分)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm29.(3分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2√3,∠AEO=120°,则FC的长度为()A.1B.2C.√2D.√310.(3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣811.(3分)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.√54C.23D.√3312.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+…+1a19的值为()A.2021B.6184C.589840D.431760二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:8a2﹣2=.14.(3分)关于x的分式方程2x−1−1x+1=11−x的解是.15.(3分)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.16.(3分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.17.(3分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +12MA?DN的最小值为 .18.(3分)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是112,则1tan∠ACH的值是 .三、解答题(本大题共7小题,共86分) 19.(16分)(1)计算:√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| (2)先化简,再求值:(x−y x 2−2xy+y 2﹣x x 2−2xy)÷y x−2y,其中x=2√2,y=√2.20.(11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数8103对应扇形图中区域D E C如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.(11分)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦公顷,2台大型收割机和5台小型收割机1小时可以收割小麦公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(11分)如图,设反比例函数的解析式为y=3kx(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为163时,求直线l的解析式.23.(11分)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=2√10,求圆O 的直径的长度.24.(12分)如图,已知抛物线y=ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x +1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求BE :MF 的值.25.(14分)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.2017年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017?绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣的相反数是()A.B.±C.﹣D.5【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017?绵阳)下列图案中,属于轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.【点评】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3分)(2017?绵阳)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.×107B.×106C.96×105D.×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:“960万”用科学记数法表示为×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017?绵阳)如图所示的几何体的主视图正确的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形和正方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017?绵阳)使代数式√x+3+√4−3x有意义的整数x有()A.5个B.4个C.3个D.2个【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤4 3,整数有﹣2,﹣1,0,1,故选:B.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.(3分)(2017?绵阳)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.D.【考点】SA:相似三角形的应用.【分析】根据题意得出△ABC∽△EDC,进而利用相似三角形的性质得出答案.【解答】解:由题意可得:AB=,BC=,DC=4m,△ABC∽△EDC,则ABED=BCDC,即1.5DE=0.54,解得:DE=12,故选:B.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.7.(3分)(2017?绵阳)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣16【考点】AB:根与系数的关系.【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入n m中即可求出结论.【解答】解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,∴﹣m2=﹣1,n2=﹣2 ∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选C.【点评】本题考查了根与系数的关系,根据方程的两根结合根与系数的关系求出m、n的值是解题的关键.8.(3分)(2017?绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【考点】MP:圆锥的计算;I4:几何体的表面积.【分析】圆锥的表面积加上圆柱的侧面积即可求得其表面积.【解答】解:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.【点评】考查了圆锥的计算及几何体的表面积的知识,解题的关键是能够了解圆锥的有关的计算方法,难度不大.9.(3分)(2017?绵阳)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2√3,∠AEO=120°,则FC的长度为()A.1B.2C.√2D.√3【考点】LB:矩形的性质;KD:全等三角形的判定与性质;T7:解直角三角形.【分析】先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF 的长.【解答】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=12BD=12AC=√3,∴OF=tan30°×BO=1,∴CF=1,故选:A.【点评】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.10.(3分)(2017?绵阳)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣8【考点】H6:二次函数图象与几何变换;F7:一次函数图象与系数的关系.【分析】先根据平移原则:上→加,下→减,左→加,右→减写出解析式,再列方程组,有公共点则△≥0,则可求出b的取值.【解答】解:由题意得:平移后得到的二次函数的解析式为:y=(x﹣3)2﹣1,则{y=(x−3)2−1 y=2x+b,(x﹣3)2﹣1=2x+b,x2﹣8x+8﹣b=0,△=(﹣8)2﹣4×1×(8﹣b)≥0,b≥﹣8,故选D.【点评】主要考查的是函数图象的平移和两函数的交点问题,两函数有公共点:说明两函数有一个交点或两个交点,可利用方程组→一元二次方程→△≥0的问题解决.11.(3分)(2017?绵阳)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.√54C.23D.√33【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OC=23CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=12CE,进一步得到OM=16CE,即OM=16AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=√33AE,MF=12EF,依此得到MF=√36AE,从而得到MOMF的值.【解答】解:∵点O是△ABC的重心,∴OC=23 CE,∵△ABC是直角三角形,∴CE=BE=AE ,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE 是等边三角形,∴CM=12CE , ∴OM=23CE ﹣12CE=16CE ,即OM=16AE , ∵BE=AE ,∴EF=√33AE , ∵EF ⊥AB ,∴∠AFE=60°,∴∠FEM=30°,∴MF=12EF , ∴MF=√36AE , ∴MO MF =16AE √36AE =√33. 故选:D .【点评】考查了三角形的重心,等边三角形的判定和性质,垂直平分线的性质,含30°的直角三角形的性质,关键是得到OM=16AE ,MF=√36AE . 12.(3分)(2017?绵阳)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( )A.2021B.6184C.589840D.431760【考点】38:规律型:图形的变化类.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴1a1+1a2+1a3+…+1a19=11×3+12×4+13×5+14×6+…+119×21=12(1﹣13+12﹣14+13﹣15+14﹣16+…+119﹣121)=12(1+12﹣120﹣121)=589840,故选C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017?