《一次函数》经典例题解析
八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。
一次函数经典题型+习题(精华-含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
(易错题精选)初中数学一次函数经典测试题附答案解析(1)

(易错题精选)初中数学一次函数经典测试题附答案解析(1)一、选择题1.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.【详解】解:根据题意可以列出甲、乙两人离B 地的距离y (km )与行驶时间x (h )之间的函数关系得:y 甲=-15x+30y 乙=()()3001306012x x x x ⎧≤≤⎪⎨-+≤≤⎪⎩由此可知,①②正确.当15x+30=30x 时, 解得x=2,3则M 坐标为(23,20),故③正确. 当两人相遇前相距10km 时,30x+15x=30-10x=49, 当两人相遇后,相距10km 时,30x+15x=30+10,解得x=8 915x-(30x-30)=10得x=4 3∴④错误.选C.【点睛】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.2.一次函数y=kx+b(k<0,b>0)的图象可能是()A. B. C.D.【答案】C【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b的图象经过第二、四象限.又∵b>0时,∴一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一象限.故答案为:C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.3.如图,一次函数y =﹣x +4的图象与两坐标轴分别交于A 、B 两点,点C 是线段AB 上一动点(不与点A 、B 重合),过点C 分别作CD 、CE 垂直于x 轴、y 轴于点D 、E ,当点C 从点A 出发向点B 运动时,矩形CDOE 的周长( )A .逐渐变大B .不变C .逐渐变小D .先变小后变大【答案】B【解析】【分析】 根据一次函数图象上点的坐标特征可设出点C 的坐标为(m ,-m+4)(0<m<4),根据矩形的周长公式即可得出C 矩形CDOE =8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.4.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =--【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C.【点睛】本题考查的是一次函数的性质,一次函数y=kx+b(k≠0)中,当k>0时y随x的增大而增大;k<0时y随x的增大而减小;熟练掌握一次函数的性质是解答此题的关键.5.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3 B.5 C.﹣1 D.﹣3【答案】C【解析】【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k﹣1),解得:k1=﹣1,k2=5,因为正比例函数的y=kx(k≠0)的图象经过二,四象限,所以k<0,所以k=﹣1,故选C.【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.6.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<4【答案】A【解析】【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,∴不等式kx+b>4的解集是x>-2,故选A.【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.7.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.8.如图,直线y=-x+m 与直线y=nx+5n (n≠0)的交点的横坐标为-2,则关于x 的不等式-x+m >nx+5n >0的整数解为( )A .-5,-4,-3B .-4,-3C .-4,-3,-2D .-3,-2【答案】B【解析】【分析】 根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n 中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x 的不等式-x+m >nx+5n >0的解集为-5<x <-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.9.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -,当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.10.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y kx b=+,则32k bk b+=⎧⎨+=⎩,解得11kb=⎧⎨=-⎩,所以直线l的解析式为1y x=-.故选:C.【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.一次函数y=(m﹣2)x n﹣1+3是关于x的一次函数,则m,n的值为()A.m≠2,n=2 B.m=2,n=2 C.m≠2,n=1 D.m=2,n=1【答案】A【解析】【分析】直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2019的坐标为( )A .(21009,21010)B .(﹣21009,21010)C .(21009,﹣21010)D .(﹣21009,﹣21010)【答案】D【解析】【分析】 写出一部分点的坐标,探索得到规律A 2n +1[(﹣2)n ,2×(﹣2)n ](n 是自然数),即可求解;【详解】A 1(1,2),A 2(﹣2,2),A 3(﹣2,﹣4),A 4(4,﹣4),A 5(4,8),… 由此发现规律:A 2n +1[(﹣2)n ,2×(﹣2)n ](n 是自然数),2019=2×1009+1,∴A 2019[(﹣2)1009,2×(﹣2)1009],∴A 2019(﹣21009,﹣21010),故选D .【点睛】本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.14.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.15.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【解析】【分析】 直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x >-2时,一次函数y=3x+b 的图象在函数y=ax-3的图象的上方,∴不等式3x+b >ax-3的解集为:x >-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.17.如图,已知一次函数3y x b =+与3y ax =-交于点P (-2,-5),则关于x 的不等式33x b ax +>-的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x >−2时,一次函数y =3x +b 的图象在函数y =ax−3的图象的上方,∴不等式3x +b >ax−3的解集为x >−2, 在数轴上表示为:.故选:C .【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.18.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C【解析】【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.19.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x 的取值即为所求.【详解】∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0),又∵当x <﹣1时,4x +2<kx +b ,当x >﹣2时,kx +b <0,∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1.故选B .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.20.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【答案】C【解析】【分析】 由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案.【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3),∴-3=-6+b ,解得:b=3,∴一次函数的解析式为y=-6x+3,∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴,∴这个一次函数的图象一定经过一、二、四象限,故选:C .【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.。
一次函数经典题型+习题(精华,含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
