第一讲 全等三角形常用辅助线

合集下载

全等变换和全等三角形的常见辅助线1

全等变换和全等三角形的常见辅助线1

A
方法三:
作DM⊥AB于M,DN⊥AC于N.
M N B D C
必有结论: △AMD≌△AND。
DM=DN,
AM=AN,∠ADM=∠AND.
例:已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD, 求证:∠A+∠C=180°
证明: 在BC上截取BE,使BE=AB,连结DE.
∵ BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义) 在△ABD和△EBD中 ∵ AB=EB(已知) ∠1=∠2(已证) BD=BD(公共边) ∴△ABD≌△EBD(S.A.S) ∴ ∠A=∠3, AD=DE
分析:延长BA到点G,使得AG=AD,连结EG。 G M D A 3 4 E 1 N
2
P B C Q
小结:本节课主要学习了运用翻折构造全 等三角形,在构造全等的同时,也用到证 明线段和差关系时常用的辅助线做法,即 截长补短.
A 3 1 B
N 4 D
∠1=∠2(已证)
BD=BD(公共边) ∴△NBD≌△MBD(A.A.S)
2 M C
∴ ND=MD(全等三角形的对应边相等)
∵ DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是 Rt△ 在Rt△NAD和Rt△MCD中 ∴ ∠4=∠C(全等三角形的对应角相等) ∵ ∠3+ ∠4=180°(平角定义), ∠A=∠3(已证) ∴∠A+ ∠C=180°(等量代换)
2.运用翻折构造的全等:
如图,在△ABC中,AD平分∠BAC.
可以利用角平分线所在直线作对称轴,翻折三角形
来构造全等三角形. 方法一: 在AB上截取AE=AC,连结DE. E A
必有结论: △ADE≌△ADC. ED=CD,∠AED=∠C,∠ADE=∠ADC.

全等三角形辅助线

全等三角形辅助线

五全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”D C BAED F CB A5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(一)、倍长中线(线段)造全等1:(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是____ _____.2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较B E+CF与EF的大小.3:如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBA中考应用(09崇文二模)以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可 能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

