2017年高考数学试题分项版—解析几何(解析版)
2017年高考数学试题分项版—立体几何(原卷版)

2017年高考数学试题分项版—立体几何(原卷版)一、选择题1.(2017·全国Ⅰ文,6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )2.(2017·全国Ⅱ文,6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π3.(2017·全国Ⅲ文,9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π44.(2017·全国Ⅲ文,10)在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC5.(2017·北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .106.(2017·浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 7.(2017·浙江,9)如图,已知正四面体DABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA=2,分别记二面角DPRQ ,DPQR ,DQRP 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α8.(2017·全国Ⅰ理,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .169.(2017·全国Ⅱ理,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π10.(2017·全国Ⅱ理,10)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155 C.105 D.3311.(2017·全国Ⅲ理,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2 D.π412.(2017·北京理,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .2二、填空题1.(2017·全国Ⅰ文,16)已知三棱锥SABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥SABC 的体积为9,则球O 的表面积为________.2.(2017·全国Ⅱ文,15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.3.(2017·天津文,11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.4.(2017·山东文,13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.5.(2017·浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.6.(2017·江苏,6)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.7.(2017·全国Ⅰ理,16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.8.(2017·全国Ⅲ理,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)9.(2017·天津理,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.10.(2017·山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.三、解答题1.(2017·全国Ⅰ文,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.2.(2017·全国Ⅱ文,18)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .3.(2017·全国Ⅲ文,19)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.4.(2017·北京文,18)如图,在三棱锥P-ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB =BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E-BCD的体积.5.(2017·天津文,17)如图,在四棱锥P ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.6.(2017·山东文,18)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.7.(2017·浙江,19)如图,已知四棱锥P ABCD,△P AD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面P AB;(2)求直线CE与平面PBC所成角的正弦值.8.(2017·江苏,15)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.9.(2017·江苏,18)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm,容器Ⅰ的底面对角线AC的长为107 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14 cm和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计).(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.10.(2017·江苏,22)如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且AB=AD =2,AA1=3,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角BA1DA的正弦值.11.(2017·全国Ⅰ理,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角APBC 的余弦值.12.(2017·全国Ⅱ理,19)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角MABD 的余弦值.13.(2017·全国Ⅲ理,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角DAEC 的余弦值.14.(2017·北京理,16)如图,在四棱锥P ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角BPDA的大小;(3)求直线MC与平面BDP所成角的正弦值.15.(2017·天津理,17)如图,在三棱锥P ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N 分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值;(3)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.16.(2017·山东理,17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G是DF的中点.(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E—AG—C的大小.。
2017年高考全国名校试题数学分项汇编专题04 三角函数与解三角形(解析版)