(完整版)一次函数经典题型+习题(精华,含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m ,n )在第二象限,则点(|m|,-n)在第____象限;2、 若点P(2a —1,2—3b )是第二象限的点,则a ,b 的范围为______________________;3、 已知A (4,b ),B (a ,—2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A ,B 关于y 轴对称,则a=_______,b=__________;若若A,B 关于原点对称,则a=_______,b=_________;4、 若点M (1—x ,1—y )在第二象限,那么点N (1—x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,—2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C(0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q (—2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 4、 两点(3,—4)、(5,a )间的距离是2,则a 的值为__________; 5、 已知点A(0,2)、B(—3,—2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________。
一次函数[含参考答案解析]
![一次函数[含参考答案解析]](https://img.taocdn.com/s3/m/4a76e8234431b90d6c85c79a.png)
一次函数专题【基础知识回顾】一、 一次函数的定义:一般的:如果y= ( ),那么y 叫x 的一次函数特别的:当b= 时,一次函数就变为y=kx(k≠0),这时y 叫x 的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b 的同象是经过点(0,b )(-bk ,0)的一条 ,正比例函数y= kx 的同象是经过点 和 的一条直线。
【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取 个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx(k≠0),当k >0时,其同象过 、 象限,此时时y 随x的增大而 ;当k<0时,其同象过 、 象限,时y 随x 的增大而 。
3、 一次函数y= kx+b ,图象及函数性质①、k >0 b >0过 象限 ②、k >0 b<0过 象限③、k<0 b >0过 象限 ④、k<0 b >0过 象限4、若直线l1:y= k1x+ b1与l1:y= k2x+ b2平行,则k1 k2,若k1≠k2,则l1与l2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b 中解一元一次方程可求求直线与坐标轴的交点坐标。
2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数所列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决y 随x 的增大而 y 随x 的增大而2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题】五、一次函数的应用一般步骤:1、设定问题中的变量 2、建立一次函数关系式3、确定自变量的取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案设计问题等】【重点考点例析】考点一:一次函数的图象和性质例1 一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限例2 写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).例3已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).考点三:一次函数解析式的确定例4 一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是__________.考点四:一次函数与方程(组)、不等式(组)的关系例5 函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()例6 已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.考点六:一次函数的应用例7 某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2= 米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【聚焦中考】1.直线y=-x+1经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限2.若一次函数y=(m-3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m<33.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>-4 C.x>2 D.x>-24.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为()5. 如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC ≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.【备考真题过关】一、选择题1.一次函数y=2x+4的图象与y轴交点的坐标是()2.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③5.一次函数y=kx-k(k<0)的图象大致是()A.B. C. D.6.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B. C.D.7.正比例函数y=x的大致图象是()A.B.C.D.8.正比例函数y=2x的大致图象是()A.B.C.D.9.已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限 B.第一、二、三象限 C.第一、三、四象限 D.第一、二、四象限10.已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限11.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()A. B.C. D.12.当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限 B.第一、四象限 C.第二、三象限 D.第二、四象限二、填空题13.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为__________.14.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是__________.15.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.16.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.一次函数【重点考点例析】例1 解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.例2 解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x(答案不唯一).故答案为:y=2x(答案不唯一).例3 解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.例4 解:当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;当x=4时,y=6,∴,解得,∴=2;当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;当x=4时,y=3,∴,解得,∴=﹣7.故答案为:2或﹣7.例5 解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.例6 解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=﹣3,∴解析式为y=3x﹣3.例7 解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.【聚焦山东中考】1. B.2. C.3. B.4.B.5.解:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.【备考真题过关】一、选择题1.B.2.A.3.B.4. A.5.A.6.B.7. C.8. B.9. B.10. C.11. C.12. A.二、填空题13.y=3x+2.14.(1,4),(3,1).15. 2200.16. 4.WORD 格式整理专业知识分享解:(1)把P (2,n )代入y=2x 得n=3, 所以P 点坐标为(2,3),把P (2,3)代入y=-x+m 得-2+m=3,解得m=5, 即m 和n 的值分别为5,3;(2)把x=0代入y=-x+5得y=5,所以B 点坐标为(0,5),所以△POB 的面积=12×5×2=5.。
初中数学一次函数经典测试题附答案解析