苏科版八年级数学上册1.2《全等三角形》中常见辅助线

苏科版八年级数学上册1.2《全等三角形》中常见辅助线

全等三角形⑴----常见辅助线一.已知中点D1.线段倍长(或作平行线)A模型:如图,已知OA=OC,再倍长DO,使OB=OD,则△AOB≌△COD(SAS) C⑴.如图,在△ABC中,D是BC边的中点. BB A①.求证:AB+AC>2AD;②.若AB=5,AC=7,AD的取值范围为.CD1⑵如图,CE是△ACD中线,点B在AD的延长线上,BD=AC,∠ACD=∠ADC,求证:CE= BC.2CA BDEE⑶.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.DAB CME⑷.如图,四边形BEFC中,D为BC中点,∠EDF=90 ,求证:BE+FC>EF.FB CD2.作垂线(知中点作垂线;证中点作垂线)C模型:如图,OA=OB,BC⊥CD,AD⊥CD,则△AOD ≌△BOC(AAS) A⑴.如图,△ABC 中,D 为 BC 的中点.BO①在图中作出 CM⊥AD,BN⊥AD,垂足分别为点 M,N; D②⑵求证:DM=DN; ③若 AD=3,求 AM+AN 的值.A DBC⑵.如图,CD 为△ABC 的角平分线,E,F 分别在 CD,BD 上,且 DA=DF,EF=AC.求证:EF ∥BC.C EBADFE⑶.如图,BC⊥CE,BC=CE,AC⊥CD,AC=CD,DE 交 AC 的延长线于点 M,M 是 DE 的中点. ①求证:AB⊥AC;②若 AB=8,求 CM 的长.BAC MD⑷.如图,已知 A(-2,1),C(0,2),且 C 为线段 AB 的中点,求点 B 的坐标.y BCAxO3.证中点【方法技巧】证线段的中点,常过线段的端点构造一组平行线,或过线段的两端点向过中点的线段作垂线,根据AAS或ASA构造全等三角形,证题关键往往是证明一组对应边相等.【作平行证中点】⑴.如图,在△ABC中,∠ABC=∠ACB,D,E分别是AC和AC的延长线上的点,连接BD,BE,若AB=CE,∠DBC=∠EBC.求证:D是AC的中点.ADCBE⑵.如图,AB⊥AE,AB=AE,AC⊥AD,AC=AD,AH⊥DE于点H,延长AH交BC于点M.求证:M是BC的中点.ADHCB ME【作垂线证中点】⑶.如图,AB⊥AC,AB=AC,D是AB上一点,CE⊥CD,CE=CD,连接BE交AC于点F,求证:F是BE的中点.EAFDB C⑷如图,A,B,C三点共线,D,C,E三点共线,∠A=∠DBC,EF⊥AC于点F,AE=BD.①求证:C是DE的中点;②求证:AB=2CF. ABFD E二、线段的和差处理1.等线段代换法C⑴如图,CD为△ABC的中线,M,N分别为直线CD上的点,且BM∥AN.①求证:AN=BM;②求证:CM+CN=2CDMA BDN⑵如图,△ABC中,∠BAC=90︒,AB=AC,AN是过点A的一条直线,且BM⊥AN于点M,CN⊥AN于点N.①求证:AM=CN;②求证:MN=BM-CN.AMCBN⑶如图,在△ABC中,AD⊥BC于D,且AD平分∠BAC,CE⊥AB于点E,交AD于点F.①求证:BD=CD; A②若AF=BC,求证:AC-CE=EF.E FB CD⑷.如图,△ABC中,AC=BC,∠ACB=90︒,D为BC延长线上一点,BF⊥AD于点F,交AC于点E. A①求证:BE=AD;②过C点作CM∥AB交AD于点M,连接EM,求证:BE=AM+EM. FEMB DC2.截长补短法(直接和间接)如图,△ABC 中,∠CAB=∠CBA=45 ,CA=CB,点 E 为 BC 的中点,CN ⊥AE 交 AB 于点 N. ①求证:∠1=∠2;②求证:AE=CN+EN. (用多种方法) 方法 1:直接截长BN E12CA方法 2:间接载长BN E12CA方法 3:直接补短BN E12C AAB方法 4:间接补短N E12C三、角平分线模型 A1.作垂线1 P模型:如图,∠1=∠2,PA⊥OA,PB⊥OB,则PA=PB. 2O B⑴如图,△ABC中,CD是角平分线,AC=3,BC=5,求S△ACD∶S△BCD的值.CBA D⑵.如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180︒,求证:AE=AD+BE.CDBA E⑶.如图,△ABC中,AC>AB,F为BC的中点,FD⊥BC,交∠BAC的平分线于点D,DE⊥AC于点E.A C-A B①求证:BD=CD;②求证:AB+AC=2AE;③直接写出的值C EA是.EFB CD⑷如图,△ABC中,AB=AC,D为△ABC外一点,且∠1=∠2,AB⊥BD于点M.①求证:AD平分△BDC的B D-CD A外角;②求的值.D M B 1M2C D2.截长补短 A模型:如图,若∠AOP=∠BOP,OA=OB,则△OAP≌△OBP P ⑴.如图,四边形ABCD中,AC平分∠DAB,∠B+∠D=180 ,求证:CD=CB. O BCD12B B⑵.△ABC中,AB>AC,AD平分∠BAC,AE=AC,连DE.①求证:∠C>∠B;②若AB-AC=2,BC=3,求△BED的周长.AB CD⑶.如图,AD∥BC,E是CD上一点,且∠1=∠2,∠3=∠4,求证:AB=AD+BCCED12 43A B⑷.如图,BC>AB,AD=CD,∠1=∠2,探究∠BAD与∠C之间的数量关系.(多种方法)D DA A1 12 2B C CB3.角平分线+垂线:延长法 AC 模型:如图,若∠1=∠2,AC⊥OC,延长AC交OB于点B,则△OCA≌△OCB.⑴.如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,探究∠ACE,∠B,O B∠ECD之间的数量关系.AEB CD⑵.如图,在△ABC中,AB<BC,BP平分∠ABC,AP⊥BP于P点,连接PC,若△ABC的面积为4,求△BPC 的面积.APB C⑶.如图,在△AOB中,AO=OB,∠AOB=90 ,BD平分∠ABO交AO于点D,AE⊥BD交BD的延长线于点E,求证:BD=2AE.AEDBO⑷.如图,四边形ABCD中,AD∥BC,AE,BE分别平分∠DAB,∠CBA.①求证:AE⊥BE;②求证:DE=CE;③若AE=4,BE=6,求四边形ABCD的面积.DAEBC四、半角与倍角模型⑴如图,已知 AB=AC,∠BAC=90°,∠MAN=45°,过点 C 作 NC⊥AC 交 AN 于点 N,过点 B 作 BM⊥AB 交 AM 于点 M ,连接 MN.①当∠MAN 在∠BAC 内部时,求证:BM+CN=MN.MBNCA②如图,在①的条件下,当 AM 和 AN 在 AB 同侧时,①的结论是否成立?请说明理由.NCMBA⑵如图,在△ABC 中,CA=CB,∠ACB=120°,E 为 AB 上一点,∠DCE=60°,∠DAE=120°,求证: DE-AD=BE.CABED⑶如图,在△ABC 中,CA=CB,∠ACB=120°,点 E 为 AB 上一点,∠DCE=∠DAE=60°,求证:AD+DE=BE.DCBAE1 ⑷.①如图 1,在四边形 ABCD 中,AB=AD,∠B+∠D=180°,E,F 分别是 BC,CD 上的点,且∠EAF= ∠2 DBAD,求证:EF=BE+DF;AFCBE②如图 2,在①条件下,若将△AEF 绕点 A 逆时针旋转,当点 E,F 分别 FD运动到 BC,CD 延长线上时,则 EF,BE,DF 之间的数量关系是.A。