一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】已知()23tantan 1,sin 3sin 222ααβαβ+==+,则()tan αβ+=2. 【2016高考冲刺卷(7)【江苏卷】】直线3=y 与曲线)0(sin 2>=ωωx y 相距最近的两个交点间距离为6π,则x y ωsin 2=的最小正周期为 . 【答案】π【解析】由直线3=y 与曲线)0(sin 2>=ωωx y得23233sin ,2336x x T ππππωωπωπω-==∴=∴=∴= 3. 【2016高考冲刺卷(6)【江苏卷】】已知θ是第三象限角,且52cos 2sin -=-θθ,则=+θθcos sin【答案】2531-【解析】法一:由平方关系得1cos )52cos 2(22=+-θθ,且0cos <θ,解之得257cos -=θ从而2524sin -=θ,故2531cos sin -=+θθ 法二:设t =+θθcos sin ,则与52cos 2sin -=-θθ联立得15232sin -=t θ, 15231cos +=t θ,由平方关系式得1)15231()15232(22=++-t t ,因θ是第三象限角,故0<t ,解之得2531-=t ,即2531cos sin -=+θθ法三:由52cos 2sin -=-θθ得552)sin(-=-ϕθ,其中51cos =ϕ,52sin =ϕ 因θ是第三象限角,故5511)cos(-=-ϕθ,从而2524)sin(sin -=+-=ϕϕθθ,同理257cos -=θ,从而2531cos sin -=+θθ 4. 【2016高考冲刺卷(5)【江苏卷】】已知312sin =α,则⎪⎭⎫ ⎝⎛-4cos 2πα=_____▲____.【答案】32【解析】2cos[2()]1cos(2)1sin 21242cos 42223ππααπαα-+-++⎛⎫-==== ⎪⎝⎭. 5. 【2016高考冲刺卷(3)【江苏卷】】将函数()sin(),(0,)22f x x ππωϕωϕ=+>-<<图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移4π个单位长度得到sin y x =的图象,则()6f π= .6. 【2016高考冲刺卷(1)【江苏卷】】若α、β均为锐角,且1cos 17α=,47cos()51αβ+=-,则cos β= .【答案】13【解析】由于αβ、都是锐角,所以αβ+∈(0,)π,又1cos 17α=,47cos()51αβ+=-,所以122sin 17α=,142sin()51αβ+=,cos cos[()]βαβα=+-cos()cos sin()sin αβααβα=+++4715117=-⨯+ 1421225117⨯13=. 7. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】若将函数)4sin(πω+=x y 的图象向左平移6π个单位长度后,与函数)4cos(πω+=x y 的图象重合,则正数ω的最小值为_____________.8. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】将函数f (x )=sin(2x+θ) ()22ππθ-<<的图象向右平移φ(0<φ<π)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点3P ,则φ的值为 ▲ .【答案】56π【解析】试题分析:由题意得: ()sin(22)g x x ϕθ=-+,因此33sin 2)θθϕ=-=,因为22ππθ-<<,所以3πθ=,因为0ϕπ<<,所以452,.336πππϕϕ-=-= 9. 【2016高考冲刺卷(2)【江苏卷】】已知函数f (x )=|sin |x -kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为0x ,则0200(1)sin 2x x x += ▲ . 【答案】12【解析】试题分析:由题意得y kx =与sin ,(,2)y x x ππ=-∈相切,切点为00(,sin )x x -,由导数几何意义得0cos k x =-,因此00000000sin sin cos sin cos x kx x x x x x x =-⇒-⋅=-⇒=,即00220000020sin cos 1.sin (1)sin 22(1)2sin cos cos x x x x x x x x x ==++10. 【2016高考押题卷(3)【江苏卷】】已知函数b a x b x a x f ,(cos sin )(+=为常数,且R x a ∈≠,0),若函数)4(π+=x f y 是偶函数,则)4(π-f 的值为 .11. 【2016高考押题卷(3)【江苏卷】】设α为锐角,若31)6sin(=-πα,则αcos 的值为 . 【答案】6162-. 【解析】因20πα<<且31)6sin(=-πα,故366ππαπ<-<-, 所以322)31(1)6cos(2=-=-πα,而]6)6cos[(cos ππαα+-=, 故61622131233226sin)6sin(6cos)6cos(cos -=⨯-⨯=---=ππαππαα 12. 【2016高考押题卷(3)【江苏卷】】如图,在平面四边形ABCD 中,若090,2,2,1=∠===ACD DC AD BC AB ,则对角线BD 的最大值为 .【答案】3.【解析】设t DC =,则t AC =,在ABC ∆中,由余弦定理得22cos A 2222CB t t∠==,则22224242228(3)182161sin A 1()8222222t t t t t t t CB t t t t--+----+-∠=-===. 在DBC ∆中,由由余弦定理得220222cos(90)DB t t ACB =+-∠+2222222sin 28(3)t t ACB t t =++∠=++--,即2222)3(82--++=t t DB ,不妨设)20(cos 2232πθθ<<=-t ,则222(sin cos )5DB θθ=++54sin()4πθ=++,所以当4πθ=时,9max2=DB,即对角线BD 的最大值为3.13. 【2016高考押题卷(1)【江苏卷】】将函数()3cos sin y x x x =+?¡的图像向左平移()0m m >个单位长度后,所得的图像关于y 轴对称,则m 的最小值是_______.14. 【2016年第四次全国大联考【江苏卷】】已知sin 2cos αα+=,那么tan2α的值为_______.【答案】34-【解析】由sin 2cos αα+=平方得225sin +4sin cos +4cos ,2αααα=因此1cos21cos25+2sin 2+4,222ααα-+⨯=即3cos22sin 2+02αα=,即3tan 2.4α=- 15. 【2016年第三次全国大联考【江苏卷】】已知]4,4[ππθ-∈,且314cos -=θ,则=--+)4(sin )4(sin 44πθπθ .【答案】36±【解析】由条件得3112cos 22-=-θ,又]4,4[ππθ-∈,得]2,2[2ππθ-∈,于是312cos =θ, 原式==+-+)4(cos )4(sin 44πθπθ)4(cos )4(sin 22πθπθ+-+θπθ2sin )4(2cos =+-=36±=. 16. 【 2016年第二次全国大联考(江苏卷)】已知1sin tan(),(,)72ααβαπ=+=∈π,那么tan β的值为_______. 【答案】3【解析】由sin (,)2ααπ=∈π得cos tan 2αα==-,因此127tan tan() 3.21()7βαβα+=+-==+-二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)在ABC △中,角CB A 、、分别是边c b a 、、的对角,且b a 23=,(Ⅰ)若ο60=B ,求C sin 的值; (Ⅱ)若2cos 3C=,求sin()A B -的值.所以5sin()cos 3c A B A b -=-=-=- .......14分 2. 【 2016年第二次全国大联考(江苏卷)】(本小题满分16分)如图,290,,3OC km AOB OCD πθ=∠=∠=,点O 处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r 随时间t 变化函数为3r t tkm =,且半径增大到81km 时不再变化.一架无人侦察机从C 点处开始沿CD 方向飞行,其飞行速度为15/min km .(Ⅰ) 当无人侦察机在CD 上飞行t 分钟至点E 时,试用t 和θ表示无人侦察机到O 点的距离OE ;(Ⅱ)若无人侦察机在C 点处雷达就开始开机,且4πθ=,则雷达是否能测控到无人侦察机?请说明理由.则无人侦察机在CD 上飞行总时间为(45326923615=而3819r t t ==⇒=,OC DEABθ(Ⅱ) 雷达不能测控到无人侦察机。
2017年高考真题——数学(理)(北京卷)+Word版含解析(参考版)

y2 = 1 的离心率为 3 m
则实数 m=_________.
