电机匝间短路与相间短路
电力系统继电保护原理及新技术

电力系统继电保护原理及新技术1)电力系统继电保护的任务?答(1)自动,迅速,有选择地切除故障器件,使无故障部分设备恢复正常运行,故障部分设备免遭毁坏。
(2)发现电气器件的不正常状态,根据运行维护条件动作于发信号,减负荷或跳闸。
2)电力系统继电保护的基本要求?选择性,速动性,灵敏性和可靠性。
3)电力系统继电保护的基本原理?根据电力系统正常运行与发生故障或不正常运行状态之间的差别,以及电力系统被保护范围内电气器件发生故障或不正常运行状态的特征,配置完善的继电保护,实现对电力系统的保护。
继电保护装置由各种继电器和元件组成,分类:按不同参量的过量,欠量和差量划分的有过电流继电器,低电压继电器,电流差动继电器;按其结构原理划分为电磁型,整流型,晶体管型和微机型等继电器。
1)微机型继电保护装置的硬件电路构成?微机系统,模拟数据采集系统,开光量输入和输出系统,人机对话微机系统,电源系统。
2)何谓采样定理?对连续信号x (t )进行采样时,周期采样频率f s必须大于被采样原始信号x (t )的最大截止频率f c 的两倍,才能从离散的)(t x s中完全恢复出原始信号x (t )。
数据采集电路的主要作用?把模拟量转换成对应的数字量。
3)逐次比较式模数转换器的主要技术指标?(1)分辨率(2)输入模拟量的极性(3)量程(4)精度(5)转换时间(6)输出逻辑电平4)微机保护的模数变换有哪几种?分别是如何变换的?主要有两种,即逐次比较式和VFC 式。
逐次比较式:就是把模拟量电压与组成二进制关系的标准电压一位一位地进行比较,达到将模拟电压变成二进制数的目的。
VFC :将模拟电压变换为脉冲信号,由计数器进行计数。
这样在采样间隔内的计数值就与采样对象的积分值成比例。
实现了模数转换。
5)半周积分与傅氏算法的应用特点?半周积分:具有一定滤高频能力,但是不能滤直流分量。
全周波傅氏算法兼备了滤波和计算基本电气量的过程,是一种较好的算法,但其数据窗至少需要一个周期的采样值,仍显得速度不够快。
三相异步电动机常见故障与检修 PPT

在拆除绕组时,易把铁心在槽口处的齿 片拔松,会造成齿片振动。修理时可用较宽 的槽楔把齿卡紧。如图所示。
右起第五、六位数字表示轴承的结构特点; 右起第七位数字表示轴承的宽度或高度系列。 超过七位数字的,就从左看起,左起第一位数字表示轴承游隙,左起第二位 表示轴承精度等级,如G(普通)、E(高级)、D(精密级)、C(超精密级)。
27
通常滚动轴承的代号是用四位数字表示 根据滚动轴承的代号判断轴承内径 第一、二位数 :代表轴承内径
11
转子绕组故障
故障原因
转子材料或制造质量不佳
运行启动频繁,操作不当
急速的正反转造成剧烈冲击
12
机械部分故障
铁心故障的检修
故障 分类
轴承故障的检修
机座和端盖的故障 修理
13
三、三相异步电动机的检修
14
拆卸步骤
拆开端接头
拆卸皮带 轮或轴器
拆卸风罩和 风叶
拆卸轴承盖和 端盖
抽出转子
注:三相异步电动机拆卸与装配工艺过程正好是相反
增加能耗,减少电动机寿命; 增加机械应力,摩擦增大,损坏电动机 根源 安装对中不当 软地脚状态,地脚松动导致定子或基座扭曲 产生机械应力和振动。 皮带松紧度 松:皮带滑动导致振动和发热 紧:轴承摩擦增加,增加能耗,降低可靠性
31
轴不对中的影响—热像图
0
电机和连轴器
对中
105° F
1,000/inch out 角不对中
19
2、常见机械故障检修
①.轴承故障 ②.转轴故障 ③.机座故障 ④.端盖故障 ⑤.铁心故障 ⑥.风扇故障