全等三角形做辅助线的技巧

全等三角形做辅助线的技巧

全等三角形做辅助线的技巧
全等三角形可是几何世界里的大明星啊!在解决它们相关问题时,做辅助线就像是一把神奇的钥匙,能打开各种难题的大门。

咱先来说说倍长中线法。

嘿,这就好比给三角形来了个“超级变身”!把中线延长一倍,瞬间就创造出了新的全等条件,让那些隐藏的关系都现了原形。

这招妙不妙?
还有截长补短法呢!就像个聪明的裁缝,根据需要截取一段或者补上一段。

这一截一补之间,难题就迎刃而解啦。

再看看三线合一构造法。

哇塞,这简直就是找到了三角形的“命门”呀!利用等腰三角形的特点,巧妙地做出辅助线,一下子就让图形变得清晰明了。

类比一下,做辅助线就像是给全等三角形这个大舞台搭建了各种精彩的场景,让它们能更好地展现自己。

有时候遇到中点,那可别放过呀!就像发现了宝藏的线索,通过中位线等辅助线的构造,能挖掘出更多的信息。

在几何的海洋里,全等三角形和辅助线的搭配就像是一场奇妙的冒险。

我们要大胆地去尝试,去探索,去发现那些隐藏的奥秘。

难道不是吗?
总之,全等三角形做辅助线的技巧真的太重要啦!掌握了这些技巧,就像是拥有了超能力,能在几何的世界里自由驰骋。

我们要不断练习,不断琢磨,让这些技巧成为我们手中的利器,攻克一个又一个难题。

这就是全等三角形做辅助线的魅力所在啊!。

初中几何全等三角形常见辅助线作法

初中几何全等三角形常见辅助线作法

全等三角形常见辅助线作法【例1】.已知:如图6, 4BCE、△ACO分别是以8E、为斜边的直角三角形,且= ACDE是等边三角形.求证:△ A3c是等边三角形.【例2】、如图,已知BC>AB, AD=DCo BD 平分NABC。