1+ m = 3⇒m=2 1
10 若等差数列 {an } 和等比数列 {bn } 满足 a1=b1=–1
a4=b4=8
则
a2 =_______. b2
答案
解析
1
−1 + 3d = − q 3 = 8 ⇒ d = 3, q = −2 ⇒
a2 −1 + 3 = =1 b2 −1× (−2)
解得
因为对
的点在第二象限
所
a + 1 < 0 1 − a > 0
a < −1
故选 B. 输出的 s 值为
3 执行如 所示的程序框
-1-
A 2 答案 C 解析
B
3 2
C
5 3
D
8 5
k = 0 时 0 < 3 成立 第一次进入循环 k = 1, s =
入循环 k = 2, s =
2 +1 3 = 2 2
点 P 的坐标为 1,0
11 在极坐标系中 点 A 在圆 ρ 2 − 2 ρ cos θ − 4 ρ sin θ + 4 = 0 则|AP|的最小值为__________ห้องสมุดไป่ตู้. 答案 1 解 析
C : x 2 + y 2 − 2 x − 4 y + 4 = 0 ⇒ ( x − 1) 2 + ( y − 2) 2 = 1
B {x|–2 D {x|1
A I B = { x −2 < x < −1}
故选 A.
2 若复数 1–i A C –∞ 1 1 +∞
a+i 在复 面内对 的点在第二象限 则实数 a 的取值范围是 B D –∞ –1 –1 +∞
(word完整版)2017上海高考数学试题(Word版含解析)

2017年上海市高考数学试卷.填空题(本大题共 12题,满分54分,第1~6题每题4分,第7~12题每题5 分)1.已知集合 A {1,2,3,4},集合 B {3,4,5},则 AI B ______________2. 若排列数P m 6 5 4,则m ______________x 13. 不等式1的解集为 ________x4. 已知球的体积为 36,则该球主视图的面积等于 _____________5. 已知复数z 满足z 30,则|z| ______z2 26. 设双曲线— 爲 1(b 0)的焦点为F 1、F 2,P 为该9 b双曲线上的一点,若| PR | 5,则| PF 2 | __________7. 如图,以长方体ABCD AB1GD 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐uu u UUUD标轴,建立空间直角坐标系,若 DB 1的坐标为(4,3,2),则AC 1的坐标为 ___________3x 1 x 08. 定义在(0,)上的函数y f(x)的反函数为y f lx),若g(x) ' 为f(x), x 0奇函数,则f 1(x)2的解为 ________1 3 f9. 已知四个函数:① y x :②y :③yx ;④yx 2.从中任选2个,则事 x件“所选2个函数的图像有且仅有一个公共点”的概率为 _____________2 *10.已知数列{a n }和{b n },其中a n n , n N , {0}的项是互不相等的正整数,若对于12.如图,用35个单位正方形拼成一个矩形,点 P 、P 2、B 、F 4以及四个标记为“”的点在正方形的顶点处,设集合{P,巳,卩3,巳},点P ,过P 作直线I P ,使得不在I P 上的“ ”的点 分布在I P 的两侧.用D(l p )和D 2(I P )分别表示I P 一侧 和另一侧的“ ”的点到I p 的距离之和.若过P 的直 线I P 中有且只有一条满足 DdI p ) D 2(I P ),则 中 所有这样的P 为 ___________二.选择题(本大题共 4题,每题5分,共20分)2017.6任意n N *,{b n }的第a n 项等于{a n }的第b n 项,则Iggbqdbw)Ig(bb 2b 3b 4)11.设 a 1、a 2 R,且 2 sin 112 sin(2 2)2,则 |10 2|的最小值等于x 5v 013.关于x 、y 的二元一次方程组' 的系数行列式D 为(2x 3y 4A.0 5 B. 1 0C.1 5D.6 04 32 42 35 4uuu uuirOP OQ w },贝U中元素个数为().解答题(本大题共 5题,共14+14+14+16+18=76分)17.如图,直三棱柱 ABC A 1B 1C 1的底面为直角三角形,两直角边 AB 和AC 的长分别为4和2,侧棱AA 的长为5.(1 )求三棱柱 ABC ABG 的体积; (2)设M 是BC 中点,求直线AM 与平面ABC 所成角的大小.2 218.已知函数 f (x) cos x sin x(1 )求f(x)的单调递增区间;A 所对边a 19,角B 所对边b 5,若f (A) 0,求△ ABC 的面积.A. a 0B. b 0C. cD. a 2b c0 16. 在平面直角坐标系 2 x xOy 中,已知椭圆C : 2y 21 和 C 2: X 2- 1 P 为C 1上的动36 4 9uuu urnr占 八Q 为C 2上的动点, w 是OP OQ 的最大值. 记{(P,Q)|P 在 C 1 上, Q 在C 2上,且)使得Moo k 、X 200 k 、X 300 k 成等差数列”的一个必要条件是14.在数列{a n }中, a n,则 lim a n (nA.等于-2B.等于0C.等于-2D.不存在15.已知a 、b 、c 为实常数,数列{X n }的通项2X n anbn,则“存在A. 2个B. 4个C. 8个D.无穷个12,x (0,).(2)设厶ABC 为锐角三角形,角19. 根据预测,某地第n (n N )个月共享单车的投放量和损失量分别为a n和b (单位:辆), "亠5n 15, 1 n 3其中a n , b n n 5,第n个月底的共享单车的保有量是前n个月的10n 470, n 4累计投放量与累计损失量的差•(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n 4(n 46)2 8800 (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?x220. 