初中数学一次函数经典测试题附答案解析一、选择题1.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法: ①射线AB 表示甲的路程与时间的函数关系; ②甲的速度比乙快1.5米/秒; ③甲让乙先跑了12米; ④8秒钟后,甲超过了乙 其中正确的说法是( )A .①②B .②③④C .②③D .①③④【答案】B 【解析】 【分析】根据函数图象上特殊点的坐标和实际意义即可作出判断. 【详解】根据函数图象的意义,①已知甲的速度比乙快,故射线OB 表示甲的路程与时间的函数关系;错误;②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确; ④8秒钟后,甲超过了乙,正确; 故选B . 【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.2.如图,已知一次函数22y x =-+A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A.22B.2C.5D.3【答案】D【解析】【分析】【详解】解:连结OM、OP,作OH⊥AB于H,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A(0,22),当y=0时,﹣x+22=0,解得x=22,则B(22,0),所以△OAB为等腰直角三角形,则AB=2OA=4,OH=12AB=2,根据切线的性质由PM为切线,得到OM⊥PM,利用勾股定理得到PM=22OP OM-=21OP-,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为2213-=.故选D.【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.3.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【答案】C 【解析】【分析】根据一次函数的图象与系数的关系进行解答即可. 【详解】∵一次函数y=kx+b 的图象经过一、二、四象限, ∴k <0,b >0, 故选C .【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当k <0,b >0时图象在一、二、四象限.4.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D 【解析】 【分析】根据一次函数的性质即可得答案. 【详解】∵一次函数1y x =--中10k =-<, ∴y 随x 的增大而减小, ∵123y y y <<, ∴123x x x >>. 故选:D . 【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.5.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+ B .24y x =-+C .31y x =+D .31y x -=-【答案】B 【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案. 【详解】设一次函数关系式为y kx b =+, ∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小, ∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-, ∴y=-3x+1,-3+1=-2,故该选项不符合题意, 故选:B . 【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6.正比例函数y =kx 与一次函数y =x ﹣k 在同一坐标系中的图象大致应为( )A .B .C .D .【答案】B 【解析】 【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能. 【详解】 根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.7.下列函数中,y 随x 的增大而增大的函数是( ) A .2y x =- B .21y x =-+C .2y x =-D .2y x =--【答案】C 【解析】 【分析】根据一次函数的性质对各选项进行逐一分析即可. 【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误; ∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误; ∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确; ∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误. 故选C . 【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.8.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( ) A .4个 B .3个C .2个D .1个【答案】B 【解析】 【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可. 【详解】解:(1)y =x 是一次函数,符合题意; (2)y =2x ﹣1是一次函数,符合题意;(3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意; (5)y =x 2﹣1是二次函数,不符合题意; 故是一次函数的有3个. 故选:B . 【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.9.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.10.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y (米)与时间t (分)的函数关系如图所示,则下列结论错误的是( )A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D 【解析】 【分析】根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可. 【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变, 即:甲步行的速度为每分钟480806=米,乙步行的速度也为每分钟80米, 故A 正确;又∵甲乙再次相遇时是16分钟, ∴16分乙共走了80161280?米, 由图可知,出租车的用时为16-12=4分钟, ∴出租车的速度为每分12804320?米,故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟, 设公司与火车站的距离为x 米, 依题意得:12380320x x =++,解之得:1600x =, ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确. 故选:D . 【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.11.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得. 【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限, 故选:D .本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B 【解析】 【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标. 【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B . 【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.13.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<32【答案】B 【解析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.超市有A,B两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A型瓶3个或以上,一次性返还现金5元,设购买A型瓶x(个),所需总费用为y(元),则下列说法不一定成立的是()A .购买B 型瓶的个数是253x ⎛⎫-⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元【答案】C 【解析】 【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个,∵买瓶子用来分装15升油,瓶子都装满,且无剩油, ∴购买B 型瓶的个数是1522533x x -=-, ∵瓶子的个数为自然数, ∴x=0时, 253x -=5; x=3时, 253x -=3; x=6时, 253x -=1; ∴购买B 型瓶的个数是(253x -)为正整数时的值,故A 成立; 由上可知,购买A 型瓶的个数为0个或3个或6个,所以购买A 型瓶的个数最多为6,故B 成立;设购买A 型瓶x 个,所需总费用为y 元,则购买B 型瓶的个数是(253x -)个, ④当0≤x<3时,y=5x+6×(253x -)=x+30, ∴k=1>0,∴y 随x 的增大而增大,∴当x=0时,y 有最小值,最小值为30元; ②当x≥3时,y=5x+6×(253x -)-5=x+25, ∵.k=1>0随x 的增大而增大,∴当x=3时,y 有最小值,最小值为28元; 综合①②可得,购买盒子所需要最少费用为28元. 故C 不成立,D 成立 故选:C. 【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.15.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==.故选B.16.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k<3.故选A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b <0时,直线与y轴负半轴相交.17.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4, ∴A (4,0),B (0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.18.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C【解析】【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.19.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.20.如图,把 Rt ABC ∆放在直角坐标系内,其中 90CAB ∠=o ,5BC =,点 A 、B 的坐标分别为(1,0)、(4,0),将ABC ∆沿x 轴向右平移,当点 C 落在直线26y x =-上是,线段BC 扫过的面积为( )A .4B .8C .16D .8【答案】C【解析】【分析】 根据题目提供的点的坐标求得点C 的坐标,当向右平移时,点C 的纵坐标不变,代入直线求得点C 的横坐标,进而求得其平移的距离,计算平行四边形的面积即可.【详解】∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x-6上时,∴令y=4,得到4=2x-6,解得x=5,∴平移的距离为5-1=4,∴线段BC扫过的面积为4×4=16,故选C.【点睛】本题考查了一次函数与几何知识的应用,解题关键是题中运用圆与直线的关系以及直角三角形等知识求出线段的长.。