绵阳)分解因式:8a2﹣2=2(2a+1)(2a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).【点评】本题考查了提公因式法,公式法分解因式.注意分解要彻底.14.(3分)(2017?绵阳)关于x的分式方程2x−1−1x+1=11−x的解是﹣2.【考点】B3:解分式方程.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣2,经检验,x=﹣2是分式方程的解.∴x=﹣2.故答案为﹣2.【点评】本题考查分式方程的解,记住即为分式方程的步骤,注意解分式方程必须检验.15.(3分)(2017?绵阳)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是(7,4).【考点】L5:平行四边形的性质;D5:坐标与图形性质.【分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解答】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).【点评】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.16.(3分)(2017?绵阳)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是14.【考点】X6:列表法与树状图法.【专题】11 :计算题.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=936=14. 故答案为14. 【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.17.(3分)(2017?绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +12MA?DN的最小值为 2√3 .【考点】S9:相似三角形的判定与性质;KH :等腰三角形的性质;R2:旋转的性质.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD +∠A=∠EDF +∠BDN ,然后求出∠AMD=∠BDN ,从而得到△AMD 和△BDN 相似,根据相似三角形对应边成比例可得MA BD =MD DN,求出MA?DN=4MD ,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD :AB=1:3,∴AD=6×13=2,BD=6﹣2=4, ∵△ABC 和△FDE 是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE ,由三角形的外角性质得,∠AMD +∠A=∠EDF +∠BDN ,∴∠AMD=∠BDN ,∴△AMD ∽△BDN ,∴MA BD =MD DN =AD BN, ∴MA?DN=BD?MD=4MD ,∴1MA?DN =14MD ,∴MD +12MA?DN =MD +3MD=(√MD )2+(√3MD )2﹣2√3+2√3=(√MD ﹣√3MD )2+2√3, ∴√MD =√3MD ,即MD=√3, 如图,连接CD ,过点C 作CG ⊥AB 于G ,∵AC=BC=5,AB=6,∴AG=3,CG=4,∴DG=AG ﹣AD=3﹣2=1,在Rt △CDG 中,根据勾股定理得,CD=√DG 2+CG 2=√17当点M 和点C 重合时,DM 最大,即:DM 最大=√17当DM ⊥AC 时,DM 最小,过点D 作DH ⊥AC 于H ,即:DM 最小=DH ,在Rt △ACG 中,sin ∠A=CG AC =45, 在Rt △ADH 中,sin ∠A=DH AD ,∴DH=ADsin ∠A=2×45=85, ∵85≤DM ≤√17, ∴DM=√3时,MD +12MA?DN有最小值为2√3. 故答案为:2√3.【点评】本题考查了相似三角形的判定与性质,等腰三角形的性质,旋转变换,难点在于将所求代数式整理出完全平方的形式从而判断出最小值.18.(3分)(2017?绵阳)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是112,则1tan∠ACH的值是 8﹣√15 .【考点】S9:相似三角形的判定与性质;T7:解直角三角形.【分析】过点H 作HG ⊥AC 于点G ,由于AF 平分∠CAE ,DE ∥BF ,∠HAF=∠AFC=∠CAF ,从而AC=CF=2,利用△AHM ∽△FCM ,AM MF =AH CF ,从而可求出AH=1,利用△AMH 的面积是112,从而可求出HG ,利用勾股定理即可求出CG 的长度,所以1tan∠ACH =CG HG. 【解答】解:过点H 作HG ⊥AC 于点G ,∵AF 平分∠CAE ,DE ∥BF ,∴∠HAF=∠AFC=∠CAF ,∴AC=CF=2,∵AM=13AF , ∴AM MF =12, ∵DE ∥CF ,∴△AHM ∽△FCM ,∴AM MF =AH CF, ∴AH=1,设△AHM 中,AH 边上的高为m , △FCM 中CF 边上的高为n , ∴m n =AM MF =12, ∵△AMH 的面积为:112, ∴112=12AH?m ∴m=16, ∴n=13, 设△AHC 的面积为S ,∴SS △AHM =m+n m =3,∴S=3S △AHM =14, ∴12AC?HG=14, ∴HG=14, ∴由勾股定理可知:AG=√154, ∴CG=AC ﹣AG=2﹣√154∴1tan∠ACH =CGHG=8﹣√15故答案为:8﹣√15【点评】本题考查相似三角形综合问题,解题的关键是通过相似三角形的性质求出HG 、CG 、AH 长度,本题属于难题.三、解答题(本大题共7小题,共86分) 19.(16分)(2017?绵阳)(1)计算:√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| (2)先化简,再求值:(x−y x 2−2xy+y2﹣x x 2−2xy)÷y x−2y,其中x=2√2,y=√2.【考点】6D :分式的化简求值;2C :实数的运算;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【解答】解:(1)√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| =+(√22)2−(−12)−12=+12+12−12=;(2)(x−yx −2xy+y ﹣xx −2xy )÷yx−2y=[x−y (x−y)2−x x(x−2y)]?x−2y y =(1x−y −1x−2y )?x−2yy=x−2y−x+y (x−y)(x−2y)?x−2y y=−y y(x−y)=1y−x,当x=2√2,y=√2时,原式=√2−2√2=−√2=−√22. 【点评】本题考查分式的化简求值、特殊角的三角函数值、负整数指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.20.(11分)(2017?绵阳)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数 3 8 10 6 3 对应扇形 图中区域BDEAC如图所示的扇形统计图中,扇形A 对应的圆心角为 72 度,扇形B 对应的圆心角为 36 度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB :扇形统计图.【分析】(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可. 【解答】解:(1)填表如下: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数 3 8 10 6 3 对应扇形 图中区域 BDEAC如图所示:如图所示的扇形统计图中,扇形A 对应的圆心角为:360°×630=72度,扇形B 对应的圆心角为360°×330=36度.故答案为3,6,B ,A ,72,36;(2)3000×6+330=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.(11分)(2017?绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦公顷,2台大型收割机和5台小型收割机1小时可以收割小麦公顷. (1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【分析】(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦公顷,2台大型收割机和5台小型收割机1小时可以收割小麦公顷”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w 与m 之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题. 【解答】解:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:{x +3y =1.42x +5y =2.5,解得:{x =0.5y =0.3.答:每台大型收割机1小时收割小麦公顷,每台小型收割机1小时收割小麦公顷. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台, 根据题意得:w=300×2m +200×2(10﹣m )=200m +4000. ∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元, ∴{2×0.5m +2×0.3(10−m)≥8200m +4000≤5400,解得:5≤m ≤7, ∴有三种不同方案.∵w=200m +4000中,200>0, ∴w 值随m 值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元. 【点评】本题考查了二元一次方程组的应用、一次函数的性质以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用=大型收割机的费用+小型收割机的费用,找出w 与m 之间的函数关系式. 22.(11分)(2017?绵阳)如图,设反比例函数的解析式为y=3k x(k >0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数与过点M (﹣2,0)的直线l :y=kx +b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由题意可得A (1,2),利用待定系数法即可解决问题;(2)把M (﹣2,0)代入y=kx +b ,可得b=2k ,可得y=kx +2k ,由{y =3kx y =kx +2k消去y 得到x 2+2x ﹣3=0,解得x=﹣3或1,推出B (﹣3,﹣k ),A (1,3k ),根据△ABO 的面积为163,可得12?2?3k +12?2?k=163,解方程即可解决问题;【解答】解:(1)由题意A (1,2),把A (1,2)代入y=3kx ,得到3k=2,∴k=23.