在平面直角坐标系xOy中,已知椭圆: y 1,A为的上顶点,P为上异于4上、下顶点的动点,M为x正半轴上的动点.(1 )若P在第一象限,且|OP| 2,求P的坐标;(2)设P(8,3),若以A、P、M 为顶点的三角形是直角三角形,求M的横坐标;5 5umr uuir uuu uuun(3)若| MA | |MP |,直线AQ 与交于另一点C,且AQ 2AC,PQ 4 PM,求直线AQ的方程.21.设定义在R上的函数f (x)满足:对于任意的X1、X2 R,当x, X2时,都有f(X1) f(X2).(1 )若f (x) ax31,求a的取值范围;(2)若f(x)为周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上、恒大于零的周期函数,M是g(x)的最大值.函数h(x) f(x)g(x).证明:“ h(x)是周期函数”的充要条件是“ f (x)是常值函数”.2017年上海市高考数学试卷.填空题(本大题共 12题,满分54分,第1~6题每题4分,第7~12题每题5 分) 1. 已知集合 A {1,2,3,4},集合 B {3,4,5},则 AI B ________ 【解析】AI B {3,4}2. 若排列数P m 6 5 4,则m ______________【解析】m 32 26.设双曲线工占 1(b9 b 2则 | PF 2 | ______ 【解析】2a 6| PF 2 | 117. 如图,以长方体ABCD AB1GD 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐uu u UUUD标轴,建立空间直角坐标系,若 DB 1的坐标为(4,3,2),则AC 1的坐标为 ___________UUUU 【解析】A(4,0,0),C 1(0,3,2),AC 1( 4,3,2)13x 1, x 0 込 8. 定义在(0,)上的函数y f (x)的反函数为y f (x),若g(x)为f(x), x 01奇函数,则f (x) 2的解为 ________ 【解析】f (x)3x 1f(2)9 18 f 1(x)2 的解为 x 81 3 -9. 已知四个函数:① y x :②y :③yx ;④yx 2.从中任选2个,则事x件“所选2个函数的图像有且仅有一个公共点”的概率为 _____________ 【解析】①③、①④的图像有一个公共点,.••概率为2017.6x1【解析】1 -10 x 0 ,解集为(xx4.已知球的体积为 36 ,则该球主视图的面积等于4【解析】43r 3 36 r 3 S 95.已知复数 z 满足3 z -z 0,则 |z| 【解析】z 23 z |z| .3,0)0)的焦点为F 1、F 2,P 为该双曲线上的一点,若2 *10.已知数列{a n}和{b n},其中a n n , n N , {b n}的项是互不相等的正整数,若对于任意n N * , {0}的第a n 项等于{a n }的第b n 项,则lg(blb4b9bl6)©(b^b q )【解析】b a n a b n b n 2 b n 2 bAb g% (bfeb s b q )2即 sin 1sin (2 2 )1,二 12k,2k , I10 1 2〔min2 4412.如图,用35个单位正方形拼成一个矩形,点 R 、P 2、P 3、P 4以及四个标记为“”的点在正方形的顶点处,设集合{P,P 2,P 3,P 4},点P ,过P 作直线I p ,使得不在I p 上的“ ”的点 分布在I P 的两侧.用D 1(I P )和D 2(I P )分别表示I P 一侧 和另一侧的“ ”的点到I p 的距离之和.若过P 的直线I p 中有且只有一条满足 D 1(I p ) D 2(I p ),则 中 所有这样的P 为__________ 【解析】P 、F 3A.0 5 B. 1 0C.1 5 D .6 04 32 42 35 4【解析】C【解析】k 、x 200 k 、x 300 k 成等差数列”的一个必要条件是©(bb q b g bj 2 IgglbAb q )11.设 a-i 、a 2,且2 sin i2,则 |102 sin(2 2)12|的最小值等于I解析】人[1,1],口1冇[1,1],1 1 1 ,2 si n t 2 sin(2 2)二.选择题(本5分,共 20分)13.关于x 、y 的二元一次方程组x 5y 2x 3y的系数行列式4 D 为( )14.在数列{a n }中,(J ,,则 Iim a n (nA.等于B.等于0C. 1等于12D.不存在15.已知 b 、c 为实常数,数列{X n }的通项 2X n anbn c ,n N *,则“存在 k N *,使得X ,oo A. a 0 【解析】AB. b 0C. c 0D. a 2b c 02累计投放量与累计损失量的差(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第 n 个月底的单车容纳量 S n 4(n 46)2 8800 (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?2 2一 一 x y16.在平面直角坐标系 xOy 中,已知椭圆G :盘 -1和C 2:x 2鲁1.P为C 1上的动uuu urnr点,Q 为C 2上的动点,w 是OP OQ uuu uuirOP OQ w},贝U中元素个数为( 的最大值•记 {(P,Q)|P 在G 上,Q 在C 2上,且A. 2个B. 4个C. 8个D.无穷个【解析】D三.