2020年九年级数学中考二轮培优复习:《一次函数》(解析版)
中考二轮培优复习:《一次函数》1.如图,在平面直角坐标系中,直线y=kx﹣3k与x轴交于A,与y轴交B.(1)求点A的坐标;(2)点D是第一象限内一点,连接AD,∠OAD=45°,连接BD,将线段BD绕着点D顺时针旋转90°得到线段DE,过点E作EC⊥y轴于点C,求线段OC的长;(3)在(2)的条件下,点C和点B关于x轴对称,过点C作CF∥DE交x轴干点F,点G在x轴负半轴上,OG=AF,BD交OA于点H,点M为BH的中点,连接OM并延长交AB 于点N,连接GN,若GN=ON,求点D的坐标.2.如图,直线y=ax+b交x轴于点A,交y轴于点B,且a,b满足a=+4,直线y=kx﹣4k过定点C,点D为直线y=kx﹣4k上一点,∠DAB=45°.(1)a=,b=,C坐标为;(2)如图1,k=﹣1时,求点D的坐标;(3)如图2,在(2)的条件下,点M是直线y=kx﹣4k上一点,连接AM,将AM绕A顺时针旋转90°得AQ,OQ最小值为.3.如图,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y 轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC→CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)当运动时间t为何值时,△OPD的面积为4;(3)点P在运动过程中,是否存在t的值,使△BDP为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.4.如图,已知直线y=2x+2与y轴、x轴分别交于A、B两点,点C(﹣3,1),射线AC 交x轴的负半轴于点D.(1)求点D的坐标;(2)点P是坐标平面内不同于点C的一点,且以B、D、P为顶点的三角形与△BCD全等,请直接写出点P的坐标;(3)点M是线段BC上一点,直线AM交BD于点N,且△OMN的面积等于△OCD面积的一半,求点M的坐标.5.如图,在直角坐标系中,B(0,4),D(5,0),一次函数y=x+的图象过C(8,n),与x轴交于A点.(1)n=;A(,);(2)判断四边形ABCD的形状,并证明;(3)将△AOB绕点O顺时针旋转,旋转得△A1OB1,问:能否使以点O、A1、D、B1为顶点的四边形是平行四边形?若能,请直接写出A1的坐标;若不能,请说明理由.6.阅读下列材料,并按要求解答.【模型建立】如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.【模型应用】应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.7.在平面直角坐标系中,直线y=﹣x+6分别与y轴,x轴交于A,C两点,已知OB=3OC.(1)如图1,点E,点D分别为y轴正半轴和x轴负半轴上的点,△ODE∽△OBA且相似比为1:3,一个沿直线运动的点H从点E出发运动到AB上一点K,再沿射线AB方向运动6个单位到达点G,最后到达点D处,P是直线AC上的一个动点,当EK+KG+GD最小时,求使|GP﹣OP|最大时P点坐标.(2)如图2,直线m:x=﹣3与x轴交于点S,与线段AB交于点M,在直线m上取一点R,使得SR=9(点R在第二象限),连接BR.已知点N为线段BR上一动点,连接MN,将△BMN沿MN翻折到△B′MN若B落在直线BR的左侧,当△B′MN与△BMR重叠部分(如图中的△MNQ)为直角三角形时,将此Rt△MNQ绕点Q顺时针旋α(0°≤α<360°)得到Rt△M′N′Q,直线M′N′分别与直线BR、直线BM交于点T、H.当△BTH是以∠TBH 为底角的等腰三角形时,请直接写出BT的长.8.已知如图,直线AB交x轴于点A,交y轴于点B,AB=,tan∠BAO=3.(1)求:直线AB的解析式;(2)直线y=kx+b经过点B交x轴交于点C,且∠ABC=45°,AD⊥BC于点D.动点P 从点C出发,沿CB方向以每秒个单位长度的速度向终点B运动,运动时间为t,设△ADP的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围.(3)在(2)的条件下,点P在线段BD上,点F在线段AB上,∠APC=∠FPB,连接AP,过点F作FG⊥AP于点G,交AD于点H,若DP=DH,求点P的坐标.9.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.10.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB廷长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD 于点N,若PM+MN=AN,求线段PM的长.11.在平面直角坐标系中,O为坐标原点,直线y=kx+b与x轴交于点B,与y轴交于点A,OA=4,OB=3.(1)求直线AB的解析式;(2)点C在OA上,点D在x轴正半轴上,连接AD、BC,且∠CBO=∠OAD,设点C的纵坐标为m,点D的横坐标为n,求n与m的函数关系式;(3)在(2)的条件下,点P在BC上,连接OP,过点B作BQ⊥OP于点H,交AD于点Q,交y轴于点F,连接PQ交y轴于点E,若n=m+1,∠BQP=2∠DBQ,求点P的坐标.12.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣3x+6k与y轴的正半轴交于点A,与x轴的正半轴交于点B.(1)求tan∠ABO的值;(2)点C在x轴的负半轴上,CD⊥AB于点D,交y轴于点E,设线段AE的长为d,当DE =BD时,求d与k之间的函数关系式(不必写出自变量k的取值范围);(3)在(2)的条件下,连接AC,点P在x轴的负半轴上,连接PE,交线段AC于点F,点G在线段BD上,连接PG,交CD于点H,连接FH,若PF=EF,DG:GB=4:5,FH=,求k的值及点P的坐标.13.如图,在平面直角坐标系中,直线l 1:y =x +m 与直线l 2:y =kx +8交于点A (4m ,4),l 2与y 轴交于点B ,点F (a ,0)(0<a <4)在x 轴上,过点F 作DF ⊥x 轴于点F ,交l 2于点D ,交l 1于E .(1)求直线l 1、l 2的解析式和B 点坐标.(2)求△BEA 的面积S 与a 的关系式.并求出当△BEA 的面积为时,点F 坐标.①在y 轴上确定点M ,使得△BMA 的面积等于△BEA 面积,直接写出点M 的坐标. ②若直线y =kx ﹣k +7将△BEA 分成面积相等的两部分,求k 的值.③若P 是直线EF 上一点,点Q 是直线l 1上一点,使得当△PFA 沿着AP 折叠后与△QPA 重合,请直接写出点P 和点Q 的坐标.14.如图1,在三角形ABC中,把AB绕点A顺时针旋转90°得到AD,把AC绕点A逆时针旋转90°,得到AE,连接DE,过点A作BC的垂线,交BC于点F,交DE于点G.【特例尝试】如图2,当∠BAC=90°时,①求证:∠DAE=90°;②猜想BC与AG的数量关系并说明理由.【理想论证】在图1中,当△ABC为任意三角形时,②中BC与AG的数量关系还成立吗?请给予证明.【拓展应用】如图3,直线y=ax﹣a(a<0)与x轴,y轴分别交于A、B两点,分别以OB,AB为直角边在第二、一象限内作等腰Rt△BOC和等腰Rt△BAD,连接CD,交y轴于点E.试猜想EB的长是否为定值,若是,请求出这个值;若不是,请说明理由.15.已知,如图,在平面直角坐标系中,直线AB:交x轴于点A(﹣4,0),交y 轴于点B,点C(2,0).(1)如图1,求直线AB的解析式;(2)如图2,点D为第二象限内一点,且AD=DC,DC交直线AB于点E,设DE:EC=m,点D的纵坐标为d,求d与m的函数关系式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,直线AD交y轴于点F,点P为线段AF上一点,G为y 轴负半轴上一点,PG=AB,且∠PGF+∠BAF=∠AFB,当m=1时,求点G的坐标.参考答案1.解:(1)∵直线y=kx﹣3k与x轴交于A,令y=0,则kx﹣3k=0,∴x=3,∴点A的坐标为(3,0);(2)如图1,由(1)知,A(3,0),∴OA=3,∵∠OAD=45°,∴直线AD与y轴相交于C',∴OC'=3,设直线AD的解析式为y=﹣x+3,设点D(a,﹣a+3),∴DQ=a,OQ=﹣a+3,由旋转知,BD=ED,∠BDE=90°,过点D作DQ⊥y轴于Q,过点E作EP⊥DQ交DQ的延长线于P,∴∠EDP+∠BDQ=90°,∴∠DBQ+∠BDQ=90°,∴∠EDP=∠DBQ,∴△DEP≌△BDQ(AAS),∴PE=DQ=a,∴EC⊥y轴,∴四边形EPQC是矩形,∴PE=CQ,∴OC=CQ+OQ=DQ+OQ=a+(﹣a)+3=3;(3)如图2,由(2)知,OC=3,∵点C和点B关于x轴对称,∴OB=3,∴B(0,﹣3),即直线AB的解析式为y=x﹣3,由(2)知,∠PDE=∠QBD,∵DP∥CE,∴∠CED=∠PDE,∴∠QBD=∠CED,∵DE∥CF,∴∠CED=∠FCT,∴∠QBD=∠FCT,∵CE∥x轴,∴∠FCT=∠OFC,∴∠QBD=∠OFC,过点N作NK⊥x轴于K,∴NK∥BO,∴∠BOM=∠ONK,∵点M是BH的中点,∴BM=OM,∴∠BOM=∠QBD,∴∠ONK=∠QBD=∠OFC,设点N(n,n﹣3),∴OK=n,NK=3﹣n,∵∠ONK=∠OFC,∠COF=∠OKN=90°,∴△ONK∽△CFO,∴,∴,∴OF=,∵AF=OG,∴AG=OF=,AK=NK=3﹣n,∴GK=AG﹣AK=﹣(3﹣n)=,∴,=,∴,∵∠OKN=∠NKG=90°,∴△ONK∽△NGK,∴,∵GN=ON,∴,∴n=,设点D(m,3﹣m),∴DQ=m,BQ=OB+OQ=3+(3﹣m)=6﹣m,∵∠QBD=∠KNO,∠BQD=∠NKO=90°,∴△BQD∽△NKO,∴,∴,∴m=2n=,∴D(,).2.