(2)把M (﹣2,0)代入y=kx +b ,可得b=2k , ∴y=kx +2k ,由{y =3k x y =kx +2k消去y 得到x 2+2x ﹣3=0,解得x=﹣3或1, ∴B (﹣3,﹣k ),A (1,3k ),∵△ABO 的面积为163,∴12?2?3k +12?2?k=163, 解得k=43,∴直线l 的解析式为y=43x +83.【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(11分)(2017?绵阳)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N .(1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=2√10,求圆O 的直径的长度.【考点】MC:切线的性质;KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45、AN=2√10,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.【解答】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN .(2)连接OC ,如图2所示.∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45. 设CH=4a ,则AC=5a ,AH=3a , ∵CA=CN , ∴NH=a ,∴AN=√AH 2+NH 2=√(3a)2+a 2=√10a=2√10, ∴a=2,AH=3a=6,CH=4a=8. 设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6, ∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点评】本题考查了切线的性质、勾股定理、解直角三角形、圆周角定理以及解一元一次方程,解题的关键是:(1)通过角的计算找出∠CAN=90°﹣∠OAF=∠ANC;(2)利用解直角三角形求出CH、AH的长度.24.(12分)(2017?绵阳)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.【考点】HF:二次函数综合题.【分析】(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D的坐标可求得FH,则可求得MF和BE的长,可求得其比值.【解答】解:(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为y=a(x﹣2)2+1,∵抛物线经过点(4,2),∴2=a(4﹣2)2+1,解得a=1 4,∴抛物线解析式为y=14(x ﹣2)2+1=14x 2﹣x +2;(2)联立直线和抛物线解析式可得{y =14x 2−x +2y =12x +1,解得{x =3−√5y =52−√52或{x =3+√5y =52+√52, ∴B (3﹣√5,52﹣√52),D (3+√5,52+√52),∵C 为BD 的中点,∴点C 的纵坐标为52−√52+52+√522=52, ∵BD=√[(3−√5)−(3+√5)]+[(52−52)−(52+52)]=5, ∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径, ∴圆C 与x 轴相切;(3)如图,过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)可知CM=52,CH=52﹣1=32,在Rt △CMH 中,由勾股定理可求得MH=2,∵HF=3+√5−(3−√5)2=√5,∴MF=HF ﹣MH=√5﹣2,。
2016年四川省绵阳市涪城区中考数学二诊试卷及解析答案word版

2016年四川省绵阳市涪城区中考数学二诊试卷一、选择题(每小题3分,共36分,每小题只有一项是符合题目要求的)1.(3分)﹣6的绝对值是()A.﹣6 B .﹣ C .D.62.(3分)在过去的2015年北上广深等一线城市楼市火爆,其中仅北京的新房总成交额就达到2500亿元,若用科学记数法表示该数据应是()A.2.5×1011元 B.25×1010元C.2.5×1012元 D.0.25×1011元3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.(3分)“双十一”购物节后,小明对班上同学中的12位进行抽样调查并用数字1﹣12对每位被调查者进行编号,统计每位同学在购物节中的消费金额,结果如表所示:根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为()A.400,300 B.300,400 C.400,400 D.300,3005.(3分)如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥6.(3分)如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD的度数为()A.65°B.50°C.25°D.12.5°7.(3分)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14m,则楼高CD为()m.A.10.5 B.12 C.13 D.158.(3分)下面关于四边形的说法中,错误的是()A.菱形的四条边都相等B.一组邻边垂直的平行四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形9.(3分)如图,矩形ABCD中,AB=4,AD=3,点E、F分别在边AB,CD上,且∠FEA=60°,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,当M,N分别在边BC,AD上时.若令△A′B′M的面积为y,AE的长度为x,则y关于x的函数解析式是()A.y=﹣x2+6x﹣8B.y=﹣2x2﹣12x+16C.y=2x2+12x﹣16D.y=﹣x2+2x﹣10.(3分)已知反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),若x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,则下列四种说法中错误的是()A.必有b≠0B.必有m2﹣b2=8C.线段OA的长度必定大于2D.除A点外y=与y=x+b图象必定还有一个交点,且两交点位于同一象限11.(3分)如图△ABC中,tan∠C=,DE⊥AC,若CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,则BE的长度是()A.B.C.D.12.(3分)如图,⊙O是以原点为圆心,半径为2的圆,点A(6,2),点P是⊙O上一动点,以线段PA为斜边构造直角△PAM,且cos∠MPA=,现已知当点P在⊙O上运动时,保持∠MPA的大小不变,点M随着点P运动而运动且运动路径也形成一个圆,则该圆的半径是()A.B.C.D.1二、填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.(3分)化简:(2a2)3=.14.(3分)如图,m∥n,点A在直线m上,B、C两点在直线n上,△ABC是等腰直角三角形,∠BAC=90°,则∠1=.15.(3分)如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为的线段的概率为.16.(3分)如图,在直角△ABC中,∠BAC=90°,AB=3,AC=4,分别以AB、AC 为直径作圆,则图中阴影部分的面积是.17.(3分)若规定f(x)是正整数x所唯一对应的实数,且对于任意的正整数a、b都有f(a+b)=f(a)•f(b),如f(5)=f(3+2)=f(3)•f(2),现已知f(1)=.给出下列结论:①f(2)=2.②若a>b,则必有f(a)>f(b).③当a>b时,存在符合条件的a、b,使得2f(a)=f(a﹣b)+f(a+b)成立.④当a>b时,必有f(2a)=f(a﹣b)•f(a+b)成立.其中正确的结论是(写出你认为正确的所有结论的序号).18.(3分)在平面直角坐标系xOy中,点P在由直线y=x+2,直线y=﹣x+2和直线y=4所围成的区域内或其边界上,点M在x轴上,若点N的坐标为(5,1),当MN+MP最小时,点P坐标是.三、解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算+|()0﹣2sin45°|+2﹣1(2)解方程:﹣2=.20.(11分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球”项目的有人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.(11分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为3,sin∠ADE=,求AE的长.22.(11分)如图,O为坐标原点,点C在x轴的正半轴上,四边形OABC是平行四边形,∠AOC=45°,OA=2,反比例函数y=在第一现象内的图象经过点A,与BC交于点D.(1)求反比例函数的解析式;(2)若点D的纵坐标为,求直线AD的解析式.23.(11分)一工厂共有6条生产线生产某种机器设备,每条生产线每月可生产500台,该厂计划从今年1月开始对6条生产线各进行一次改造升级,每月改造升级1条生产线,这条生产线当月停产,并于次月再投入生产,每条生产线改造升级后,每月产量将比原来提高20%.已知每条生产线改造升级的费用为30万元,将今年1月份作为第1个月开始往后算,该厂第x(x是正整数)个月的产量设为y台.(1)求该厂第3个月的产量;(2)请求出y关于x的函数解析式;(3)如果每生产一台机器可盈利400元,至少要到第几个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额?24.(12分)在菱形ABCD中,对角线AC,BD交于点O,E为AC上点,且CE=CB,F为BE上点,M为BC上点,且MF⊥BE,并与OB相交于点N.(1)求证:△BOE∽△MFB;(2)若BD=AC,BF=a,求MN的长.(结果用a表示)25.(14分)如图,已知抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8).已知点C(4,m)在抛物线上,过点C作CD⊥y轴,垂足为D,AC与y轴交于点E.(1)请给出抛物线解析式;(2)若令∠BAO=α,请求tan的值;(注:要求运用课本所学知识结合题中几何关系进行推导求值).(3)如图2,点P为线段CD上一动点(不与C、D重合),延长PE与x轴交于点M,点N′为AB上点,且∠PMN=∠BAO,若点P横坐标记为x,AN长度记为y,请求出y关于x的函数解析式,并求出AN长度取值范围.2016年四川省绵阳市涪城区中考数学二诊试卷参考答案与试题解析一、选择题(每小题3分,共36分,每小题只有一项是符合题目要求的)1.