电动机绕组故障修理方法有什么

电动机绕组故障修理方法有什么绕组是电动机的组成部分,如果在长时间的使用下容易出现老化,受潮、受热、受侵蚀等问题,那么对于电机绕组应该怎么维修呢?以下是店铺为你整理的电动机绕组故障修理方法,希望能帮到你。
电动机绕组故障修理方法一、绕组接地指绕组与铁芯或与机壳绝缘破坏而造成的接地。
1、故障现象机壳带电、控制线路失控、绕组短路发热,致使电动机无法正常运行。
2、产生原因绕组受潮使绝缘电阻下降;电动机长期过载运行;有害气体腐蚀;金属异物侵入绕组内部损坏绝缘;重绕定子绕组时绝缘损坏碰铁心;绕组端部碰端盖机座;定、转子磨擦引起绝缘灼伤;引出线绝缘损坏与壳体相碰;过电压(如雷击)使绝缘击穿。
3.检查方法(1)观察法。
通过目测绕组端部及线槽内绝缘物观察有无损伤和焦黑的痕迹,如有就是接地点。
(2)万用表检查法。
用万用表低阻档检查,读数很小,则为接地。
(3)兆欧表法。
根据不同的等级选用不同的兆欧表测量每组电阻的绝缘电阻,若读数为零,则表示该项绕组接地,但对电机绝缘受潮或因事故而击穿,需依据经验判定,一般说来指针在“0”处摇摆不定时,可认为其具有一定的电阻值。
(4)试灯法。
如果试灯亮,说明绕组接地,若发现某处伴有火花或冒烟,则该处为绕组接地故障点。
若灯微亮则绝缘有接地击穿。
若灯不亮,但测试棒接地时也出现火花,说明绕组尚未击穿,只是严重受潮。
也可用硬木在外壳的止口边缘轻敲,敲到某一处等一灭一亮时,说明电流时通时断,则该处就是接地点。
(5)电流穿烧法。
用一台调压变压器,接上电源后,接地点很快发热,绝缘物冒烟处即为接地点。
应特别注意小型电机不得超过额定电流的两倍,时间不超过半分钟;大电机为额定电流的20%-50%或逐步增大电流,到接地点刚冒烟时立即断电。
(6)分组淘汰法。
对于接地点在铁芯心里面且烧灼比较厉害,烧损的铜线与铁芯熔在一起。
采用的方法是把接地的一相绕组分成两半,依此类推,最后找出接地点。
此外,还有高压试验法、磁针探索法、工频振动法等,此处不一一介绍。
发电机保护类型及原理介绍

3.保护的整定原则 动作电流
Iop (0.2 ~ 0.3)Ig.n
需增设 0.5~1 秒的延时, 以躲过转子回路的瞬时两点接地故障。
(二) 纵向零序电压原理的匝间短路保护
适用于中性点侧没有6个或4个引出端子的 发电机定子匝间短路。
该保护利用发电机定子绕组发生匝间短路 时,机端三相对发电机中性点出现的零序电压 而构成。
对发电机并未造成直接危害。
1.1正常时 正极对地电压
U
E R2 E R2R2 2
负极对地电压
U
E 2
加在绝缘介质上的电压为励磁电压的一半。
1.2一点接地时
设:正极接地, U ,0 U E
则:另一端对地电压上升为E,如某点绝缘比较薄弱,则有可 能被击穿,造成两点接地故障。
转子绕阻绝缘破坏的故障形式及其危害
一、发电机相间短路的纵联差动保护
作用: 反映发电机定子绕组及其引出线相间短路 故障的主保护 发电机纵差保护的接线方式 完全纵差动保护 不完全纵差动保护
发电机完全纵差保护和不完全纵差保护均是比较 发电机两侧同相电流的大小和相位而构成
发电机完全纵差动保护
●
G
●
● ●
图9—1 发电机纵差保护原理接线示意图
2.保护的原理分析
1)当定子绕组的同分支匝间短路时:
2)定子绕组不同分支间发生短路时:
3)保护的接线
2
跳闸
t
图9-6 单元件式横联差保护原理接线图 1-三次谐波滤过器;2-横差保护
4)评价:
保护接线较简单,灵敏度较高。
保护存在死区:当 很小时或者不同分 支间的短路匝数相同时, 保护不能动作。