解答题(本大题共 5题,共14+14+14+16+18=76 分)17.如图,直三棱柱 ABC AB1G 的底面为直角三角形,两直角边 AB 和AC 的长分别为4和2,侧棱AA 的长为5.(1 )求三棱柱 ABC ARG 的体积;(2)设M 是BC 中点,求直线AM 与平面ABC 所成角的大小•【解析】(1) V S h 20(2) tan5.5 ,线面角为arcta n ■. 518.已知函数 2f (x) cos x sinx 1 , x (0,).(1 )求f(x)的单调递增区间;(2)设厶ABC 为锐角三角形, A 所对边a ■ 19,角B 所对边b 5,若f (A)0,求△ ABC 的面积.【解析】(1) f(x)cos2xx (0,),单调递增区间为[―,) 2(2) cos2A根据锐角三角形,cosB2A 25 c 191…ccosAc 2 或 c 3 ,2 5c 20,二 c 3 , S - bcsin A ^^432 4 19.根据预测,某地第n 4甘出5n 15, 1其中a n10n 470,(nN *)个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),3, b n n 5,第n 个月底的共享单车的保有量是前4n 个月的(1 )若P 在第一象限,且|OP| 耳,求P 的坐标;求直线AQ 的方程. 3 uuu uuur 3 1 3y 0.Q( -x 0, 3y 。
2017年高考题和高考模拟题理科数学分项版汇编专题03 三角与向量 解析版

1.【2017课标1,理9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 【解析】【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 2.【2017课标3,理6】设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 【答案】D 【解析】【考点】 函数()cos y A x ωϕ=+ 的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.(2)求f (x )=Asin (ωx +φ)(ω≠0)的对称轴,只需令()2x k k Z πωϕπ+=+∈,求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z )即可.3.【2017课标3,理12】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .22C .5D .2【答案】A 【解析】试题分析:如图所示,建立平面直角坐标系【考点】 平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.4.【2017北京,理6】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】A【解析】试题分析:若0λ∃<,使m n λ=,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<T ,若0m n ⋅<,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 【考点】1.向量;2.充分必要条件.【名师点睛】判断充分必要条件的的方法:1.根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要 ,同时q 是p 的必要不充分条件,若p q ⇔,那互为充要条件,若p q <≠>,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若:,:p x A q x B ∈∈,若A B ≠⊂,那么p 是q的充分必要条件,同时q 是p 的必要不充分条件,若A B =,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断.5.【2017天津,理7】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π=【答案】A【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等. 6.【2017课标II ,理12】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小是( )A.2-B.32-C. 43- D.1- 【答案】B【解析】【考点】 平面向量的坐标运算;函数的最值【名师点睛】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决。
2017年全国统一高考数学试卷与解析word(理科)(新课标Ⅲ)

2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2 C.D.2二、填空题:本题共4小题,每小题5分,共20分。
2017上海高考数学真题试卷(word解析版)