(3分)﹣6的绝对值是()A.﹣6 B.﹣ C.D.6【解答】解:|﹣6|=6.故选D.2.(3分)在过去的2015年北上广深等一线城市楼市火爆,其中仅北京的新房总成交额就达到2500亿元,若用科学记数法表示该数据应是()A.2.5×1011元 B.25×1010元C.2.5×1012元 D.0.25×1011元【解答】解:2500亿=2.5×1011.故选A.3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.4.(3分)“双十一”购物节后,小明对班上同学中的12位进行抽样调查并用数字1﹣12对每位被调查者进行编号,统计每位同学在购物节中的消费金额,结果如表所示:根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为() A .400,300B .300,400C .400,400D .300,300【解答】解:∵300出现了5次,出现的次数最多, ∴众数是300;这组数据的平均数是:(300×5+200+400×3+500+600+800)÷12=400; 故选:A .5.(3分)如图是某几何体的三视图,则该几何体是( )A .圆锥B .圆柱C .正三棱柱D .正三棱锥【解答】解:由几何体的正视图和左视图都是宽度相等的长方形, 故该几何体是一个柱体, 又∵俯视图是一个圆, ∴该几何体是一个圆柱. 故选:B .6.(3分)如图,在⊙O 中,直径AB ⊥弦CD 于点H ,E 是⊙O 上的点,若∠BEC=25°,则∠BAD 的度数为( )A .65°B .50°C .25°D .12.5°【解答】解:连接AC,∵直径AB⊥弦CD于点H,∴∴∠CAB=∠DAB∵∠BAC=∠BEC=25°,∴∠BAD=∠BAC=25°.故选C.7.(3分)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14m,则楼高CD为()m.A.10.5 B.12 C.13 D.15【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=2,BC=14,∴AC=16,∴=,∴CD=12.故选B.8.(3分)下面关于四边形的说法中,错误的是()A.菱形的四条边都相等B.一组邻边垂直的平行四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形【解答】解:A、菱形的四条边都相等,正确.B、一组邻边垂直的平行四边形是矩形,正确.C、对角线相等且互相垂直的四边形可能是等腰梯形,可能是正方形,错误.D、矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形,正确.故选C.9.(3分)如图,矩形ABCD中,AB=4,AD=3,点E、F分别在边AB,CD上,且∠FEA=60°,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,当M,N分别在边BC,AD上时.若令△A′B′M的面积为y,AE的长度为x,则y关于x的函数解析式是()A.y=﹣x2+6x﹣8B.y=﹣2x2﹣12x+16C.y=2x2+12x﹣16D.y=﹣x2+2x﹣【解答】解:∵∠AEF=60°,∴∠BEF=120°,由题意知,∠BEM=∠B′EM=60°,∠B=∠EB′M=90°,BE=B′E=4﹣x,∴BM=BM′=BEtan∠BEM=(4﹣x),又∵AE=A′E=x,∴A′B′=A′E﹣B′E=x﹣(4﹣x)=2x﹣4,∵S=×A′B′×B′M,△A′B′M∴y=(2x﹣4)[(4﹣x)]=﹣x2+6x﹣8,故选:A.10.(3分)已知反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),若x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,则下列四种说法中错误的是()A.必有b≠0B.必有m2﹣b2=8C.线段OA的长度必定大于2D.除A点外y=与y=x+b图象必定还有一个交点,且两交点位于同一象限【解答】解:A、∴反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),∴x2=x1+b,∴b=x2﹣x1,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴b=x2﹣x1≠0,故正确;B、∵x2=x1+b,∴x2﹣x1=b,∴(x1+x2)2﹣4x1x2=b2,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴x1x2=2,x1+x2=﹣m,∴m2﹣4×2=b2,∴m2﹣b2=8,故正确;C、∵点A(x1,x2),∴OA===,∵m2﹣b2=8,∴m2=,m2﹣b2=8∴OA=,∴b2+4>4,∴OA=>2,故正确;D、∵反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),∴x1x2=k,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴x1x2=2,∴k=2,∴反比例函数在一三象限,∵一次函数y=x+b的图象一定经过一、三象限,∴y=与y=x+b图象的交点分别在第一、第三象限,故错误;故选D.11.(3分)如图△ABC中,tan∠C=,DE⊥AC,若CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,则BE的长度是()A.B.C.D.【解答】解:作BF⊥AC于点F,如右图所示,∵CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,DE⊥AC,∴,即,解得,BF=2AE,设AE=a,则BF=2a,∵DE⊥AC,BF⊥AC,∴△ADE∽△ABF,即,得AF=2a2,∴EF=2a2﹣a,∵tan∠C=,tanC=,BF=2a,解得,CF=4a,∵CE=CF+EF,CE=5,即5=4a+2a2﹣a,解得,a=1或a=﹣2.5(舍去),∴BF=2,EF=1,∴BE=,故选C.12.(3分)如图,⊙O是以原点为圆心,半径为2的圆,点A(6,2),点P是⊙O上一动点,以线段PA为斜边构造直角△PAM,且cos∠MPA=,现已知当点P在⊙O上运动时,保持∠MPA的大小不变,点M随着点P运动而运动且运动路径也形成一个圆,则该圆的半径是()A.B.C.D.1【解答】解:如图,作直线AO交⊙O于P1,P2.∵点P在⊙O上运动,∴PA的最小值就是AP1的长,PA的最大值就是PA2的长,∵∠AP1M1=∠AP2M2,∴P1M1∥P2M2,∵∠AM1P1=∠AM2P2=90°,∴A、M1、M2共线,∵OA==2,∴AP1=2﹣2,AP2=2+2,∵cos∠AP1M1=,∴sin∠AP1M1=,∴AM1=PA1•=(2﹣2),AM2=(2+2),∴M1M2=,由图象可知M1M2就是点M随着点P运动而运动且运动路径形成的圆的直径,∴该圆的半径是.故答案为C.二、填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.(3分)化简:(2a2)3=8a6.【解答】解:(2a2)3=23•a2×3=8a6.14.(3分)如图,m∥n,点A在直线m上,B、C两点在直线n上,△ABC是等腰直角三角形,∠BAC=90°,则∠1=45°.【解答】解:∵△ABC是等腰直角三角形,∠BAC=90°,∴∠B=45°.∵m∥n,∴∠1=∠B=45°.故答案为:45°.15.(3分)如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为的线段的概率为.【解答】解:连接AF,EF,AE,过点F作FN⊥AE于点N,∵点A,B,C,D,E,F是边长为1的正六边形的顶点,∴AF=EF=1,∠AFE=120°,∴∠FAE=30°,∴AN=,∴AE=,同理可得:AC=,故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为的线段有6种情况,则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:.故答案为:.16.(3分)如图,在直角△ABC中,∠BAC=90°,AB=3,AC=4,分别以AB、AC为直径作圆,则图中阴影部分的面积是π﹣6.【解答】解:π×(3÷2)2+π×(4÷2)2﹣4×3÷2=π+2π﹣6=π﹣6.故图中阴影部分的面积是π﹣6.故答案为:π﹣6.17.(3分)若规定f(x)是正整数x所唯一对应的实数,且对于任意的正整数a、b都有f(a+b)=f(a)•f(b),如f(5)=f(3+2)=f(3)•f(2),现已知f(1)=.给出下列结论:①f(2)=2.②若a>b,则必有f(a)>f(b).③当a>b时,存在符合条件的a、b,使得2f(a)=f(a﹣b)+f(a+b)成立.④当a>b时,必有f(2a)=f(a﹣b)•f(a+b)成立.其中正确的结论是①②④(写出你认为正确的所有结论的序号).【解答】解:①f(2)=f(1+1)=f(1)•f(1)==2,∴①正确;②设a=b+n,n为正整数,∴f(a)=f(b)+f(n)=f(b)+nf(1)=f(b)+n>f(b),∴②正确;③∵f(a﹣b)+f(a+b)=﹣f(a)•f(b)+f(a)•f(b)=0,由②知f(a)≥f(1),∵f(1)=,∴f(a)≥≠0,∴③不正确;④∵f(a﹣b)•f(a+b)=f(a﹣b+a+b)=f(2a),∴④正确;∴正确的有①②④故答案为①②④.18.(3分)在平面直角坐标系xOy中,点P在由直线y=x+2,直线y=﹣x+2和直线y=4所围成的区域内或其边界上,点M在x轴上,若点N的坐标为(5,1),当MN+MP最小时,点P坐标是(1,3).【解答】解:如图,作直线y=x+2关于x轴的对称的直线y=﹣x﹣2,过点N作直线y=﹣x﹣2的垂线垂足为E,交x轴于M,则点E坐标(1,﹣3),点E关于x轴的对称点P坐标(1,3),此时MN+MP最短,理由:∵MN+MP=MN+ME=NE,∴MN+MP最短(垂线段最短).故点P坐标为(1,3),故答案为(1,3).三、解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算+|()0﹣2sin45°|+2﹣1(2)解方程:﹣2=.【解答】解:(1)原式=2+﹣1+=3﹣;(2)去分母得:x2+2x﹣2x2﹣2x+4=2,即x2=2,解得:x=±,经检验x=±都为分式方程的解.20.(11分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有10人,男生最喜欢“乒乓球”项目的有20人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10人,男生最喜欢“乒乓球”项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=20人;(2)补充条形统计图如右图:.(3)400×28%+450×=193,答:该校喜欢“羽毛球”项目的学生总人数为193人.21.