电桥式转子两点接地保护
RL’
伺服电机常见故障及解决方法

伺服电机常见故障及解决方法一、电机升温过高或冒烟电机故障原因:1.负载过大。
2.两相运行。
3.风道阻塞。
4.环境温度增高。
5.定子绕组相间或匝间短路。
6.定子绕组接地。
7.电源电压过高或过低。
维修方法:1.减轻负载或选择大容量电动机。
2.清除风道。
3.采取降温措施。
4.用万用表、电压表检查输入端电源电压。
二、电机出现外壳带电现象电机故障原因:绕组受潮,绝缘老化,或引出线与接线盒壳碰。
维修方法:对应电机维修方法:干燥、更换绕组。
三、电机振动电机故障原因:1.转子不平衡。
2.轴弯曲。
3.皮带盘不平衡。
4.气隙不均匀产生单边磁拉力。
维修方法:1.校正动静平衡。
2.校直轴或更换轴弯曲不严重时可车去1-2mm然后配上套筒。
3.校正平衡。
4.重新调整。
四、电流三相不平衡电机故障。
原因:1.电源电压严重不足。
2.三相匝数不等。
3.内部接线错误。
维修方法:1.检查电源电压。
2.更换电动机或处理。
3.改正接线。
五、空载电流偏大电机故障原因:1.定转子气隙大。
2.定子绕组匝数太少。
3.装配不当。
维修方法:1.调整并使之减少。
2.重新核实并绕制。
3.重新装配。
六、绝缘电阻降低电机故障原因:1.定子进水受潮。
2.灰尘过多。
3.绝缘损坏。
4.绝缘老化。
维修方法:1.排水除潮。
2.清理积灰。
3.修复。
4.更换。
发电机保护

tA I
2
(2)发电机允许过负荷的特性
2
1
图9-28
发电机的允许过负荷特性曲线示意图
1-考虑散热条件下;2-不考虑散热条件下
二、定子绕组的过负荷保护 保护的动作电流,按在发电机长期允许的负 荷电流下能可靠返回的条件整定。 三、转子绕组的过负荷保护 由定时限电流保护和反时限电流保护两部分 组成。定时限部分经延时动作于信号;反时 限部分动作于解列灭磁。 四、转子表层的过负荷保护 一般由定时限负序电流保护和反时限负序电 流保护两部分组成。定时限负序电流保护动 作于信号,反时限负序电流保护动作于跳闸。
(1-a)E
R
S2
R 图9-20
R1
U1,U2
R
切换采样式转子一点接地保护原理接线
U1 1 接地点位置 为: 3 3 U
接地电阻 R f 为:
Rf a
R1 2 R1 R 3U 3
正常运行时:四 4 个电阻 R 对称, U1=U2,Δ U=0, R f = ; 转子绕组一点接地时:U1≠U2, 当 Rf
1.定子绕组单相接地故障的零序电压
图9-11 机端金属性单相接地时电压相量图
1)当机端单相接地时:
如图 9-11 所示:
1 1 UW ) U U0 (UU UV UW ) (UV U 3 3
显然: 发电机机端一相金属性接地时, 机端零序电压的大小等于发电机故障前的相电压。
第六节 发电机的失磁保护
一、发电机失磁运行及其产生的影响 1)发电机失磁,对机组本身产生危害。 2)发电机失磁运行对电力系统的影响。 二、发电机失磁保护的配置 大型发电机通常装设专门的失磁保护,动 作于信号、减负荷、或停机。
定子绕组相间短路故障分析及处理

定子绕组相间短路故障分析及处理摘要:对发电机定子绕组短路类型进行分析并分类;推出定子绕组相间短路电流的计算公式;建立仿真模型,通过图形和具体事故例子加深对定子绕组相间短路危害的认识和了解;以此为鉴,加强设备的日常巡检工作,避免定子绕组相间短路带给电网的危害。