绝密★启用前 2017年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)1、考生注意2、1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.3、2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.4、3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.5、4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654m P =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b-=(0)b >的焦点为1F 、2F ,P 为该 双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 605414. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( ) A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x . 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年普通高等学校招生全国统一考试上海--数学试卷考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合}{}{1,2,3,4,3,4,5A B ==,则AB =.【解析】本题考查集合的运算,交集,属于基础题 【答案】}{3,42.若排列数6P 654m=⨯⨯,则m =.【解析】本题考查排列的计算,属于基础题 【答案】3 3.不等式11x x->的解集为. 【解析】本题考查分式不等式的解法,属于基础题 【答案】(),0-∞4.已知球的体积为36π,则该球主视图的面积等于.【解析】本题考查球的体积公式和三视图的概念,343633R R ππ=⇒=,所以29S R ππ==,属于基础题【答案】9π 5.已知复数z 满足30z z+=,则z =. 【解析】本题考查复数的四则运算和复数的模,2303z z z+=⇒=-设z a bi =+,则22230,a b abi a b -+=-⇒==,z6.设双曲线()222109x y b b-=>的焦点为12F F 、,P 为该双曲线上的一点.若15PF =,则2PF =.【解析】本题考查双曲线的定义和性质,1226PF PF a -==(舍),2122611PF PF a PF -==⇒=【答案】117.如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系.若1DB 的坐标为(4,3,2),则1AC 的坐标是.【解析】本题考查空间向量,可得11(400)(03,2)(432)A C AC ⇒=-,,,,,,,属于基础题 【答案】(432)-,,8.定义在(0,)+∞上的函数()y f x =的反函数-1()y f x =.若31,0,()(),0xx g x f x x ⎧-≤=⎨>⎩为奇函数,则-1()=2f x 的解为.【解析】本题考查函数基本性质和互为反函数的两个函数之间的关系,属于中档题10,0,()31()()13x x x x g x g x g x ->-<-=-=-⇒=-,所以1()13xf x =-, 当2x =时,8()9f x =,所以18()29f -= 【答案】89x =9.已知四个函数:①y x =-;②1y x=-;③3y x =;④12y x =.从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为.【解析】本题考查事件的概率,幂函数的图像画法和特征,属于基础题 总的情况有:42C 6=种,符合题意的就两种:①和③,①和④【答案】1310.已知数列}{n a 和}{n b ,其中2,N n a n n *=∈,}{n b 的项是互不相等的正整数.若对于任意}{N n n b *∈,中的第n a 项等于}{n a 中的第n b 项,则()()149161234lg lg b b b b b b b b =.【解析】本题考查数列概念的理解,对数的运算,属于中档题由题意可得:222222114293164(),,,n n a b n n b a b b b b b b b b b b =⇒=⇒====,所以()()()()214916123412341234lg lg =2lg lg b b b b b b b b b b b b b b b b = 【答案】211.设12R αα∈,,且121122sin 2sin(2)αα+=++,则1210παα--的最小值等于.【解析】考查三角函数的性质和值域,121111,1,12sin 32sin(2)3αα⎡⎤⎡⎤∈∈⎢⎥⎢⎥++⎣⎦⎣⎦,,要使121122sin 2sin(2)αα+=++,则111122221=122sin 2,,1=12sin(2)4k k k Z k παπαπαπα⎧⎧=-+⎪⎪+⎪⎪⇒∈⎨⎨⎪⎪=-+⎪⎪+⎩⎩ 1212min min31010(2)44k k ππααπππ--=+-+=,当122=11k k +时成立【答案】4π12.如图,用35个单位正方形拼成一个矩形,点1234,,,P P P P 以及四个标记为“▲”的点在正方形的顶点处.设集合}{1234=,,,P P P P Ω,点P ∈Ω.过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()=()P P D l D l ,则Ω中所有这样的P 为.【解析】本题考查有向距离,以左下角的顶点为原点建立直角坐标系。
三年高考(2017_2019)高考数学真题分项汇编专题07平面解析几何(选择题、填空题)理(含解析)

1.【2019 年高考全国Ⅰ卷理数】已知椭圆 C 的焦点为 F1( 1, 0) ,F2(1, 0) ,过 F2 的直线与 C 交于 A,B 两 点.若| AF2 | 2 | F2B | ,| AB || BF1 | ,则 C 的方程为
A. x2 y2 1 2
B. x2 y2 1 32
C. x2 y2 1 43
D. x2 y2 1 54
【答案】B
【解析】法一:如图,由已知可设 F2B n ,则 AF2 2n , BF1 AB 3n ,
由椭圆的定义有 2a BF1 BF2 4n , AF1 2a AF2 2n .