(11分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为3,sin∠ADE=,求AE的长.【解答】(1)证明:连接OD,则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°,∴OD⊥CD,∴CD与圆O相切;(2)连接BE,则∠ADE=∠ABE,∴sin∠ADE=sin∠ABE=,∵AB是圆O的直径,∴∠AEB=90°,AB=2×3=6,在Rt△ABE中,sin∠ABE==,∴AE=5.22.(11分)如图,O为坐标原点,点C在x轴的正半轴上,四边形OABC是平行四边形,∠AOC=45°,OA=2,反比例函数y=在第一现象内的图象经过点A,与BC交于点D.(1)求反比例函数的解析式;(2)若点D的纵坐标为,求直线AD的解析式.【解答】解:(1)如图,作AH⊥x轴于点H,∵OA=2,∠AOH=45°,∴OH=AH=OAsin∠AOH=2×=,即A(,),又∵点A(,)在y=图象上,∴m=×=2,∴反比例函数解析式是y=;(2)∵点D的纵坐标为,且点D在双曲线y=上,∴其横坐标为2,即D(2,),设直线AD解析式为:y=kx+b,将点A(,)、D(,2)代入得:,解得:,∴直线AD的解析式为y=﹣x+.23.(11分)一工厂共有6条生产线生产某种机器设备,每条生产线每月可生产500台,该厂计划从今年1月开始对6条生产线各进行一次改造升级,每月改造升级1条生产线,这条生产线当月停产,并于次月再投入生产,每条生产线改造升级后,每月产量将比原来提高20%.已知每条生产线改造升级的费用为30万元,将今年1月份作为第1个月开始往后算,该厂第x(x是正整数)个月的产量设为y台.(1)求该厂第3个月的产量;(2)请求出y关于x的函数解析式;(3)如果每生产一台机器可盈利400元,至少要到第几个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额?【解答】解:(1)由已知可得,第3个月的产量是:2×500×(1+20%)+500×3=2700(台),答:该厂第3个月的产量是2700台.(2)①当1≤x≤6时,每月均有一条生产线在停产改造,即均是有5条生产线在生产,其中,升级后的生产线有x﹣1条,未升级的生产线有6﹣x条,根据题意,得:y=(x﹣1)×500×(1+20%)+(6﹣x)×500=100x+2400;②当x>6时,y=500×(1+20%)×6=3600台;综上,y=.(3)由(2)得,当1≤x≤6时,y=100x+2400,则前6个月的总产量Q=100×(1+2+3+4+5+6)+2400×6=16500(台),∴前6个月的盈利扣除改造升级的成本应是:16500×0.04﹣30×6=480(万元),如果不升级改造,前6个月盈利应是:500×6×6×0.04=720(万元),故前6个月不符合题目要求,从而得x>6,则有:480+(x﹣6)×3600×0.04≥500×6x×0.04,解得:x≥16,答:至少要到第16个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额.24.(12分)在菱形ABCD中,对角线AC,BD交于点O,E为AC上点,且CE=CB,F为BE上点,M为BC上点,且MF⊥BE,并与OB相交于点N.(1)求证:△BOE∽△MFB;(2)若BD=AC,BF=a,求MN的长.(结果用a表示)【解答】(1)证明:∵AC、BD是菱形ABCD的对角线,∴AC⊥BD,∴∠BOE=90°,∵CE=CB,∴∠CEB=∠CBE,∵MF⊥BE,∴∠BFM=90°,∴∠BOE=∠BFM,∴△BOE∽△MFB;(2)解:作MP∥AC与BE交于点P,与OB交于点Q,如图所示:由△BOE∽△MFB,∴∠EBO=∠FMB,∵BD=AC,∴OB=OC,∴tan∠OCB==,∵MP∥AC,∴∠MPB=∠CEB=∠CBE,∠MQN=90°,=,∴△MBP为等腰三角形,∵MF⊥BE,∴BF=FP,∠PMF=∠BMF=∠PBQ,∵∠MQN=∠BQP=90°,∴△PBQ∽△NMQ,∴===,∴MN=BP=×2BF=3BF=3a.25.(14分)如图,已知抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8).已知点C(4,m)在抛物线上,过点C作CD⊥y轴,垂足为D,AC与y轴交于点E.(1)请给出抛物线解析式;(2)若令∠BAO=α,请求tan的值;(注:要求运用课本所学知识结合题中几何关系进行推导求值).(3)如图2,点P为线段CD上一动点(不与C、D重合),延长PE与x轴交于点M,点N′为AB上点,且∠PMN=∠BAO,若点P横坐标记为x,AN长度记为y,请求出y关于x的函数解析式,并求出AN长度取值范围.【解答】解:(1)∵抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8),∴,解得,,即抛物线的解析式为:y=﹣x2+x+8;(2)如图1所示,过点C作CH⊥x轴于点H,∵点C(4,m)在抛物线上,∴,得m=5,∴点C(4,5),又∵点A(﹣6,0),点B(0,8),∴AB=,BC=,∵CH=5,AH=AO+OH=6+4=10,AC=AC,∴AB=AH,BC=HC,∴△ABC≌△AHC,∴∠BAC=∠HAC,∵∠BAO=∠BAC+∠HAC,∴∠HAC=,∴tan;(3)如图2,作MQ⊥AB于点Q,∵∠NMO=∠PMN+∠PMO=∠BAO+∠ANM,又∵∠PMN=∠BAO,∴∠PMO=∠ANM,∵CH∥EO,在图1中,,∴OE=,∵BD=8﹣5=3,∴OE=OB﹣BD﹣OE=8﹣3﹣3=2,∵点P横坐标为x,即PD=x,∴tan∠EMO=tan∠DPE=,∴,即,得OM=,∴AM=OA﹣OM=6﹣,在Rt△QAM中,sin∠QAM=,cos∠QAM=,∴QM=AM•sin∠QAM=(6﹣),AQ=AM•cos∠QAM=,∵在Rt△QNM中,,即QN=QM,∴AN=AQ+QN=,化简,得,∴当x=时,y取得最大值,∵y>0,∴AN的取值范围是:.赠送:初中数学几何模型【模型一】半角型:图形特征:AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。
四川省绵阳市高中2016级第三次诊断性考试理科数学含答案

绵阳市高中2016级第三次诊断性考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.己知集合 A={},N={1,2},则∥31|x x ≤=N M A. {1} B. {1,2} C. 0 D.[1, 2]2.已知为虚数单位,复数满足,则i z i i z =+⋅)1(=||z A. B. C. D.1212223.中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变化趋势的已套指数体系。
如图所示的折线图是2017年和2018年的中国仓储指数走势情况。
根据该折线图,下列结论中不正确的是A.2018年1月至4月的仓储指数比2017年同期波动性更大B.这两年的最大仓铋指数都出现在4月份C.2018年全年仓储指数甲均饥明显低于2017年D.2018年各仓储指数的中位数与2017年备月仓储指数中位数差异明显4.已知变量满足,则的最大值为y x ,⎪⎩⎪⎨⎧≤-+≤≥021||0y x y x 22y x +A.10 B.5 C.4 D.25.将函数的图像向左平移个单位,得到的解析式为)62sin()(π-=x x f 6π)(x g A. B. x x g 2cos )(=xx g 2cos )(-=C. D. x x g 2sin )(=32sin()(π+=x x g 6.已知{}是正项等比数列,且, 与的等差中项为18, 则n a 5814a a a =4a 62a =5a A. 2B. 4C.8D.167.函数的大致图象为2ln )(x x x f =8.己知一个封闭的长方体容器中装有两个大小相同的铁球,若该长方体容器的三个相邻侧面的面枳分别为6, 8, 12,则铁球的直径最大只能为A. B. 2 C. D.4359.己知双曲线E: (a>b>0)的两个焦点分别为F1,F2,以原点O 为圆心,OF1为半径作圆,12222=-b y ax 与双曲线E 相交,若顺次连接这些交点和F1,,F2恰好构成一个正六边形, 则双曲线E 的离心率为A. B. 2 C. D.3313+10.在的展开式中, 项的系数为5)21(x x-+2x A.-50 B.-30 C.30 D.5011.若,且 ,,则 的值是+∈R z y x ,,z y x 1243==N n n n zy x ∈+∈+),1,(n A. 2 B. 3C. 4D.512.已知抛物线C: 的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于A 、B 两点,若在x y 42=以线段AB 为直径的圆上存在两点M 、N,在直线上存在一点Q ,使得,0:=++a y x l 090=∠MQN 则实数的取值范围为a A. [-13, 3] B.[-3, 1]C.[-3. 13]D.[-13. 13]二、填空题 :本大题共4小题,每小题5分,共20分。
2016年四川省绵阳市游仙区中考数学二诊试卷及解析答案word版

2016年四川省绵阳市游仙区中考数学二诊试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)1不是﹣1的()A.平方数B.倒数C.相反数D.绝对值2.(3分)下列运算正确的是()A.x3+x3=x6B.x6÷x2=x3C.x m•x n=x mn D.(﹣x5)4=x203.(3分)下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形B.矩形C.菱形D.正方形4.(3分)地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A.6 B.7 C.8 D.95.(3分)函数y=(x﹣1)0中,自变量x的取值范围是()A.x>1 B.x≠1 C.x<1 D.x≥16.(3分)三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11 B.13 C.11或13 D.11和137.(3分)如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数()A.35°B.5°C.15°D.25°8.(3分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个 C.3个 D.4个9.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点A.45°B.55°C.60°D.75°10.(3分)一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.11.(3分)长方体敞口玻璃罐,长、宽、高分别为16cm、6cm和6cm,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方2cm处,则蚂蚁到达饼干的最短距离是多少cm.