求证:ZA+ZC=180°.线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例.3]如图,己知在△ABC中,ZC = 90°, ZB = 30°, A。

平分NB4C,交BC于点D.求证:BD = 2CD证明:延长DC到E,使得CE=CD,联结AEZC=90°A AC ± CDVCD=CEAD=AEVZB=30° ZC=90°ZBAC=60°YAD 平分NBACJ ZBAD=30°A DB=DA ZADE=60°VDB=DA:.BD=DE/. BD=2DC4B D笫3题•/ ZADE=60° AD=AEA △ ADE为等边三角形,AD=DE【例4.】如图,。

是AABC的边上的点,且CD = AB, ZADB = ZBAD, AE是AARD的中线。

求证:AC = 2AEo 证明:延长AE至IJ点F,使得EF=AE联结DF在4ABE和4FDE中BE=DEZAEB=ZFEDAE=FE/.△ABE 也AFDE (SAS) A AB=FD ZABE=ZFDE VAB=DCJ FD = DCZADC=ZABD+ZBAD ZADB = ZBAD,ZADC=ZABD+ZBDA VZABE=ZFDE・・・NADONADB+NFDE即ZADC= ZADF ffiAADF 和AADC 中AD=AD< ZADF= ZADC、DF =DC・•・△ ADF也ADC(SAS) AAF=ACAC=2AE【变式练习】、如图,AABC中,BD二DOAC, E是DC的中点,求证:AD平分NBAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法, 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

归纳:全等三角形问题中常见的辅助线的作法

归纳:全等三角形问题中常见的辅助线的作法

全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:遇到三角形的 中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”例3、如图,△ ABC 中,BD=DC=AP E 是DC 的中点,求证: AD 平分/因为 BD=DC=AC ,所以 AC=1/2BC 因为E 是DC 中点,所以EC=1/2DC=1/2AC1) 2) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法 适合于证明线段的和、差、倍、分等类的题目.3) 遇到等腰三角形,可作底边上的高,利用“三线合一 ”的性质解题,思维模式是全等变换中的“对折”.4) 遇到角平分线,可以自角平分线上的某一点向角的 两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.5) 过图形上某一点作特定的平分线, 构造全等三角形,利用的思维模式是 全等变换中的“平移”或“翻转折叠”特殊方法:在求有关三角形的定值一类的问题时, 常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.倍长中线(线段)造全等例1.已知:如图3所示,AD 为△ ABC 的中线,求证:AB+AO2AD 。

分析:要证 AB+AO2AD ,由图形想到: AB+BD>AD,AC+CD>AD 所以有:AB+AC+ BD+CD > AD +AD=2AD但它的左边比要证结论多 BD+CD ,故不能直接证出此题,而由2AD到要构造2AD ,即加倍中线,把所要证的线段转移到同一个三角形中去。

证明:延长 AD 至E ,使DE=AD ,连接BE , CE 。

BAE./ ACE= / BCA ,所以△ BCAACE 所以/ ABC= / CAE 因为 DC=AC ,所以/ ADC= / DAC / ADC= / ABC+ / BAD所以/ ABC+ / BAD= / DAE+ / CAE 所以/ BAD= / DAE即AD 平分/ BAE应用: 二、截长补短 例1.已知:如图1所示, AD 为^ ABC 的中线,且/ 1= / 2,/ 3= / 4。