关键词:水电站;空冷器;定子相间短路;绝缘击穿0引言供电回路在发生短路时阻抗突然减小会使回路中短路电流值增大,短路电流可能会超过额定电流的几倍甚至数十倍,短路电流的大小与短路点的位置也相关联,短路点距离发电机的电气距离愈近,短路电流越大。
发电机故障在各种电站中均有发生,据统计发电机相间故障占发电机本体故障的47.06%;内部引线故障占发电机本体故障11.76%;接地故障占发电机本体故障的35.30%;其他故障占5.88%,由此可见相间故障的发生频率是发电机本身故障发生频率最高的。
定子绕组的端部和槽部固定物会受到短路电流带来的电动力,巨大的电动力会将绕组及固定物变形乃至损坏;短路电流也可能会烧毁绕组和铁芯;也可能会损坏转子。
1发电机定子绕组短路类型1.1定子绕组相间短路发电机定子绕组内部故障中发生频率最高的是相间短路。
由于短路接触点为不同相的线圈,因此接触点的压差较大,这是造成其故障发生频率高的直接原因。
定子绕组相间短路对发电机危害极大。
其短路电流值可达额定电流的10~20倍,强大的短路电流产生强大的电动力,使线圈变形位移,甚至使绝缘破裂,特别是定子绕组的端部更严重[2]。
1.2定子绕组匝间短路发电机定子绕组匝间短路是同相绕组线匝之间的短路。
短路时短路电流中会出现正序、负序和零序分量且各序电流相等,匝间短路时会破坏发电机三相对中性点之间的电动势平衡,匝间短路出现的负序分量会产生旋转磁场,会导致定子和转子的反复互相影响,产生一系列的谐波分量[6-9]。
1.3定子绕组接地短路发电机在运行中或预防性试验时,定子绕组绝缘击穿,绝缘电阻下降或绝缘电阻到零的现象是发电机定子绕组接地故障。
电机常见故障及处理(题)

电机常见故障原因分析及处理一、启动、无应响、开关,熔丝、接线盒处是否有断点,答案:1、检查熔丝型号、熔断原因,换新熔丝;2、调节继电器整定值与电动机配合;3、改正接线。
二、通电后电动机不转,跳闸、熔丝烧断答案:1、缺一相电源,或定干线圈一相反接;2、定子绕组相间短路;3、定子绕组接地;4、定子绕组接线错误;5、熔丝截面过小;6、电源线短路或接地。
三、故障排除法:答案:1、检查刀闸是否有一相未合好,可电源回路有一相断线;消除反接故障;2、查出短路点,予以修复;3、消除接地;4、查出误接,予以更正;5、更换熔丝;6、消除接地点。
四、通电后电动机不转有嗡嗡声答案:1、定、转子绕组有断路(一相断线)或电源一相失电;2、绕组引出线始末端接错或绕组内部接反;3、电源回路接点松动,接触电阻大;4、电动机负载过大或转子卡住;5、电源电压过低;6、小型电动机装配太紧或轴承内油脂过硬;7、轴承卡住。
五、故障排除法:答案:1、查明断点予以修复;2、检查绕组极性;判断绕组末端是否正确3、紧固松动的接线螺丝,用万用表判断各接头是否假接,予以修复。
4、减载或查出并消除机械故障,5、检查是还把规定的面接法误接为Y;是否由于电源导线过细使压降过大,予以纠正,6、重新装配使之灵活;更换合格油脂;7、修复轴承。
六、电动机起动困难,额定负载时,电动机转速低于额定转速较多。
答案:1、电源电压过低;2、面接法电机误接为Y;2、笼型转子开焊或断裂;3、定转子局部线圈错接、接反;4、修复电机绕组时增加匝数过多;5、电机过载。
七、故障排除法:答案:1、测量电源电压,设法改善;2、纠正接法;3、检查开焊和断点并修复;4、查出误接处,予以改正;5、恢复正确匝数;6、减载。
八、电动机空载电流不平衡,三相相差大答案:1、重新更换绕组,定子三相绕组匝数不相等;2、绕组首尾端接错;3、电源电压不平衡;4、绕组存在匝间短路、线圈反接等故障。