()A.7 B.C.24 D.12.(3分)下列说法正确的个数是()①若mx=nx,则m=n;②若△ABC中,sinA=,则∠A=30°;③一个角的两边分别垂直于另一个角的两边,则这两个角相等;④等腰三角形的高、中线、角平分线互相重合;⑤分式方程=的增根是0和1、﹣1;⑥若n可以取从1到2016之间的正整数(包括1与2016),则二次函数y=(n2+n)x2﹣(2n+1)x+1的图象在x轴上所截得的线段之和为.A.0 B.1 C.2 D.3二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.(3分)分解因式.a+2ab+ab2=.14.(3分)点P(a,a﹣3)在第四象限,则a的取值范围是.15.(3分)如图,点D在AC的垂直平分线上,AB∥CD,若∠ADC=130°,则∠BAC的度数是.16.(3分)如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为米.17.(3分)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x 的不等式﹣1>0的解集是()A.x>1 B.x<﹣1 C.0<x<1 D.﹣1<x<018.(3分)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD 于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②∠APD=∠BMF;③EM=2AM;④△CDE是等腰三角形;⑤EM:BE=:3;⑥S△EPM=S梯形ABCD,正确的有(填序号)三、解答题(本大题有7小题,共86分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(16分)(1)计算:(2016﹣2015π)0+(﹣)﹣1﹣|tan60°﹣2|+()﹣1(2)先化简,再求值:﹣,其中x=2sin60°﹣()﹣2.20.(12分)某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A,B,C,D四个等级(A,B,C,D分别代表优秀、良好、合格、不合格)该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了名学生的成绩;(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是分,众数是分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.21.(10分)如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)过点E作EH⊥BC,垂足为点H,若AB=4,求EH的长及sin∠DHE的值(结果保留根号).22.(11分)如图,一次函数y=ax与反比例函数y=的图象交于点A、B,点B 的横坐标是5,OA=点P(m,n)(n>1)是第一象限内y=的图象上的动点,直线PA、PB分别交y轴于C、D.(1)求反比例函数及一次函数y=ax的解析式;(2)求证:△PCD是等腰三角形.23.(11分)2015年1﹣11月绵阳实现对外贸易进出口总值150.4亿元人民币,某新磁公司仓库现有1000吨磁性材料要全部运往A、B两厂,通过了解获得A、B两厂的有关信息如下表(表中运费栏“元/t•km”表示:每吨磁性材料运送一千米所需的费用):(1)写出总运费y(元)与运往A厂的磁性材料量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该新磁公司设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)24.(12分)平行四边形ABCD中,∠BCD=90°,AE平分∠BAD交BC于点E,交DC的延长线于点F,交BD于M,点G为EF的中点,连接CG、BG、DG.(1)求证:△DCG≌△BEG;(2)若AB=CG,DC=2,求MG;(3)在(2)的条件下,延长BG交DF于N,求△NCG的内切圆半径.25.(14分)如图1,抛物线y=ax2+bx+c与x轴交于A(10,0),与y轴交于B (0,5),过抛物线上点C(4,8)作CD⊥x轴于点D,连接OC、AB.(1)求抛物线的解析式;(2)将△OCD沿x轴以一个单位每秒的速度向右平移,记时间为t(0≤t≤6),在△OCD运动过程中,CD与AB交于点E,OC与AB交于点F,记y为△CEF与△ADE的面积之和.求y关于t的函数关系式,并求y的最小值;(3)如图2,M为AC的中点,点N的坐标为(n,0)试在线段OC上找一点P,使得∠MPN=∠COA,若这样的点P有两个,求n的取值范围.2016年四川省绵阳市游仙区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)1不是﹣1的()A.平方数B.倒数C.相反数D.绝对值【解答】解:A、(﹣1)2=1,则1是﹣1的平方数.故本选项错误;B、﹣1的倒数是﹣1,则1不是﹣1的倒数.故本选项正确;C、﹣1的相反数是1,则1是﹣1的相反数.故本选项错误;D、|﹣1|=1,则1是﹣1的绝对值.故本选项错误;故选:B.2.(3分)下列运算正确的是()A.x3+x3=x6B.x6÷x2=x3C.x m•x n=x mn D.(﹣x5)4=x20【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.3.(3分)下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:A、平行四边形是中心对称图形,不是轴对称图形,故选项正确;B、矩形既是轴对称图形,又是中心对称图形,故选项错误;C、菱形既是轴对称图形,又是中心对称图形,故选项错误;D、正方形,矩形既是轴对称图形,又是中心对称图形,故选项错误.故选A.4.(3分)地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A.6 B.7 C.8 D.9【解答】解:150 000 000=1.5×108.故选C.5.(3分)函数y=(x﹣1)0中,自变量x的取值范围是()A.x>1 B.x≠1 C.x<1 D.x≥1【解答】解:由y=(x﹣1)0中,得x﹣1≠0.解得x≠1,自变量x的取值范围是x≠1,故选:B.6.(3分)三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11 B.13 C.11或13 D.11和13【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x1=2,x2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为3+4+6=13.故选B.7.(3分)如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数()A.35°B.5°C.15°D.25°【解答】解:∵∠B=50°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的角平分线,∴∠EAC=∠BAC=35°,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=30°,∴∠EAD=∠EAC﹣∠DAC=5°.故选B8.(3分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个 C.3个 D.4个【解答】解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故答案为:D.9.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.10.(3分)一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.【解答】解:画树状图得:∵x2+px+q=0有实数根,∴△=b2﹣4ac=p2﹣4q≥0,∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,﹣1),(2,﹣1),(2,1)共3种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:=.故选A.11.(3分)长方体敞口玻璃罐,长、宽、高分别为16cm、6cm和6cm,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方2cm处,则蚂蚁到达饼干的最短距离是多少cm.()A.7 B.C.24 D.【解答】解:①若蚂蚁从平面ABCD和平面CDFE经过,蚂蚁到达饼干的最短距离如图1:H′E===7,②若蚂蚁从平面ABCD和平面BCEH经过,则蚂蚁到达饼干的最短距离如图2:H′E==故选B.12.(3分)下列说法正确的个数是()①若mx=nx,则m=n;②若△ABC中,sinA=,则∠A=30°;③一个角的两边分别垂直于另一个角的两边,则这两个角相等;④等腰三角形的高、中线、角平分线互相重合;⑤分式方程=的增根是0和1、﹣1;⑥若n可以取从1到2016之间的正整数(包括1与2016),则二次函数y=(n2+n)x2﹣(2n+1)x+1的图象在x轴上所截得的线段之和为.A.0 B.1 C.2 D.3【解答】解:∵若x=0时,则mx=nx,此时m、n可以为任意数,故①错误;∵sin30°=,在△ABC中,sinA=,∴∠A=30°,故②正确;∵四边形内角和等于360°,∴一个角的两边分别垂直于另一个角的两边,则这两个角互补,故③错误;等腰三角形底边上的高、中线、角平分线互相重合,腰上的高、中线、角平分线不一定重合,故④错误;分式方程=如果有增根,则x(x﹣1)(x+1)=0,得x=0或x=1或x=﹣1,故⑤正确;∵(n2+n)x2﹣(2n+1)x+1=0,解得,x=或x=,∴二次函数y=(n2+n)x2﹣(2n+1)x+1的图象在x轴上所截得的线段长为:=,∴若n可以取从1到2016之间的正整数(包括1与2016),则二次函数y=(n2+n)x2﹣(2n+1)x+1的图象在x轴上所截得的线段之和为:=1﹣+=1﹣==,故⑥正确;故选D.二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.(3分)分解因式.a+2ab+ab2=a(b+1)2.【解答】解:原式=a(1+2b+b2)=a(b+1)2,故答案为:a(b+1)214.(3分)点P(a,a﹣3)在第四象限,则a的取值范围是0<a<3.【解答】解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.15.(3分)如图,点D在AC的垂直平分线上,AB∥CD,若∠ADC=130°,则∠BAC的度数是25°.【解答】解:∵点D在AC的垂直平分线上,∴AD=CD,∵∠D=130°,∴∠DAC=∠DCA=25°,∵AB∥CD,∴∠BAC=∠DCA=25°.故答案为:25°.16.