4.【2019 年高考全国Ⅲ卷理数】双曲线 C: x2 y2 =1 的右焦点为 F,点 P 在 C 的一条渐近线上,O 为坐 42
标原点,若 PO = PF ,则△PFO 的面积为
A. 3 2 4
B. 3 2 2
C. 2 2
【答案】A
D. 3 2
【解析】由 a 2 , b
2,c
a2 b2
程为 x2 y2 1,故选 B. 32
【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落 实了直观想象、逻辑推理等数学素养.
2.【2019 年高考全国Ⅱ卷理数】若抛物线 y2=2px(p>0)的焦点是椭圆 x2 y2 1 的一个焦点,则 p=
3p p
∴|
OA
|
c 2
,
P
c 2
,
c 2
,
2
又 P 点在圆 x2 y2 a2 上, c2 c2 a2 ,即 c2 a2 ,e2 c2 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 29 2017年高考数学试题分项版—解析几何(解析版) 一、选择题 1.(2017·全国Ⅰ文,5)已知F是双曲线C:x2-y23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( ) A.13 B.12 C.23 D.32 1.【答案】D 【解析】因为F是双曲线C:x2-y23=1的右焦点,所以F(2,0). 因为PF⊥x轴,所以可设P的坐标为(2,yP). 因为P是C上一点,所以4-y2P3=1,解得yP=±3, 所以P(2,±3),|PF|=3. 又因为A(1,3),所以点A到直线PF的距离为1,
所以S△APF=12×|PF|×1=12×3×1=32. 故选D. 2.(2017·全国Ⅰ文,12)设A,B是椭圆C:x23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,3]∪[4,+∞) 2.【答案】A 【解析】方法一 设焦点在x轴上,点M(x,y). 过点M作x轴的垂线,交x轴于点N, 则N(x,0). 故tan∠AMB=tan(∠AMN+∠BMN)
=3+x|y|+3-x|y|1-3+x|y|·3-x|y|=23|y|x2+y2-3. 又tan∠AMB=tan 120°=-3, 且由x23+y2m=1,可得x2=3-3y2m,
则23|y|3-3y2m+y2-3=23|y|1-3my2=-3. 2 / 29
解得|y|=2m3-m. 又0<|y|≤m,即0<2m3-m≤m,结合0<m<3解得0<m≤1.
对于焦点在y轴上的情况,同理亦可得m≥9. 则m的取值范围是(0,1]∪[9,+∞). 故选A. 方法二 当0<m<3时,焦点在x轴上, 要使C上存在点M满足∠AMB=120°,
则ab≥tan 60°=3,即3m≥3,
解得0<m≤1. 当m>3时,焦点在y轴上, 要使C上存在点M满足∠AMB=120°,
则ab≥tan 60°=3,即m3≥3,解得m≥9.
故m的取值范围为(0,1]∪[9,+∞). 故选A.
3.(2017·全国Ⅱ文,5)若a>1,则双曲线x2a2-y2=1的离心率的取值范围是( ) A.(2,+∞) B.(2,2) C.(1,2) D.(1,2) 3.【答案】C
【解析】由题意得双曲线的离心率e=a2+1a. ∴e2=a2+1a2=1+1a2. ∵a>1,∴0<1a2<1,∴1<1+1a2<2, ∴1<e<2. 故选C. 4.(2017·全国Ⅱ文,12)过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( ) 3 / 29
A.5 B.22 C.23 D.33 4.【答案】C 【解析】抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.由直线方程的点斜式可得直线MF的方程为y=3(x-1).
联立得方程组 y=3x-1,y2=4x,
解得 x=13,y=-233或 x=3,y=23. ∵点M在x轴的上方, ∴M(3,23). ∵MN⊥l, ∴N(-1,23). ∴|NF|=1+12+0-232=4, |MF|=|MN|=3-(-1)=4. ∴△MNF是边长为4的等边三角形. ∴点M到直线NF的距离为23. 故选C.