九、故障排除法:答案:1、重新绕制定子绕组;2、检查并纠正;3、测量电源电压,设法消除不平衡;4、峭除绕组故障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电机匝间短路及相间短路问题解答一、什么就是电机匝间短路就就是同一个绕组就是由很多圈(匝)线绕成得,如果绝缘不好得话,叠加在一起得线圈之间会短路,这样一来,相当于一部分线圈直接被短路掉不起作用了。
匝间短路后,电机得绕组因为一部分被短路掉,磁场就与以前不同了,不对称了,而且剩余得线圈电流比以前大了,电机运行中会振动增大,电流增大,出力相对减小。
二、发生电机匝间短路,会有以下现象:1ﻫ)被短路得线圈中将流过很大得环流(常达正常电流得2---10倍),使线圈严重发热;2ﻫ)三相电流不平衡,电动机转矩降低;3)产生杂音;4ﻫ)短路严重时,电动机不能带负载起动。
ﻫ匝间短路在刚开始时,可能只有两根导线因交叠处绝缘磨坏而接触。
ﻫ由于短路线匝内产生环流,使线圈迅速发热,进一步损坏邻近导线得绝缘,使短路得匝数不断增多、故障扩大。
短路匝数足够多时,会使熔断器烧断,甚至绕组烧焦冒烟。
当三相绕组有一相发生匝间短路时,相当于该相绕组匝数减少,定子三相电流就不平衡。
不平衡得三相电流使电动机振动,同时发出不正常得声音。
ﻫ电动机平均转矩显著下降,拖动负载时就显得无力。
三、电动机绕组短路故障现象与原因就是什么?答:由于电动机电流过大、电源电压变动过大、单相运行、机械碰伤、制造不良等造成绝缘损坏所至,分绕组匝间短路、绕组间短路、绕组极间短路与绕组相间短路。
1、故障现象离子得磁场分布不均,三相电流不平衡而使电动机运行时振动与噪声加剧,严重时电动机不能启动,而在短路线圈中产生很大得短路电流,导致线圈迅速发热而烧毁。
2、产生原因电动机长期过载,使绝缘老化失去绝缘作用;嵌线时造成绝缘损坏;绕组受潮使绝缘电阻下降造成绝缘击穿;端部与层间绝缘材料没垫好或整形时损坏;端部连接线绝缘损坏;过电压或遭雷击使绝缘击穿;转子与定子绕组端部相互摩擦造成绝缘损坏;金属异物落入电动机内部与油污过多。
相间短路得电机短路点会瞬间烧断融化,导致电机无法工作。
匝间短路得电机会电流不正常,稍后冒烟甚至起火,烧毁至电机无法工作。
维修时一眼就能鉴别出来。
*异步电机与同步电机区别:异步电机又叫感应电机,转子上得电磁场就是通过定子磁场感应出来得。
同步电机转子上要有自带得磁场。
ﻫ异步电机得转速会随负载得不同,略有改变,而且这个转速就是低于定子磁场得转速得,所以才叫异步电机。
同步电机转速严格得按定子磁场转速旋转,所以叫同步电机。
ﻫ异步电动机可以直接启动。
同步电动机要有专门得启动装置或者启动绕组,所以制造工艺复杂,造价高。
异步电机一般用来做电动机,同步电机一般用来做发电机,也用来做补偿机。
四、绕组短路故障通常有相间短路与匝间短路两种。
1.三相顶级得相间短路,就是三相绕组中有两相绕组之间短路了,可以用遥测绝缘测定;2、匝间短路就是同相绕组线匝之间得短路,无法用遥测绝缘测定。
匝间短路包括各极相组线圈间短路、一个极相组中线圈之间短路以及一个线圈中得线匝之间短路。
相间短路故障通常有绕组端部层间短路与槽内上下层线圈之间短路。
造成相间短路得原因就是由于相间绝缘尺寸不符合规定、绝缘垫本身有缺陷、层间垫条垫偏或嵌线时使其遭受损伤等。
另外,绕组连接线或引出线套管绝缘损坏也会造成相间短路。
电机过载、过电压、单相运行、导线绝缘材质不良等均会造成绕组匝间短路。
尤其聚酯漆包线得漆膜热态机械强度较差,当浸漆不良而线匝之间未能形成坚固得整体时,大量外界粉尘会积存在线匝缝隙当中,导线在电磁力作用下相互振动摩擦,塞在缝隙中得粉尘又起“研磨剂”作用,时间一久,将导线绝缘磨破,形成匝间短路。