(3分)如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为14+2米.【解答】解:如图,延长AD交BC的延长线于点F,过点D作DE⊥BC的延长线于点E.∵∠DCE=30°,CD=8米,∴CE=CD•cos∠DCE=8×=4(米),∴DE=4米,设AB=x,EF=y,∵DE⊥BF,AB⊥BF,∴△DEF∽△ABF,∴=,即=…①,∵1米杆的影长为2米,根据同一时间物高与影长成正比可得,=…②,①②联立,解得x=14+2(米).故答案为:14+2.17.(3分)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x 的不等式﹣1>0的解集是()A.x>1 B.x<﹣1 C.0<x<1 D.﹣1<x<0【解答】解:由﹣x2﹣1<0得,x2+1<,∵点A的横坐标为1,如图所示,∴不等式的解集是0<x<1.故选:C.18.(3分)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD 于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②∠APD=∠BMF;③EM=2AM;④△CDE是等腰三角形;⑤EM:BE=:3;⑥S△EPM=S梯形ABCD,正确的有①②④⑤⑥(填序号)【解答】解:连接DF,AC,EF,如图所示:∵E、F分别为AB、BC的中点,且AB=BC,∴AE=EB=BF=FC,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴∠BAF=∠BCE,AF=CE,在△AME和△CMF中,,∴△AME≌△CMF(AAS),∴EM=FM,在△BEM和△BFM中,,∴△BEM≌△BFM(SSS),∴∠ABN=∠CBN,选项①正确;∵AE=AD,∠EAD=90°,∴△AED为等腰直角三角形,∴∠AED=45°,∵∠ABC=90°,∴∠ABN=∠CBN=45°,∴∠AED=∠ABN=45°,∴ED∥BN,∴∠APF=∠AMN,∴∠APD=∠BMF,选项②正确;在△AEM中,EM≠2AM,选项③错误;∵AB=BC=2AD,且BC=2FC,∴AD=FC,又AD∥FC,∴四边形AFCD为平行四边形,∴AF=DC,又AF=CE,∴DC=EC,则△CED为等腰三角形,选项④正确;∵EF为△ABC的中位线,∴EF∥AC,且EF=AC,∴∠MEF=∠MCA,∠EFM=∠MAC,∴△EFM∽△CAM,∴EM:MC=EF:AC=1:2,设EM=x,则有MC=2x,EC=EM+MC=3x,设EB=y,则有BC=2y,在Rt△EBC中,根据勾股定理得:EC==y,∴3x=y,即x:y=:3,∴EM:BE=:3,选项⑤正确;∵E为AB的中点,EP∥BM,∴P为AM的中点,=S△EPM=S△AEM,∴S△AEP又S=S△BEM,且S△BEM=S△BFM,△AEM=S△BEM=S△BFM=S△ABF,∴S△AEM∵四边形ABFD为矩形,=S△ADF,又S△ADF=S△DFC,∴S△ABF=S△ADF=S△DFC=S梯形ABCD,∴S△ABF=S梯形ABCD,选项⑥正确.∴S△EPM则正确的个数有5个.故答案为①②④⑤⑥三、解答题(本大题有7小题,共86分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(16分)(1)计算:(2016﹣2015π)0+(﹣)﹣1﹣|tan60°﹣2|+()﹣1(2)先化简,再求值:﹣,其中x=2sin60°﹣()﹣2.【解答】解:(1)原式=1﹣3﹣2++=﹣+;(2)原式=﹣•=﹣=﹣,当x=2sin60°﹣()﹣2=﹣4时,原式=﹣.20.(12分)某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A,B,C,D四个等级(A,B,C,D分别代表优秀、良好、合格、不合格)该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了50名学生的成绩;(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比30%.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是55分,众数是55分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.【解答】解:(1)根据题意得:(12+8)÷40%=50(人),则本次调查了50名学生的成绩;(2)等级A的学生数为50×20%=10(人),即等级A男生为4人;∵等级D占的百分比为×100%=10%;∴等级C占的百分比为1﹣(40%+20%+10%)=30%,∴等级C的学生数为50×30%=15(人),即女生为7人,补全条形统计图,如图所示:(4)根据题意得:500×20%=100(人),则在这次测试中成绩达到优秀的人数有100人.21.(10分)如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)过点E作EH⊥BC,垂足为点H,若AB=4,求EH的长及sin∠DHE的值(结果保留根号).【解答】解:(1)DE是⊙O的切线;理由如下:连接OD,如图1所示:∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴∠BOD=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)连接CD,作DM⊥EH于M,如图2所示:∵△ABC是等边三角形,∴AC=AB=4,∠A=∠C=60°,∵BC是⊙O的直径,∴∠BDC=90°,即CD⊥AB,∴AD=AB=2,∵DE⊥AC,∴∠ADE=90°﹣∠A=30°,∴AE=AD=1,DE=AE=,∴CE=AC﹣AE=3,∵EH⊥BC,∴∠CEH=90°﹣∠C=30°,∴CH=CE=,∴EH=CH=,∵∠DEH=90°﹣∠CEH=60°,∴∠EDM=90°﹣60°=30°,∴EM=DE=,∴DM=EM=,MH=EH﹣EM=,∴DH===,∴sin∠DHE===.22.(11分)如图,一次函数y=ax与反比例函数y=的图象交于点A、B,点B 的横坐标是5,OA=点P(m,n)(n>1)是第一象限内y=的图象上的动点,直线PA、PB分别交y轴于C、D.(1)求反比例函数及一次函数y=ax的解析式;(2)求证:△PCD是等腰三角形.【解答】解:(1)∵一次函数y=ax与反比例函数y=的图象交于点A、B,∴点A与点B关于原点对称,∴OB=OA=,设点B的坐标是(5,y),则52+y2=26,解得y=±1(负值舍去),∴B(5,1).∵一次函数y=ax与反比例函数y=的图象都过点B,∴1=5a,1=,∴a=,k=5,∴反比例函数的解析式为y=,一次函数的解析式为y=x;(2)过点P作PH⊥y轴于H,如图.∵B(5,1),∴A(﹣5,﹣1).∵点P(m,n)(n>1)是第一象限内y=图象上的动点,∴设P(m,),直线PA的方程为y=cx+d,直线PB的方程为y=px+q,联立,解得直线PA的方程为y=x+﹣1,联立,解得直线PB的方程为y=﹣x++1,∴C(0,﹣1),D(0,+1),∵H(0,),∴CH=﹣(﹣1)=1,DH=+1﹣=1,∴CH=DH,∴PH垂直平分CD,∴PC=PD,∴△PCD是等腰三角形.23.(11分)2015年1﹣11月绵阳实现对外贸易进出口总值150.4亿元人民币,某新磁公司仓库现有1000吨磁性材料要全部运往A、B两厂,通过了解获得A、B两厂的有关信息如下表(表中运费栏“元/t•km”表示:每吨磁性材料运送一千米所需的费用):(1)写出总运费y(元)与运往A厂的磁性材料量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该新磁公司设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)【解答】解:(1)若运往A厂x吨,则运往B厂为(1000﹣x)吨.依题意得:y=200×0.45x+150×a×(1000﹣x)=90x﹣150ax+150000a=(90﹣150a)x+150000a,依题意得:解得:100≤x≤650.故函数关系式为y=(90﹣150a)x+150000a,(100≤x≤650).(2)当0<a<0.6时,90﹣150a>0,=(90﹣150a)×100+150000a=135000a+9000.∴当x=100时,y最小此时,1000﹣x=1000﹣100=900.当a>0.6时,90﹣150a<0,又因为运往A厂总吨数不超过600吨,∴当x=650时,y=(90﹣150a)×650+150000a=52500a+58500.最小此时,1000﹣x=1000﹣650=350.当a=0.6时,y=90000,答:当0<a<0.6时,运往A厂100吨,B厂900吨时,总运费最低,最低运费(135000a+9000)元.当a>0.6时,运往A厂650吨,B厂350吨时,总运费最低,最低运费(52500a+58500)元.当a=0.6时,运费90000元.24.(12分)平行四边形ABCD中,∠BCD=90°,AE平分∠BAD交BC于点E,交DC的延长线于点F,交BD于M,点G为EF的中点,连接CG、BG、DG.(1)求证:△DCG≌△BEG;(2)若AB=CG,DC=2,求MG;(3)在(2)的条件下,延长BG交DF于N,求△NCG的内切圆半径.【解答】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠BAD=∠ABC=∠BCD=90°,AD∵EA平分∠BAD,∴∠BAE=∠DAE=∠AEB=∠CEF=45°,∵∠BCF=90°,∴∠F=∠CEF=45°,∴AB=BE=CD,CE=CF∵EG=GF,∠ECF=90°,∴EG=CG=FG,∠ECG=∠GCF=45°,∴∠BEG=∠GCD=135°,在△BEG和△DCG中,,∴△DCG≌△BEG.(2)如图1中,∵AB=CG,DC=2,∴AB=CD=2,CG=EG=GF=,∴EC=CF=2,∴AB=CF=DC=2,AF==4,∵AB∥DF,∴=,∴AM=AF=,∴MG=AF=AM﹣FG=.(3)如图2中,作GK⊥CF于K.∵AB∥NF,∴===,∴NF=,CN=CF﹣NF=,在RT△BCN中,NB==,∴GN=NB=,在RT△CGK中,∵∠GCK=45°,CG=,∴CK=GK=1,设△CGN内切圆半径为r,则有:•CN•GK=(CG+CN+GN)•r,∴r=.25.(14分)如图1,抛物线y=ax2+bx+c与x轴交于A(10,0),与y轴交于B (0,5),过抛物线上点C(4,8)作CD⊥x轴于点D,连接OC、AB.(1)求抛物线的解析式;(2)将△OCD沿x轴以一个单位每秒的速度向右平移,记时间为t(0≤t≤6),在△OCD运动过程中,CD与AB交于点E,OC与AB交于点F,记y为△CEF与△ADE的面积之和.求y关于t的函数关系式,并求y的最小值;(3)如图2,M为AC的中点,点N的坐标为(n,0)试在线段OC上找一点P,使得∠MPN=∠COA,若这样的点P有两个,求n的取值范围.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c.将点A、B、C的坐标代入得:,解得:a=﹣,b=,c=5.抛物线的解析式为y=﹣x2+x+5.(2)如图1所示:∵tan∠BAO==,tan∠OCD==,∴∠BAO=∠OCD.又∵∠CEF=∠DEA,∴∠CFE=∠EDA=90°.∵AD=6﹣t,tan∠EAD=,∴DE=3﹣t.∴CE=8﹣(3﹣t)=5+t.∴CF=2+t.∴y=×(6﹣t)2+(2+t)2,即y=﹣2t+14.当t=﹣=时,y有最小值,此时y=×2﹣2×+14=.∴y的最小值为.(3)如图2所示;在Rt△ODC中,OC==4.∵在Rt△CDA中,AD=6,DC=8,由勾股定理得:AC==10,∴AC=OA.∴∠COA=∠OCA.∵M是CA的中点,∴MC=AC=5.∵∠MPN=∠COA,∠COA+∠ONP=∠MPN+∠CPM,∴∠ONP=∠CPM.∴△CPM∽△ONP.∴.设OP=x,则PC=4﹣x.∴.整理得:x2﹣4x+5n=0.∵符合条件的点P有两个,∴方程有两个不相等的实数根.∴△=(﹣4)2﹣4×5n>0.∴n<4.又∵点N在原点的右侧,∴n的取值范围是0<n<4.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年四川省绵阳市中考数学试卷(含详细答案及解析)2016年四川省绵阳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分,每小题只有一个选项最符合题目要求1.(3分)|-4|的值是()A。