中考数学-全等三角形问题中常见的8种辅助线的作法

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形中做辅助线技巧窍门要点大汇总

全等三角形中做协助线技巧重点大汇总口诀:三角形图中有角均分线,可向两边作垂线。

也可将图对折看,对称此后关系现。

角均分线平行线,等腰三角形来添。

角均分线加垂线,三线合一试一试看。

线段垂直均分线,常向两头把线连。

线段和差及倍半,延伸缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连结则成中位线。

三角形中有中线,延伸中线等中线。

一、由角均分线想到的协助线口诀:图中有角均分线,可向两边作垂线。

也可将图对折看,对称此后关系现。

角均分线平行线,等腰三角形来添。

角均分线加垂线,三线合一试一试看。

角均分线拥有两条性质: a 、对称性; b 、角均分线上的点到角两边的距离相等。

对于有角均分线的协助线的作法,一般有两种。

①从角均分线上一点向两边作垂线;②利用角均分线,结构对称图形(如作法是在一侧的长边上截取短边)。

往常状况下, 出现了直角或是垂直等条件时, 一般考虑作垂线; 其余状况下考虑结构对称图形。

至于选用哪一种方法,要联合题目图形和已知条件。

与角有关的协助线EA(一)、截取构全等如图 1-1 ,∠ AOC=∠BOC ,如取 OE=OF ,并连 ODC接 DE 、 DF ,则有△ OED ≌△ OFD ,从而为我们证FBA图1-1明线段、角相等创建了条件。

E例1. 如图 1-2 ,AB//CD , BE 均分∠ BCD ,CE 均分∠ BCD ,点 E 在 AD 上,求证:BC=AB+CD 。

BF例2.已知:如图 1-3 , AB=2AC ,∠ BAD=图1-2∠ CAD ,DA=DB ,求证 DC ⊥ACD C.\例3.已知:如图1-4,在△ ABC中,∠ C=2∠ B,AD均分∠ BAC,求证:AB-AC=CD剖析:本题的条件中还有角的均分线,在证明A中还要用到结构全等三角形,本题仍是证明线段的和差倍分问题。

用到的是截取法来证明的,在长的E线段上截取短的线段,来证明。

试一试看能否把短的延伸来证明呢?CB D练习图 1-41.已知在△ ABC中,AD均分∠ BAC,∠ B=2∠C,求证: AB+BD=AC2.已知:在△ ABC中,∠ CAB=2∠B,AE均分∠ CAB交BC于E,AB=2AC,求证: AE=2CE3.已知:在△ ABC中,AB>AC,AD为∠ BAC的均分线,M为AD上任一点。

第12章全等三角形常见辅助线做法(教案)

还有一个值得注意的问题是,在总结回顾环节,虽然大部分学生能够跟随我的思路进行复习,但仍有一部分学生显得有些迷茫。这可能是因为他们在课堂上的注意力不够集中,或者是对某些知识点理解不够深入。为了改善这一点,我计划在课后提供一些额外的学习资源,如视频讲解和在线练习,帮助这部分学生巩固知识。
最后,我意识到教学过程中需要不断调整方法和节奏,以适应不同学生的学习需求。在接下来的课程中,我将更加注重个体差异,提供个性化的指导和支持,确保每位学生都能在全等三角形的学习中取得进步。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“全等三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的判定方法及其基本概念。全等三角形是指在大小和形状上完全相同的两个三角形,其判定方法有SSS、SAS、ASA、AAS等。这些判定方法在几何证明和解题中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过作辅助线,利用全等三角形的判定方法解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和辅助线的常见作法这两个重点。对于难点部分,我会通过具体例题和图形分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用模型或工具作辅助线,观察全等三角形的形成。

[实用参考]构造全等三角形(常见辅助线法).ppt


(平角定义)
3 ∴DF=AD(等量代换) * ∴∠4=∠F(等边对等角)
∴∠A+ ∠C=180° (等量代换)
练习1 如图,已知△ABC中,AD,求证:∠C=2∠B
证明: 在AB上截取AE,使AE=AC,连结DE。
A
∵ AD是∠BAC的角平分线(已知)
∴∠1=∠2(角平分线定义)
AM+AN+MN+6
B
C
13+6
△ABC中,AB>AC ,∠A的平分线与
BC的垂直平分线DM相交于D,过D作
DE ⊥AB于E,作DF⊥AC于F。
求证:BE=CF
A
连接DB,DC
EM
C
F
B
D
垂直平分线上点向两端连线段
• 如图,已知三角形ABC中,BC边上的垂直平 分线DE与角BAC的平分线交于点E,EF垂 直AB交AB的延长线于点F,EG垂直AC交 AC于点G。求证:(1)BF=CG
*
∴∠4=∠C(等边对等角)
∠A=∠3(已证) ∴∠A+ ∠C=180°
(等量代换)
例1 已知:如图,在四边形ABCD中,BD是
∠ABC的角平分线,AD=CD,求证:
证明: 延∠长A+BA∠到CF=,1使80B°F=BC,连结DF。
F
∵ BD是∠ABC的角平分线(已知)
∴∠1=∠2(角平分线定义)
B D
思考:若AB=3,AC=5
求AD的取值范围?
E
倍 长 中 C线
截长 补短
已知在△ABC中,∠C=2∠B, ∠1=∠2
求证:AB=AC+CD
A
E
12
B
D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巨人教育 十一短训班讲义
1
F
E
D
C
B