解:(1)∵4﹣b≥0,b﹣4≥0,∴b=4,则a=4,对于直线y=kx﹣4k,当y=0时,x=4,∴点C的坐标为(4,0),故答案为:4;4;(4,0);(2)当D在线段BC上时,作BE⊥BA交AD的延长线于点E,作EF⊥y轴于F,则∠BEF+∠EBO=90°,∠ABO+∠EBO=90°,∴∠BEF=∠ABO,∵∠DAB=45°,∴BA=BE,在△AOB和△BFE中,,∴△AOB≌△BFE(AAS),∴BF=OA,EF=OB=4,对于直线y=4x+4,当y=0时,x=﹣1,∴OA=1,∴E(4,3)设直线AE解析式为y=mx+n,,解得,,则直线AE解析式为y=x+,,解得,,∴D(,);当D在CB延长线上时,同理可得D(,);(3)设M(m,﹣m+4),由(2)可得,△ANM≌△QHA,∴MN=AH=﹣m+4,AN=QH=m+1,∴Q(﹣m+3,﹣m﹣1)则OQ2=(﹣m+3)2+(﹣m﹣1)2=2(m﹣1)2+8,当m=1时,OQ最小为,故答案为:2.3.解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得,解得.则直线DP解析式为y=x+2;(2)当点P在线段AC上时,OD=2,高为6,△OPD的面积为×2×6=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,×2×(16﹣2t)=4,解得t=6.故当运动时间t为6时,△OPD的面积为4;(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图2,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,t的值为(10﹣2)÷2=5﹣;②当BP2=DP2时,此时P2(6,6),t的值为6÷2=3;③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,为(2+2)÷2=+1.综上,满足题意的t的值为5﹣或3或+1.4.解:(1)∵y=2x+2,∴当y=0时,x=﹣1;当x=0时,y=2;∴A(0,2),B(﹣1,0),设直线AC解析式为y=kx+b,将A(0,2),C(﹣3,1)代入得,解得,∴直线AC的解析式为,当y=0时,,解得x=﹣6,∴点D的坐标为(﹣6,0);(2)①若△BPD≌△BCD,则BP=BC,∠PBD=∠CBD,点P与点C关于x轴对称,∴P(﹣3,﹣1),②当△DPB≌△BCD时,且点P在x轴上方,则DP=BC,∠DPB=∠CBD,∴P(﹣4,1),③当△DPB≌△BCD时,且点P在x轴下方,则DP=BC,∠DPB=∠CBD,∴P(﹣4,﹣1),∴PP(﹣3,﹣1),(﹣4,1),(﹣4,﹣1);(3)设BC的解析式为y=ax+c,则将B(﹣1,0),C(﹣3,1)代入得,解得.∴BC的解析式为,设M(m,),其中﹣3≤m≤﹣1,过点M作MG⊥OA于点G,如图所示则△AMG∽△ANO,∵MG=﹣m,AG=,∴,即,∴,∵, ∴, 解得或m =3(舍去), ∴.5.解:(1)当x =8时,n =×8+=4, ∴点C (8,4),当y =0时,0=x +,解得x =﹣3,∴点A 坐标为(﹣3,0),故答案为:4,(﹣3,0); (2)四边形ABCD 为平行四边形,理由如下:∵点B (0,4),点C (8,4), ∴BC =8,BC ∥x 轴,∴AD =5﹣(﹣3)=8,∵AD ∥BC ,AD =8=BC ,∴四边形ABCD 为平行四边形;(2)由题意可知;AB =A 1B 1=5,∠AOB =∠A 1OB 1=90°, ①△AOB 旋转后,若A 1B 1∥x 轴,连接B 1D ,成四边形OA 1B 1D ,如图1,∵A 1B 1=OD =5∴四边形OA 1B 1D 构成平行四边形, 此时,设A 1B 1与y 轴交于H ,则OH ==,A 1H ==,∴点A 1的坐标为(﹣,); ②△AOB 旋转后,若A 1B 1的中点E 在x 轴上,成四边形OA 1DB 1,如图2,∵∠A 1OB 1=90°∴OE =A 1B 1=,∴OE =ED =,∴四边形OA 1DB 1构成平行四边形 设作A 1N ⊥x 轴交于N ,∠A 1OB 1=∠OA 1D =90° 则AN ==,ON ==, ∴点A 1的坐标为(,); ③△AOB 旋转后,若A 1B 1∥x 轴,成四边形ODA 1B 1,如图3,又∵A 1B 1=OD =5∴四边形ODA 1B 1构成平行四边形 此时,设A 1B 1与y 轴交于M 则OM ==,A 1M ==, ∴点A 1的坐标为(,﹣),综上所述,满足条件A为(﹣,),(,),(,﹣).16.解:【模型建立】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,垂足为H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∵BH⊥DC,∴BD===2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易得△OKQ≌△QHP(AAS),若设H(4,x),那么KQ=PH=x﹣m=x﹣2,OK=QH=4﹣KQ=6﹣x,∵OK=x,则6﹣x=x,x=3,因此Q(1,3),过点P作PG⊥PQ交直线QM于点G,过点G作GL⊥PH交直线HP于点L,此时易得△QHP≌△PLQ(AAS),从而可求G(3,﹣1),∵Q(1,3),∴直线QG的函数表达式为y=﹣2x+5,该直线QG与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为y=﹣x+4,故答案为:y=﹣x+4.7.解:(1)直线y=﹣x+6…①,直线分别与y轴,x轴交于A,C两点,则点A、C的坐标分别为:(0,6)、(2,0);OB=3OC=6,则点B(﹣6,0);△ODE∽△OBA且相似比为1:3,则点D(﹣2,0)、(0,2);作点E关于AB的对称点E′(﹣2,8),将点E′沿AB方向向下平移6个单位得到点E″(﹣5,5),连接DE″交AB于点G,将点G沿BA向上平移6个单位得到点K,则点G、K为所求点,E″E′∥GK,且E′E″=KG,则四边形E″GKE′为平行四边形,∴E″G=E′K=EK,EK+KG+GD=E″G+6+GD=6+DE″为最小值,由点D、E″的坐标得,直线E″D的表达式为:y=﹣x(x+2)…②,联立①②并解得:x=﹣,故点G(﹣,);连接GO交直线AC于点P,则|GP﹣OP|最大,则直线OG的表达式为:y=﹣x…③,同理可得:直线AC的表达式为:y=﹣x+6…④,联立③④并解得:x=,故点P(,﹣);(2)∠RBS=60°,∠ABO=30°=∠BRS=∠NB′M,点B(﹣6,0)、点S(﹣3,0),点R(﹣3,9)、点M(﹣3,3);BS=3,MS=3;①当∠NQM=90°时,如图2,(Ⅰ)当α=0°时,BT=BN=MN=2NQ=2;(Ⅱ)当α=270°时,如图2所示,若Rt△MNQ绕点Q顺时针旋转270°得到Rt△M′N′Q,此时,点M′刚好落在BR上,即T与M′重合,△BHT为底角为30°的等腰三角形,BM=2MS=6,∠RBM=60°﹣∠MBS=30°,MQ=BM=3,NQ=QM tan30°=3×=,MQ=TQ=3,BT=BQ+TQ=+3=;②∠MNB′=90°,则B′,R,Q三点重合,由翻折知△MNB′≌△MNB,∴B′N=BN=BR=3,∵△BTH是以∠GTH为底角的等腰三角形,∴∠BHT=∠TBH=30°或∠BTH=∠TBH=30°,(Ⅰ)若∠BHT=∠TBH=30°,如图3,则M′N′∥BS∴N′落在线段BS上,BR=6,则BN=B′N=BR=BS=3=B′N′,N′S=RS﹣B′N′=9﹣3,RN′=QN′=QN=BN=3,∵N′T∥BC,则,即,解得:RT=6,则BT=RB﹣RT=6﹣6;(Ⅱ)∠BTH=∠TBH=30°,则点T在BR的延长线上,RG=6,则BT=BR+RT=12;故:BT=6﹣6或12或2或.8.解:(1)∵tan∠BAO=3=,∴BO=3AO,∵AB2=AO2+BO2=40,∴AO=2,BO=6,∴点A(﹣2,0),点B(0,6)设直线AB解析式为:y=kx+6,∴0=﹣2k+6,∴k=3,∴直线AB解析式为:y=3x+6;(2)如图1,过点D作EF⊥AC,交AC于点F,过点B作BE⊥EF,垂足为E,∴四边形BEFO是矩形,∴BO=EF=6,OF=BE,∵∠ABC=45°,AD⊥BC,∴∠ABC=∠BAD=45°,∴AD=BD,∵∠ADB=90°=∠AFD,∴∠BDE+∠ADF=90°,∠ADF+∠DAF=90°,∴∠BDE=∠DAF,且BD=AD,∠E=∠AFD=90°,∴△BDE≌△DAF(AAS)∴DF=BE,DE=AF,∵EF=ED+DF=AO+OF+OF=2+2OF=6∴OF=2,∴点D坐标(2,2),设BC解析式为:y=ax+6,∴2=2a+6,∴a=﹣2,∴直线BC解析式为:y=﹣2x+6,∴当y=0时,x=3,∴点C(3,0),∴OC=3,∴BC===3,∵AB=,且∠ABC=45°,AD⊥BC,∴AD=BD=2,∴CD=,当0≤t<1时,S=×2×(﹣x)=5﹣5x,当1<t≤3时,S=×2×(x﹣)=5x﹣5;(3)如图2,过点B作BN⊥AB交AP延长线于N,过点N作MN⊥BC于M,∵AD=BD,DH=PD,∴AH=BP,∵BN⊥AB,∠ABC=45°,∴∠ABC=∠NBP=45°,且∠APC=∠BPN=∠BPF,BP=BP,∴△BPN≌△BPF(ASA)∴BN=BF,PN=PF,∵FH⊥AP,∴∠AGF=∠ABN=90°,∴∠FAG+∠AFG=90°,∠FAG+∠N=90°,∴∠AFG=∠N,且∠BAD=∠PBN=45°,AH=BP,∴△AHF≌△BPN(AAS)∴AF=BN,PN=FH,∴BF=AF,FH=FP,∴点F是AB中点,∴点F坐标(﹣1,3)∴BF==BN,∵∠NBM=45°,∴BM=MN=,∴MD=BD﹣BM=,∵MN⊥BC,AD⊥BC,∴AD∥MN,∴△MNP∽△DAP,∴∴,且MP+PD=∴PD=设点P(x,﹣2x+6),∴(x﹣2)2+(﹣2x+6﹣2)2=,∴x=,x=(不合题意舍去)∴点P(,)9.解:(1)由题意可得:A(0,10m),B(﹣10,0),=×10×|10m|=50,∴S△AOB∴m=1或﹣1(舍弃)∴m=1.