4 B。
-4 C。
0 D。
无法确定2.(3分)下列计算正确的是()A。
x^2 + x^5 = x^7 B。
x^5 - x^2 = 3xC。
x^2 * x^5 = x^10 D。
x^5 ÷ x^2 = x^33.(3分)下列图案既是轴对称又是中心对称的是()A。
B。
C。
D.4.(3分)如图是一个由7个相同正方体组合而成的几何体,它的主视图为()A。
B。
C。
D.5.(3分)若关于x的方程x^2 - 2x + c = 0有一根为-1,则方程的另一根为()A。
-1 B。
-3 C。
1 D。
36.(3分)如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A。
180m B。
260m C。
180m D。
180m7.(3分)如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A。
3cm B。
4cm C。
5cm D。
8cm8.(3分)在关于x、y的方程组的取值范围在数轴上应表示为()A。
B。
C。
D。
其中未知数满足x≥0,y>0,那么m的取值范围是多少?9.(3分)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A。
B。
C。
D。
10.(3分)有5张看上去无差别的卡片,上面分别写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是()A。
B。
C。
D。
11.(3分)如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若A。
B。
C。
D。
12.(3分)二次函数y=ax^2+bx+c的图象如图所示,下列结论:①b<2a;②a+2c-b>0;③b>a>c;④b^2+2ac<3ab.其中正确结论的个数是()A。
1 B。
2 C。
3 D。
4二、填空题:13.2m(x-y)²14.132°15.5.48×10⁶16.(2,3)17.218.2016三、解答题:19.答案:-|π-3.14|解析:先计算π-3.14=0.xxxxxxx,再取绝对值得到0.xxxxxxx,最后再加上负号得到答案为-0.xxxxxxx。
20.答案:-1解析:先化简,sin60°=√3/2,4|+(√3/2)²=4+3/4=16/4+3/4=19/4,(19/4)-1=15/4,再除以(√3/2)-1/2=2/√3,得到-1.21.(1)被调查的学生总人数为250人+200人=450人;2)扇形统计图中代表类型C的扇形的圆心角为60°,折线统计图已补全;3)根据调查结果,初一(1)班中C类型学生约有50人,初一(2)班中C类型学生约有80人,因此初一年级中C类型学生约有(50+80)/2×45=315人。
22.(1)反比例函数的解析式为y=k/x;2)设点C的坐标为(1,a),则点D的坐标为(a,1),由于△AOB的面积为1/2,因此AB=2,由于点C、D在反比例函数y=k/x的图象上,因此有a=1/k2,又因为点C在直线y=k1x+7上,因此有a=k1+7,联立两式可得k1=-6,k2=1/7,代入y=k/x中得到反比例函数的解析式为y=7x;3)由于该校初一年级学生共有1000人,且A类学生占比为50%,B类学生占比为40%,因此C类学生占比为10%,即约有100人,与第(2)问的估计结果相差不大。
1.(3分)(2016•绵阳)|﹣4| = 4.2.(3分)(2016•绵阳)解方程2x + 1 = 7得到x =3.3.(3分)(2016•绵阳)由勾股定理可知,直角三角形的斜边长等于两直角边长的平方和的平方根,即c = √(a²+b²)。
代入a = 3.b = 4得到c = 5.4.(3分)(2016•绵阳)半径为r的圆的面积为πr²,所以半径为2的圆的面积为4π。
5.(3分)(2016•绵阳)因为两个角互为补角,所以它们的和为90°。
所以x + 2x = 90°,解得x = 30°。
6.(3分)(2016•绵阳)将三个数字从小到大排序得到2.3.4,所以中位数为3.7.(3分)(2016•绵阳)因为两个角互为补角,所以它们的正切值互为倒数。
所以tanx = 1/3,tan(90°﹣x) = 3.解得x = 71.56°。
8.(3分)(2016•绵阳)将分子和分母同时除以5得到8/15.9.(3分)(2016•绵阳)将两个分数的分母通分得到(3x+1)/3x 和 (2x+1)/3x。
因为两个分数相等,所以它们的分子相等。
解得x = ﹣1.10.(3分)(2016•绵阳)将x = 2代入y = 3x + 1得到y = 7.所以点P的坐标为(2.7)。
11.(3分)(2016•绵阳)将a = ﹣2.b = 5代入y = ax + b 得到y = ﹣2x + 5.所以直线的解析式为y = ﹣2x + 5.12.(3分)(2016•绵阳)将x = 2代入y = 3x² + 2x + 1得到y = 17.所以点Q的坐标为(2.17)。
解答】解:由题意得:x2﹣2x+c=0有一根为﹣1,则另一根为m的方程为:x﹣(﹣1))(x﹣m)=0即:x2﹣(m﹢1)x﹢m=0由XXX定理得:﹣1+m=2,即m=3.故方程的另一根为﹣1+3=2,即选:D.点评】本题考查了韦达定理的应用,韦达定理是解二次方程的常用方法,可以通过已知一根和二次方程的系数求出另一根.AE=√(AB^2+BE^2)=√(5^2+(8/2)^2)=√69/2=3.87≈4(cm).故选:B.点评】本题考查了平行四边形对角线的性质以及直角三角形中线的性质,需要注意计算过程中的精度问题。
小幅改写】8.(2016·绵阳) 解不等式组 $x\geq m。
y>3-m$,其中$m$ 是常数。
则 $m$ 的取值范围在数轴上表示为()。
分析】将 $m$ 看作已知数,通过解方程组得到 $x$ 和$y$,再根据 $x\geq m。
y>3-m$ 求出 $m$ 的范围,表示在数轴上即可。
解答】解:将 $y>3-m$ 变形为 $m>y-3$,代入 $x\geqm$ 中得到 $x\geq y-3$。
将 $x+y=6$ 变形为 $y=6-x$,代入$x\geq y-3$ 中得到 $x\geq 3$。
因此 $m\leq 3$。
将 $m>y-3$ 变形为$y -2$。
综上所述,$-2<m<3$,表示在数轴上如图所示:点评】此题考查了解一元一次不等式组,二元一次方程组的解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键。
9.(2016·绵阳) 如图,XXX,$\angle C=72^\circ$,$D$ 是$AB$ 的中点,点 $E$ 在 $AC$ 上,$DE\perp AB$,则 $\cosA$ 的值为()。
分析】利用等腰三角形的性质与判定以及三角形内角和定理得出 $\angle EBC=36^\circ$,$\angle BEC=72^\circ$,$AE=BE=BC$。
再证明 $\triangle BCE\sim\triangle ABC$,根据相似三角形的性质列出比例式$\frac{AE}{AB}=\frac{BC}{AB}$,求出 $AE$,然后在$\triangle ADE$ 中利用余弦函数定义求出 $\cos A$ 的值。
解答】解:因为 $AB=AC=4$,$\angle C=72^\circ$,所以$\angle A=\angle B=36^\circ$。
因为 $D$ 是 $AB$ 的中点,$DE\perp AB$,所以 $AE=BE$,$\angle ABE=36^\circ$。
因此$\angle EBC=36^\circ$,$\angle BEC=72^\circ$,$AE=BE=BC$。
设 $AE=x$,则 $BE=x$,$EC=4-x$。
在 $\triangle BCE$ 和$\triangle ABC$ 中,$\angle BCE=\angle ABC$,$\angleCBE=\angle BAC$,因此 XXX根据相似三角形的性质,$\frac{AE}{AB}=\frac{BC}{AB}$,即 $\frac{x}{4}=\frac{4-x}{4}$,解得 $x=2$。
在 $\triangle ADE$ 中,$\angleADE=90^\circ$,因此 $\cosA=\frac{DE}{AE}=\frac{2}{\sqrt{5}}$。
点评】本题考查了解直角三角形,等腰三角形的性质与判定,三角形内角和定理,线段垂直平分线的性质,相似三角形的判定与性质,难度适中。
证明 $\triangle BCE\sim\triangle ABC$ 是解题的关键。
故①错误;又因为对称轴的方程为x=﹣,则对称轴的横坐标为﹣,所以顶点坐标为(﹣,),又因为对称轴垂直于x轴,故顶点在对称轴上,所以=﹣,故a+2c﹣b=2a﹣b>0,故②正确;又因为a>c,故③错误;又因为顶点坐标为(﹣,),则顶点横坐标为﹣,所以对称轴两侧的x值分别为﹣和0,代入二次函数可得b2+2ac<3ab,故④正确.故选B.点评】本题考查二次函数的图象性质和相关知识的综合应用,需要学生对对称轴、顶点、系数之间的关系有清晰的认识和理解,以及对二次函数的基本性质熟练掌握.因此,答案为5.48×106人.点评】本题考查了科学记数法的应用,要求学生能够熟练地进行科学记数法的转换,掌握科学记数法的基本规律.16.(3分)(2016•绵阳)已知正整数a、b、c满足a<b<c,且a2+b2=c2,求a、b、c的值.分析】本题为勾股数的求解问题,要求学生掌握勾股数的基本性质,并能够灵活应用.解答】解:由a2+b2=c2。
可知a、b、c构成勾股数.又因为a<b<c。
a、b、c必为3、4、5的倍数.又因为a2+b2=c2。