(1)线圈端部得极相组部短路故障修理。
线圈端部极相组间垫得三角形绝缘垫,在施焊时,流上焊锡,冷却时形成锡流或毛刺,刺破绝缘垫,或者焊锡将绝缘垫烧焦,均会使相间绝缘垫得局部因失去绝缘作用而被击穿,造成极相组间短路。
修理方法就是将线圈加热,软化绝缘,然后用理线板撬开线圈组之间得线圈,重新插入新绝缘垫,最后涂漆处理。
(2)绕组端部连接线或过桥线绝缘损伤引起得绕组短路故障修理。
由于连接线得绝缘套管被压破,或者采用塑料套管经烘干后软化,不起绝缘作用,都会造成极相组间短路。
修理时,用理线板撬开连接线处,清理旧套管,然后套入新绝缘套管,或者用绝缘带包扎好。
线圈之间过桥线处,由于嵌线或整形不当,也会产生线圈短路故障。
解决办法也就是将线圈加热软化,用理线板撬开过桥线处,增垫绝缘即可。
ﻫ(3)绕组端部线匝修理。
绕组端部线匝短路就是由于浸漆不良,线匝振动磨损绝缘造成得。
通过压降法找到短路线圈后,为了快速找出线匝得短路点,建议将此相线圈通入单相低电压,并用交流电压表接在短路线圈得两端,这时用理线板或竹板轻轻撬动短路线圈各线匝,当电压表指针突然上升到正常值时,表明此短路点已被隔开,用绝缘垫将此处垫好,再做涂漆绝缘处理。
(4)双层线圈层间短路得修理。
双层线圈在上下层间发生层间短路,就是由于层间绝缘材质不好或嵌线时层间绝缘垫条尺寸不符、层间绝缘垫条垫付偏、移位等原因造成。
处理槽内上下层间短路或上下层线圈本身得匝间短路故障,与前述处理接地故障方法相同。
对于拆下得线圈如果经包扎绝缘复用时,还要检查拆除过程中就是否对完好得线圈也引起匝间绝缘损伤,要利用简易得变压器装置进行检查。
五、怎么检查电机匝间短路1、在三相电压平衡得情况下,原基本平衡得三相电流逐渐或突然变得非常不平衡,同时电机温升增加负载能力下降,可初步判定该机定子绕组匝间短路。
2、用电桥测试直流电阻,三相直流电阻不平度大,即某相变小说明该相发生了匝间短路:正常情况下,三相直流电阻不平衡度≤1%,超过此值说明线圈有匝间短路得可能。
六、电动机运行中如何避免烧毁;1、经常保持电动机得清洁。
电动机在运行中,必须经常保持进风口得清洁。
在进风口周围至少3米以内不允许有尘土、水渍、油污与其它杂物,以防止吸入电动机内部。
若这些尘土、油、水吸入电动机内部,便形成短路介质,损坏导线绝缘层,造成匝间短路,电流增大,温度升高而烧毁电动机。
所以要保证电动机有足够得绝缘电阻,以及良好得通风冷却环境,才能使电动机在较长时间运行中保持在安全稳定得状态下工作。
2、在额定电流下工作。
电动机过载运行,主要原因就是由于拖动得负荷过大,电压过低,或被带动得机械卡滞等所造成得。
当电动机处于过载状态下运行时,就会导致电动机得转速下降,电流增大,温度升高,绕组线圈过热。
若过载得时间长,超载得电动机将从电网中吸收大量得有功功率,电流便急剧增大,温度也随之升高。
在高温下电动机得绝缘老化失效而烧毁。
这就是电动机烧毁得主要原因。
因此电动机在运行中,要注意经常检查传动装置运转就是否灵活、可靠,随时检查调整传动带得松紧度,连轴器得同心度,齿轮传动得灵活性。
若发现有卡阻现象,应立即停机查明原因排除故障后再运行。
3、三相电流须保持平衡。
对于三相异步电动机来说,其三相电流中,任何一相得电流与其它两相电流得平均值之差不允许超过10%,才能保证电动机安全正常地运行。
如果单相得电流值与另两相电流平均值超过规定限度,则表明电动机有故障,必须查明原因,排除故障后才能继续运行,否则会扩大故障范围,以致发生烧毁电动机得事故。