(2)如图1中,∵PD=PC,P点横坐标为t,C(6,0),∴CD=2|6﹣t|,=×2|6﹣t|×|10+t|=|t2+4t﹣60|,∴S△PCD当t>6时,S=t2+4t﹣60,当﹣10<t<6时,S=﹣t2﹣4t+60.(3)如图2中,在边CD的下方作⊙K与CD相切于点E,与PD相切于点R,与PC相切于点Q,连接PK,CK,DK,EK,PK交CD于T,作FW⊥PK于W.∵DE=DR,GE=GQ,PR=PQ,∵PD+DE=PG+EG,∴PE平分△PDG的周长,∴当F,E,K共线时,PE平分△PDG的周长,∵DK平分∠RDG,PK平分∠DPG,∴∠DKP=∠DGP=45°,∵∠DTK=90°,∴∠KDT=∠DCK=45°,∴∠DKC=90°,∴DT=TC﹣TK=6﹣t,∵EF⊥DG,DG⊥PC,∴FK∥PQ,∴∠FKW=∠CPT,∵FW⊥PK,∴tan∠FKW=tan∠CPT,∴=,∵BC=16,△FBC是等腰直角三角形,∴F(﹣2,8),∵K(t,t﹣6),∴=,解得t=2,∴P(2,12),D(﹣2,0),K(2,﹣4),∴直线PQ的解析式为y=﹣3x+18,直线FK的解析式为y=﹣3x+2,∵DG⊥PQ,∴直线DG的解析式为y=x+,由解得,∴E(,).10.解:(1)如图1中,∵直线与x、y轴交于点A、B,∴B(0,3),A(﹣2,0),∵直线y=x+b交x、y轴于点E、K,∴K(0,b),E(﹣b,0),∴OE=OK=﹣b,∴∠OKE=45°,∵BD∥x轴,∴BD⊥BK,∴∠DBK=90°,∴BK=BD,∵DK=5,∴BD=DK=5,∴OE=OF=2,∴b=﹣2,∴直线DE的解析式为y=x﹣2.(2)如图2中,∵BF⊥AB,∴直线BF的解析式为y=﹣x+3,由解得,∴F(3,1),∵线段BF是由BP顺时针旋转90°得到,∴p(2,6).(3)如图3中,作AH⊥DB交DB的延长线于H,PT⊥BD于T,延长PM交BD的延长线于K.当MN=MK时,∠MNK=∠ANH=∠K,∵∠PTK=∠H=90°.AH=PT=3,∴△AHD≌△PTK(AAS),∴DH=TK,AN=PK,∴HT=DK=4,∵PM+MN=PM+MK=PK=AN,∴K(9,3),∵P(2,6),∴直线PK的解析式为y=﹣x+,由,解得,∴M(,),∴PM==.11.解:(1)∵OA=4,OB=3,∴点A(0,4),点B(﹣3,0),设直线AB解析式为:y=kx+4,∴0=﹣3k+4∴k=∴直线AB的解析式为:y=x+4;(2)∵点C的纵坐标为m,点D的横坐标为n,∴OC=m,OD=n,∵∠CBO=∠OAD,∠AOD=∠BOC=90°,∴△BOC∽△AOD,∴∴=∴n=m;(3)∵n=m+1,n=m;∴m=3,n=4,∴点C(0,3),点D(4,0),∴直线BC解析式为:y=x+3,直线AD解析式为:y=﹣x+4,如图,过点B作BH∥PQ,交y轴于点H,∵BH∥PQ,∠BQP=2∠DBQ,∴∠PQB=∠QBH=2∠DBQ,∴∠FBO=∠HBO,且BO=BO,∠BOF=∠BOH=90°,∴△BOH≌△BOF(ASA)∴OF=OH,设OF=OH=a,则点F(0,a),点H(0,﹣a),∴直线BQ解析式为:y=x+a,直线BH解析式为:y=﹣x﹣a,∴解得:∴点Q(,)∵PQ∥BH,∴直线PQ解析式为:y=﹣x+∵OP⊥BQ,∴直线OP解析式为:y=﹣x,∴解得∴点P(,),∵点P在直线PQ上,∴=﹣×+∴a=,∴点P(﹣,)12.解:(1)由已知A(0,6k),B(2k,0),∴tan∠ABO=;(2)∵CD⊥AB,∴∠DCB=∠BAO,∴DE=d,EO=6k﹣d,CO=3EO=18k﹣3d,∴BC=2k+18k﹣3d=20k﹣3d,∵DE=BD,∴(20﹣3d)=3×d,∴d=k;(3)由(2)可得:C(﹣8k,0),E(0,k),D(k,k),则直线AC的解析式为y=x+6k,直线CD的解析式为y=x+k,∵PF=EF,∴F是P与E的中点,∴F点纵坐标为k,设F(m,m+6k),∴m+6k=k,∴m=﹣k,∴F(﹣k,k),∴P(﹣k,0),∵BD=k,DG:GB=4:5,∴GB=k,∴G(k,k),∴PG的直线解析式为y=x+k,∴H(﹣k,k),∴FH=k=,∴k=,∴P(﹣14,0).13.解:(1)l1与y轴交于点B,则点B(0,m),将点A、B的坐标代入l1:y=x+m并解得:m=1,故点A、B的坐标分别为:(4,4)、(0,1),将点A坐标代入l2表达式并解得:k=﹣1,故直线l1:y=x+1与直线l2:y=﹣x+8;(2)设点F(a,0),则点D(a,a+1)、点E(a,﹣a+8),△BEA的面积=×DE×x A=×(﹣a+8﹣a﹣1)×4=,解得:a=1,故点F、D、E的坐标分别为:(1,0)、(1,)、(1,7);①设点M(0,t),△BMA的面积等于△BEA面积,则点M、E所在的直线与AB平行,当M在AB上方时,由E、M的坐标的直线EM的表达式为:y=x+t,将点E的坐标代入上式并解得:t=,故点M(0,);当M(M′)在AB下方时,则点M′、M关于点B对称,则点M′(0,﹣),故点M的坐标为:(0,)或(0,﹣);②直线y=kx﹣k+7=k(x﹣1)+7,当x=1时,y=7,即直线过点(1,7),即过点E,设直线交AB于点R,直线y=kx﹣k+7将△BEA分成面积相等的两部分,则点R是AB的中点,坐标为:(2,);将点R的坐标代入y=kx﹣k+7并解得:k=﹣;③如图2,AB=5,AF=5,故AB=AF,则当△PFA沿着AP折叠后与△QPA重合时,点Q与点B重合,即点Q(0,1),而OF=1,而PQ=PF,故PF=1,故点P(1,1).14.解:【特例尝试】(1)①∵∠BAC=∠BAD=∠CAE=90°∴∠DAE=360°﹣90°×3=90°②∵AB=AD,∠BAC=∠DAE,AC=AE,∴△ABC≌△ADE(SAS)∴∠ABC=∠ADE,∠ACB=∠AED,AB=DE∵GF⊥BC∴∠CAF+∠ACB=90°∵∠CAE=90°∴∠CAF+∠GAE=90°∴∠GAE=∠ACB=∠AED∴GE=GA同理可得,GD=GA∴;【理想论证】(2)过点D作DM⊥GF,交FG延长线于点M,过点E作EN⊥GF,交FG于点N.∵DM⊥GF∴∠M=90°,∠DAM+∠ADM=90°∵∠BAD=90°∴∠DAM+∠BAF=90°∴∠ADM=∠BAF,∵∠AFB=∠M,∠BAF=∠ADM,AB=AD,∴△ABF≌△DAM(AAS)∴BF=AM,AF=DM同理可得FC=AN,AF=EN∴DM=EN,∵∠ENG=∠M,∠EGN=∠DGM,EN=DM,∴△ENG≌△DMG(AAS)∴GN=GM∵BC=BF+FC=AM+AN=AG+GM+AN=AG+GN+AN=2AG∴【拓展应用】(3)直线y=ax﹣a(a<0)与x轴交于A点,则点A(,0),则AO=,由题(2)可知.15.解:(1)将点A(﹣4,0)代入,∴b=1,∴直线AB的解析式为,(2)∵AC=6,AD=DC,∴D的横坐标为﹣1,∵点D的纵坐标为d,∴D(﹣1,d),∴CD的直线解析式为y=﹣x+d,由,可得E(,),∵DE:EC=m,∴EC:CD=1:(m+1),可求EC=,DC=,∴d=m+;(3)∵m=1,∴d=,∴D(﹣1,),∴直线AD的解析式为y=x+3,∴F(0,3),∴tan∠AFB=,∴=,∴FH=PH,过点P作PH⊥y轴于点H,截取HM=HG,∴Rt△PHG≌Rt△PHM(HL),∴PG=PM=AB,∠PGH=∠PMH,∴∠AFB=∠PMF+∠MPF,∵∠PGF+∠BAF=∠AFB,∴∠MPF=∠FAB,构造△PKM≌△ABF(ASA),可得FB=MK=MF,∵OF=3,PB=1,∴FB=MK=MF=2,在Rt△PHM中,PM2=PH2+MH2,∵AB=,∴17=PH2+(2+PH)2,∴PH=,∴FH=,∴HG=HM=2+=,OH=3﹣=,∴OG=HG﹣OH=﹣=,∴G(0,).。
一次函数及其图像练习(含答案详解)
一次函数及其图象一、选择题1.关于一次函数y =-x +1的图象,下列所画正确的是(C )【解析】 由一次函数y =-x +1知:图象过点(0,1)和(1,0),故选C.2.在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5的图象交于点M ,则点M 的坐标为(D )A .(-1,4)B .(-1,2)C. (2,-1)D. (2,1)【解析】 一次函数y =-x +3与y =3x -5的图象的交点M 的坐标即为方程组⎩⎪⎨⎪⎧y =-x +3,y =3x -5的解, 解方程组,得⎩⎪⎨⎪⎧x =2,y =1,∴点M 的坐标为(2,1). 3.已知直线y =kx +b ,若k +b =-5,kb =6,则该直线不经过(A )A .第一象限B .第二象限C. 第三象限D. 第四象限【解析】 由kb =6,知k ,b 同号.又∵k +b =-5,∴k <0,b <0,∴直线y =kx +b 经过第二、三、四象限,∴不经过第一象限.4.直线y =-32x +3与x 轴,y 轴所围成的三角形的面积为(A )A .3B .6C.34D.32【解析】直线y=-32x+3与x轴的交点为(2,0),与y轴的交点为(0,3),所围成的三角形的面积为12×2×3=3.5.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(C)A.y1+y2>0 B.y1+y2<0C. y1-y2>0D. y1-y2<0【解析】∵正比例函数y=kx中k<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2,∴y1-y2>0.(第6题)6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20 km.设他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象提供的信息,下列说法正确的是(C) A.甲的速度是4 km/h B.乙的速度是10 km/hC.乙比甲晚出发1 h D.甲比乙晚到B地3 h【解析】根据图象知:甲的速度是204=5(km/h),乙的速度是202-1=20(km/h),乙比甲晚出发1-0=1(h),甲比乙晚到B地4-2=2(h),故选C.7.丁老师乘车从学校到省城去参加会议,学校距省城200 km,车行驶的平均速度为80 km/h.若x(h)后丁老师距省城y(km),则y与x之间的函数表达式为(D)A. y=80x-200B. y=-80x-200C. y=80x+200D. y=-80x+200【解析】∵丁老师x(h)行驶的路程为80x(km),∴x(h)后距省城(200-80x)km.8.