5.(2017·全国Ⅲ文,11)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则椭圆C的离心率为( ) A.63 B.33 C.23 D.13 5.【答案】A 【解析】由题意知以A1A2为直径的圆的圆心坐标为(0,0),半径为a. 又直线bx-ay+2ab=0与圆相切,
∴圆心到直线的距离d=2aba2+b2=a,解得a=3b,
∴ba=13, 4 / 29
∴e=ca=a2-b2a= 1-ba2= 1-132=63. 6.(2017·天津文,5)已知双曲线x2a2-y2b2=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为( ) A.x24-y212=1 B.x212-y24=1
C.x23-y2=1 D.x2-y23=1 6.【答案】D 【解析】根据题意画出草图如图所示不妨设点A在渐近线y=bax上.
由△AOF是边长为2的等边三角形得到∠AOF=60°,c=|OF|=2. 又点A在双曲线的渐近线y=bax上,∴ba=tan 60°=3. 又a2+b2=4,∴a=1,b=3, ∴双曲线的方程为x2-y23=1. 故选D. 7.(2017·浙江,2)椭圆x29+y24=1的离心率是( ) A.133 B.53 C.23 D.59 7.【答案】B 【解析】∵椭圆方程为x29+y24=1, ∴a=3,c=a2-b2=9-4=5. ∴e=ca=53. 故选B. 8.(2017·全国Ⅰ理,10)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为5 / 29
( ) A.16 B.14 C.12 D.10 8.【答案】A 【解析】因为F为y2=4x的焦点,所以F(1,0).
由题意知直线l1,l2的斜率均存在,且不为0,设l1的斜率为k,则l2的斜率为-1k,故直线l1,l2的方程分别为y=k(x-1),y=-1k(x-1). 由 y=kx-1,y2=4x,得k2x2-(2k2+4)x+k2=0. 设A(x1,y1),B(x2,y2),则x1+x2=2k2+4k2,x1x2=1, 所以|AB|=1+k2·|x1-x2| =1+k2·x1+x22-4x1x2
=1+k2·2k2+4k22-4 =41+k2k2. 同理可得|DE|=4(1+k2). 所以|AB|+|DE|=41+k2k2+4(1+k2) =41k2+1+1+k2 =8+4
k2+
1
k2≥8+4×2=16,
当且仅当k2=1k2,即k=±1时,取得等号. 故选A.
9.(2017·全国Ⅱ理,9)若双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( ) A.2 B.3 6 / 29
C.2 D.233 9.【答案】A 【解析】设双曲线的一条渐近线方程为y=bax, 圆的圆心为(2,0),半径为2, 由弦长为2得出圆心到渐近线的距离为22-12=3. 根据点到直线的距离公式,得|2b|a2+b2=3,解得b2=3a2.
所以C的离心率e=ca=c2a2=1+b2a2=2. 故选A. 10.(2017·全国Ⅲ理,5)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=52
x,且与椭圆x212+y23=1有公共焦点,则C的方程为( )
A.x28-y210=1 B.x24-y25=1 C.x25-y24=1 D.x24-y23=1 10.【答案】B 【解析】由y=52x,可得ba=52.① 由椭圆x212+y23=1的焦点为(3,0),(-3,0), 可得a2+b2=9.② 由①②可得a2=4,b2=5.
所以C的方程为x24-y25=1. 故选B. 11.(2017·全国Ⅲ理,10)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( ) A.63 B.33 C.23 D.13 11.【答案】A 【解析】由题意知,以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切, 7 / 29
∴圆心到直线的距离d=2aba2+b2=a,解得a=3b, ∴ba=13, ∴e=ca=a2-b2a=1-ba2=1-132=63. 故选A. 12.(2017·天津理,5)已知双曲线x2a2-y2b2=1(a>0,b>0)的左焦点为F,离心率为2.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.x24-y24=1 B.x28-y28=1 C.x24-y28=1 D.x28-y24=1 12.【答案】B 【解析】由题意可得ca=2,即c=2a. 又左焦点F(-c,0),P(0,4), 则直线PF的方程为y-04-0=x+c0+c,化简即得y=4cx+4.
结合已知条件和图象易知直线PF与y=bax平行,则4c=ba,即4a=bc. 由 c=2a,4a=bc,a2+b2=c2,解得 a2=8,b2=8, 故双曲线方程为x28-y28=1. 故选B. 二、填空题
1.(2017·全国Ⅲ文,14)双曲线x2a2-y29=1(a>0)的一条渐近线方程为y=35x,则a=________. 1.【答案】5 【解析】∵双曲线的标准方程为x2a2-y29=1(a>0),