4、保持正常温度。
要经常检查电动机得轴承、定子、外壳等部位得温度有无异常,尤其对无电压、电流与频率监视设施及没有过载保护设施得电动机,对温升得监视尤为重要。
若发现轴承附近得温升过高,应立即停机,检查轴承就是否损坏或缺油。
轴承得滚动体、滚道表面有无裂纹、划伤或损坏,轴承间隙就是否过大,内环在轴上有无转动等。
当出现上述情况时,必须在更换新轴承后方可再行作业,否则轴承会进一步损坏导致塌架,引起扫膛而烧毁电动机电动机得温度与温升就是否符合规定要求,可在电动机吊环处插一温度计,用棉花团塞紧固定,随时观察电动机得温度。
5、观察有无振动、噪音与异常气味。
电动机若出现振动,会引起与之相连得负载部分不同心度增高,使电动机负载增大,出现负载电流升高,温度随之升高而烧毁电动机。
因此,电动机在运行中,要经常检查地脚螺栓、电动机端盖、轴承压盖等就是否松动,连接装置就是否可靠,发现问题要及时解决。
噪声与异味就是电动机运转异常、随即出现严重故障得前兆,必须及时发现并查明原因予以排除,否则就会延误时机,扩大故障,酿成烧毁电动机得重大事故。
6、保证启动设备正常工作。
电动机启动设备技术状态得好坏,对电动机得正常启动,有着决定性得作用。
否则,很容易在电动机还没有进入正常工作状态就烧毁。
实践证明,绝大多数烧毁电动机事故与原因都在启动设备上,如缺相启动,接触器触头拉弧、打火等。
启动设备得维护主要就是清洁与紧固。
接触器触点不清洁会使接触电阻增大,引起发热烧毁触点,造成缺相而烧毁电动机。
接触器吸合线圈得铁芯锈蚀及积尘,会使线圈吸合不严,并发出强烈噪音,增大线圈电流,烧毁线圈而引发故障。
电气控制设备应放在干燥、通风与便于操作得位置,并要定期除尘,采取防尘措施,紧固各接丝螺钉,检查接触器触点就是否接触良好可靠,机械部位就是否灵敏、准确,使其保持良好得技术状态,从而保证顺利启动而不烧坏电动机。
七、电动机单相运行得原因及预防在现代工业生产中,电动机得应用非常广泛,但就是在生产当中电动机因缺相运行而造成烧毁得事故在生产中占有很大得比例,怎样减少这些问题得出现,全面提高电动机得使用效率,就是一个值得认真思考得问题,我根据自己多年得工作实际与有关资料,现提出预防电动机单相运行得措施,仅供参考,不足之处,请提出宝贵意见。
(一)、电动机单相运行产生得原因及预防措施1、熔断器熔断⑴故障熔断:主要就是由于电机主回路单相接地或相间短路而造成熔断器熔断。
预防措施:选择适应周围环境条件得电动机与正确安装得低压电器及线路,并要定期加以检查,加强日常维护保养工作,及时排除各种隐患。
⑵非故障性熔断:主要就是熔体容量选择不当,容量偏小,在启动电动机时,受启动电流得冲击,熔断器发生熔断。
熔断器非故障性熔断就是可以避免得,不要片面认为在能躲过电机得启动电流得情况下,熔体得容量尽量选择小一些得,这样才能够保护电机。
我们要明确一点那就就是熔断器只能保护电动机得单相接地与相间短路事故,它绝不能作为电动机得过负荷保护。
2、正确选择熔体得容量一般熔体额定电流选择得公式为:额定电流=K×电动机得额定电流⑴耐热容量较大得熔断器(有填料式得)?K值可选择1、5~2、5。
⑵耐热容量较小得熔断器K值可选择4~6。
对于电动机所带得负荷不同,?K值也相应不同,如电动机直接带动风机,?那么K值可选择大一些,如电动机得负荷不大,K值可选择小一些,具体情况视电机所带得负荷来决定。
此外,熔断器得熔体与熔座之间必需接触良好,否则会引起接触处发热,使熔体受外热而造成非故障性熔断。
在安装电动机得过程中,应采用恰当得接线方式与正确得维护方法。