如果一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么下列对k和b的符号判断正确的是(D)A.k>0,b>0 B.k>0,b<0C .k <0,b >0D .k <0,b <0【解析】 ∵y 随x 的增大而减小,∴k <0.∵图象与y 轴交于负半轴,∴b <0.(第9题)9.张师傅驾车从甲地到乙地,两地相距500km ,汽车出发前油箱有油25L ,途中加油若干升,加油前、后汽车都以100km/h 的速度匀速行驶,已知油箱中剩余油量y (L)与行驶时间t (h)之间的函数关系如图所示,则下列说法错误的是(C )A .加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式是y =-8t +25B .途中加油21LC. 汽车加油后还可行驶4hD. 汽车到达乙地时油箱中还剩油6L【解析】 A .设加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式为y =kt +b .将点(0,25),(2,9)的坐标代入,得⎩⎪⎨⎪⎧b =25,2k +b =9,解得⎩⎪⎨⎪⎧k =-8,b =25,∴y =-8t +25,故本选项正确.B .由图象可知,途中加油30-9=21(L),故本选项正确.C .由图象可知,汽车每小时用油(25-9)÷2=8(L),∴汽车加油后还可行驶30÷8=334(h)<4h ,故本选项错误.D .∵汽车从甲地到乙地所需时间为500÷100=5(h),又∵汽车油箱出发前有油25L ,途中加油21L ,∴汽车到达乙地时油箱中还剩油25+21-5×8=6(L),故本选项正确.故选C.二、填空题10.写出一个图象经过第一、三象限的正比例函数y=kx(k≠0)的表达式:y =2x.【解析】∵图象经过第一、三象限,∴k>0,∴k可以取大于0的任意实数.答案不唯一,如:y=2x.11.已知一次函数y=(2-m)x+m-3,当m>2时,y随x的增大而减小.【解析】由一次函数的性质可知:当y随x的增大而减小时,k=2-m<0,∴m>2.12.如图是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的表达式为y=-2x-2.【解析】设原函数图象的表达式为y=kx.当x=-1时,y=2,则有2=-k,∴k=-2,∴y=-2x.设平移后的图象的表达式为y=-2x+b.当x=-1时,y=0,则有0=2+b,∴b=-2,∴y=-2x-2.(第12题)(第13题)13.如图所示是某工程队在“村村通”工程中修筑的公路长度y(m )与时间x(天)之间的函数关系图象.根据图象提供的信息,可知该公路的长度是504m .【解析】 当2≤x ≤8时,设y =kx +b.把点(2,180),(4,288)的坐标代入,得⎩⎪⎨⎪⎧180=2k +b ,288=4k +b ,解得⎩⎪⎨⎪⎧k =54,b =72.∴y =54x +72.当x =8时,y =504.14.直线y =kx +b 经过点A(-2,0)和y 轴正半轴上的一点B ,如果△ABO(O 为坐标原点)的面积为6,那么b 的值为__6__.【解析】 S △ABO =12×2·b =6,∴b =6.(第15题)15.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点重合,AB =2,AD =1,过定点Q(0,2)和动点P(a ,0)的直线与矩形ABCD 的边有公共点,则a 的取值范围是-2≤a ≤2.【解析】 当QP 过点C 时,点P(2,0);当QP 过点D 时,点P(-2,0).∴-2≤a ≤2.16.一次越野跑中,当小明跑了1600 m 时,小刚跑了1400 m ,小明、小刚在此后所跑的路程y (m)与时间t (s)之间的函数关系如图所示,则这次越野跑的全程为2200m.,(第16题))【解析】 设小明的速度为a (m/s),小刚的速度为b (m/s),由题意,得 ⎩⎪⎨⎪⎧1600+100a =1400+100b ,1600+300a =1400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.∴这次越野跑的全程为1600+300×2=2200(m).17.已知直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)交于点A (-2,0),且两直线与y 轴围成的三角形的面积为4,那么b 1-b 2等于__4__.【解析】 如解图,设直线y =k 1x +b 1(k 1>0)与y 轴交于点B ,直线y =k 2x +b 2(k 2<0)与y 轴交于点C ,则OB =b 1,OC =-b 2.(第17题解)∵△ABC 的面积为4,∴12OA·OB +12OA·OC =4,∴12×2·b 1+12×2·(-b 2)=4,∴b 1-b 2=4.三、解答题(第18题)18.A ,B 两城相距600 km ,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (km)与行驶时间x (h)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数表达式,并写出自变量x 的取值范围.(2)当它们行驶7 h 时,两车相遇,求乙车的速度.【解析】 (1)①当0≤x ≤6时,易得y =100x .②当6<x ≤14时,设y =kx +b .∵图象过点(6,600),(14,0),∴⎩⎪⎨⎪⎧6k +b =600,14k +b =0,解得⎩⎪⎨⎪⎧k =-75,b =1050.∴y =-75x +1050.∴y =⎩⎪⎨⎪⎧100x (0≤x ≤6),-75x +1050(6<x ≤14).(2)当x =7时,y =-75×7+1050=525,∴v 乙=5257=75(km/h).19.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留了一段相同的时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x (h),两车之间的距离为y (km),如图中的折线表示y 与x 之间的函数关系.(第19题)请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__km.(2)求快车和慢车的速度.(3)求线段DE 所表示的y 关于x 的函数表达式,并写出自变量x 的取值范围.【解析】 (1)由图象可得:甲、乙两地之间的距离为560 km.(2)由图象可得:慢车往返分别用了4 h ,慢车行驶4 h 的距离,快车3 h 即可行驶完,∴可设慢车的速度为3x (km/h),则快车的速度为4x (km/h).由图象可得:4(3x +4x )=560,解得x =20.∴快车的速度为4x =80(km/h),慢车的速度为3x =60(km/h).(3)由题意可得:当x =8时,慢车距离甲地60×(4-3)=60(km),∴点D (8,60).∵慢车往返一次共需8h ,∴点E (9,0).设直线DE 的函数表达式为y =kx +b ,则⎩⎪⎨⎪⎧9k +b =0,8k +b =60,解得⎩⎪⎨⎪⎧k =-60,b =540.∴线段DE 所表示的y 关于x 的函数表达式为y =-60x +540(8≤x ≤9).20.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天后全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (kg)与上市时间x (天)的函数关系如图①所示,樱桃价格z (元/kg)与上市时间x (天)的函数关系如图②所示.(第20题)(1)观察图象,直接写出日销售量的最大值.(2)求小明家樱桃的日销售量y 与上市时间x 之间的函数表达式.(3)第10天与第12天的销售金额哪天多?请说明理由.【解析】 (1)日销售量的最大值为120 kg.(2)当0≤x ≤12时,设日销售量y 与上市时间x 之间的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上,∴120=12k ,∴k =10,∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 之间的函数表达式为y =k 1x +b 1.∵点(12,120),(20,0)在y =k 1x +b 1的图象上,∴⎩⎪⎨⎪⎧12k 1+b 1=120,20k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-15,b 1=300.∴函数表达式为y =-15x +300.∴小明家樱桃的日销售量y 与上市时间x 之间的函数表达式为y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)当5<x ≤15时,设樱桃价格z 与上市时间x 之间的函数表达式为z =k 2x +b 2.∵点(5,32),(15,12)在z =k 2x +b 2的图象上,∴⎩⎪⎨⎪⎧5k 2+b 2=32,15k 2+b 2=12,解得⎩⎪⎨⎪⎧k 2=-2,b 2=42.∴函数表达式为z =-2x +42.当x =10时,y =10×10=100,z =-2×10+42=22,∴销售金额为100×22=2200(元).当x =12时,y =10×12=120,z =-2×12+42=18,∴销售金额为120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。
一次函数经典测试题及解析
30x+15x=30-10
x= ,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
得x=
∴④错误.
选C.
【点睛】
本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.
【详解】
过点D作DE⊥BC于点E
.
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..
∴AD=a.
∴ DE•AD=a.
∴DE=2.
当点F从D到B时,用 s.
∴BD= .
Rt△DBE中,
BE= ,
∵四边形ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,
a2=22+(a-1)2.