A

DP
F
E
BCA

第一讲 全等三角形常用辅助线
在几何证明或计算问题中,经常需要添加必要的辅助线去解决问题,结合已知条件、图形和所求的结论去
添加辅助线。而添加辅助线的目的与已知条件和所求的结论有关,其目的有如下三点:
一、是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质定理去解答题目;
二、是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解答题目;
三、是通过添加辅助线,使新问题得以转化为已经解决过的旧问题(补出基本图形),从而利用旧问题的基本图
形、基本结论作为突破口分析新问题,解决新问题。
辅助线的作法有:连接两点、延长线段、作平行线、作垂线、作角平分线、作中线等。添加辅助线
常用的方法是:倍长中线法、截长补短法、要素法等
【例1】如图所示,△ABC的边BC的中垂线DF交△BAC的外角平分线AD于D,F为垂足, DE⊥AB于E,
且AB>AC.,求证:BE -AC=AE.

【例2】如图,等腰Rt△ABC中,AB=AC,D为BC的中点,E、F分别在AB、AC上,且AE=CF.
求证:(1)DE=DF ; (2)∠EDF =90°.

【例3】已知△ABC中,∠C=90,AC=BC,D是AB的中点,E是BC上任一点,EP⊥CB,PF⊥AC,E、F为垂足,
求证:△DEF是等腰直角三角形.
巨人教育 十一短训班讲义

2
F
E

DC
B
A

H
F
E

D

C
B
A

【例4】如图,D为线段AB的中点,在AB上取异于D的点C,分别以AC、BC为斜边在AB同侧作等腰直角三角
形ACE与BCF,连结DE、DF、EF,求证:△DEF为等腰直角三角形。

【例5】如图,分别以△ABC的边AB、AC向外作等腰Rt△ABD,等腰Rt△ACE;连接DE。AF是△ABC的中线,
FA的延长线交DE于点H,求证:DE=2AF

【例6】如图,在正方形ABCD中,点N是BC边上的点。连接AN,MN⊥AN交∠DCB的外角平分线于点M。
求证:AN=MN
巨人教育 十一短训班讲义

3
F
E

D

C

B
A

P
C

B

A
【例7】如图所示,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,求∠ACB的度数

【例8】已知如图,在正方形ABCD中.
⑴如果BE+DF=EF,求证:①∠EAF=45°;②FA平分∠DFE.
⑵如果∠EAF=45°,求证: BE+DF=EF.
⑶如果点F在DC的延长线上,点E在CB的延长线上,当BE、DF、EF满足什么条件时,则⑴中结论仍然成
立?

【例9】等腰Rt△ABC中 ∠ACB=90°,AC=BC;F是BC上的中点,连AF,作CD⊥AF于E,交AB于D; 连FD.
求证:AD=2BD;

A
B
C

D
E
F
巨人教育 十一短训班讲义

4
F
EDCB

A

F
E
D
C
B
A

F
E
D
C
B

A

【家庭作业】
1、如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD,垂足为E,BF平行AC,交CE延
长线于点F,你能说明AB与 DF的关系?

2、如图所示,正方形ABCD,E在BC上,AF平分∠EAD交CD于F,求证:AE=BE+DF.
3、如图,在△ABC中,AB=AC,点D在AB上,点F在AC的延长线上,DF交BC于点E,且DE=EF,
求证:BD=CF

相关文档
最新文档