本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是( ,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
5.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )
A. B. C. D.
2.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B.2C. D.2
【答案】C
【解析】
【分析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD= ,应用两次勾股定理分别求BE和a.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 类型一:正比例函数与一次函数定义 1、当m为何值时,函数y=-(m-2)x+(m-4)是一次函数? 思路点拨:某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0. 解:∵函数y=-(m-2)x+(m-4)是一次函数,
∴ ∴m=-2. ∴当m=-2时,函数y=-(m-2)x+(m-4)是一次函数.
举一反三: 【变式1】如果函数是正比例函数,那么( ). A.m=2或m=0 B.m=2 C.m=0 D.m=1 【答案】:考虑到x的指数为1,正比例系数k≠0,即|m-1|=1;m-2≠0,求得m=0,选C
【变式2】已知y-3与x成正比例,且x=2时,y=7. (1)写出y与x之间的函数关系式; (2)当x=4时,求y的值; (3)当y=4时,求x的值. 解析:(1)由于y-3与x成正比例,所以设y-3=kx. 把 x=2,y=7代入y-3=kx中,得 7-3=2k, ∴ k=2. ∴ y与x之间的函数关系式为y-3=2x,即y=2x+3. (2)当x=4时,y=2×4+3=11.
(3)当y=4时,4=2x+3,∴x=. 类型二:待定系数法求函数解析式 2、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式. 思路点拨:图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可. 解析:由题意可设所求函数表达式为y=2x+b, ∵图象经过点( 2,-1), ∴ -l=2×2+b. ∴ b=-5, ∴所求一次函数的表达式为 y=2x-5. 总结升华:求函数的解析式常用的方法是待定系数法,具体怎样求出其中的待定系数的值,要根据具体的题设条件求出。
举一反三: 【 变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7.2cm, 2
求这个一次函数的表达式. 分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2.求出k,b即可. 解:设这个一次函数的表达式为y=kx+b. 由题意可知,当 x=0时,y=6;当x=4时,y=7.2. 把它们代入y=kx+b中得
∴ ∴这个一次函数的表达式为y=0.3x+6.
【变式2】已知直线y=2x+1. (1)求已知直线与y轴交点M的坐标; (2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值. 解析: ∵直线 y=kx+b与y=2x+l关于y轴对称, ∴两直线上的点关于 y轴对称.
又∵直线 y=2x+1与x轴、y轴的交点分别为A(-,0),B(0,1), ∴A(-,0),B(0,1)关于y轴的对称点为A′(,0),B′(0,1). ∴直线 y=kx+b必经过点A′(,0),B′(0,1). 把 A′(,0),B′(0,1)代入y=kx+b中得
∴ ∴k=-2,b=1. 所以(1)点M(0,1)(2)k=-2,b=1
【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上. 分析:由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明第三点在此直线上;若不成立,说明不在此直线上. 解:设过A,B两点的直线的表达式为y=kx+b. 由题意可知,
∴ ∴过A,B两点的直线的表达式为y=x-2. ∴当 x=4时,y=4-2=2. ∴点 C(4,2)在直线y=x-2上. ∴三点 A(3,1), B(0,-2),C(4,2)在同一条直线上.
类型三:函数图象的应用 3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离 3
出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题: (1)汽车共行驶了___________ km; (2)汽车在行驶途中停留了___________ h; (3)汽车在整个行驶过程中的平均速度为___________ km/h; (4)汽车自出发后3h至4.5h之间行驶的方向是___________.
思路点拨:读懂图象所表达的信息,弄懂并熟悉图象语言.图中给出的信息反映了行驶过程中时间和汽车位置的变化过程,横轴代表行驶时间,纵轴代表汽车的位置.图象上的最高点就是汽车离出发点最远的距离. 汽车来回一次,共行驶了120×2=240(千米),整个过程用时
4.5小时,平均速度为240÷4.5= (千米/时),行驶途中1.5时—2时之间汽车没有行驶. 解析:(1)240; (2)0.5; (3) ; (4)从目的地返回出发点. 总结升华:这类题是课本例题的变式,来源于生活,贴近实际,是中考中常见题型,应注意行驶路程与两地之间的距离之间的区别.本题图象上点的纵坐标表示的是汽车离出发地的距离,横坐标表示汽车的行驶时间.
举一反三: 【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与时间t的函数关系,求它们行进的速度关系。
解析:比较相同时间内,路程s的大小.在横轴的正方向上任取一点,过该点作纵轴的平行线,比较该平行线与两直线的交点的纵坐标的大小.所以.甲比乙快
【变式2】小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示。放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( ) A.14分钟 B.17分钟 C.18分钟 D.20分钟
【答案】:D 分析:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速 4
度为100米/分。原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟。
【变式3】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如图所示:
根据图象解答下列问题: (1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2)已知洗衣机的排水速度为每分钟19升. ①求排水时y与x之间的关系式; ②如果排水时间为 2分钟,求排水结束时洗衣机中剩下的水量. 分析:依题意解读图象可知:从0—4分钟在进水,4—15分钟在清洗,此时,洗衣机内有水40升,15分钟后开始放水. 解:(1)洗衣机的进水时间是4分钟;清洗时洗衣机中的水量是40升; (2)①排水时y与x之间的关系式为:y=40-19(x-15) 即y=-19x+325 ②如果排水时间为2分钟,则x-15=2即x=17,此时,y=40-19×2=2. 所以,排水结束时洗衣机中剩下的水量为2升.
类型四:一次函数的性质 4、己知一次函数y=kx十b的图象交x轴于点A(一6,0),交y轴于点B,且△AOB的面积为12,y随x的增大而增大,求k,b的值.
思路点拨:设函数的图象与y轴交于点B(0,b),则OB=,由△AOB 的面积,可求出b,又由点A在直线上,可求出k并由函数的性质确定k的取值. 解析:直线y=kx十b与y轴交于点B(0,b),点A在直线上,则①,
由,即,解得代入①,可得, 由于y随x的增大而增大,则k>0,取则. 总结升华:该题考查的是待定系数法和函数值,仔细观察所画图象,找出隐含条件。
举一反三: 【变式1】已知关于x的一次函数. (1)m为何值时,函数的图象经过原点? (2)m为何值时,函数的图象经过点(0,-2)? (3)m为何值时,函数的图象和直线y=-x平行? 5
(4)m为何值时,y随x的增大而减小? 解析:
(1)由题意,m需满足, 故 m=-3时,函数的图象经过原点; (2)由题意得:m需满足,
故 时,函数的图象经过点(0,-2);
(3)由题意,m需满足, 故 m=4时,函数的图象平行于直线y=-x; (4)当3-m<0时,即m>3时,y随x的增大而减小.
【变式2】 若直线()不经过第一象限,则k、b的取值范围是______,______. 【答案】:(k<0;b≤0);分析:直线不经过第一象限,有可能是经过二、四象限或经过二、三、四象限,注意不要漏掉经过原点的情况。
【变式3】直线l1:与直线l2:在同一坐标系中的大致位置是( ).
A. B. C. D. 【答案】:C;分析:对于A,从l1看 k<0,b<0,从l2看b<0,k>0,所以k,b的取值自相矛盾,排除掉A。对于B,从l1看 k>0,b<0,从l2看b>0,k>0,所以k,b的取值自相矛盾,排除掉B。D答案同样是矛盾的,只有C答案才符合要求。
【变式4】函数在直角坐标系中的图象可能是( ).
【答案】:B;分析:不论k为正还是为负,都大于0,图象应该交于x轴上方。故选B 类型五:一次函数综合 5、已知:如图,平面直角坐标系中,A( 1,0),B(0,1),C(-1,0),过点C的直线绕C旋转,交y轴于点D,交线段AB于点E。 (1)求∠OAB的度数及直线AB的解析式; (2)若△OCD与△BDE的面积相等,①求直线CE的解析式;②若y轴上的一点P满足∠APE=45°,请直接