北师大版九年级数学下册 第二章 练习题 01

合集下载

北师大版数学九年级下册第二章 2.5二次函数与一元二次方程

北师大版数学九年级下册第二章 2.5二次函数与一元二次方程

北师大版数学九年级下册第二章 2.5二次函数与一元二次方程一、二次函数1. 二次函数的定义二次函数是指具有如下形式的函数:y=ax2+bx+c其中,a、b、c是常数,且a eq0。

二次函数的图像呈现出抛物线的形状,开口向上或向下取决于系数a的正负。

2. 抛物线的顶点二次函数的图像以抛物线的形式出现,其中最高点或最低点被称为顶点。

对于二次函数y=ax2+bx+c,其顶点的横坐标和纵坐标分别为:$$x = -\\frac{b}{2a}$$$$y = f\\left(-\\frac{b}{2a}\\right)$$3. 抛物线的对称轴对于二次函数y=ax2+bx+c,其图像的对称轴的方程为 $x = -\\frac{b}{2a}$。

对称轴是抛物线的中线,将抛物线分为两个完全对称的部分。

4. 抛物线的焦点和准线焦点和准线是与抛物线相关的两个重要概念。

在二次函数y=ax2+bx+c中,焦点的横坐标为 $x = -\\frac{b}{2a}$,纵坐标为 $y = -\\frac{D}{4a}$,其中D=b2−4ac是二次函数的判别式。

准线是与抛物线平行的一条直线,其纵坐标等于焦点的纵坐标减去$\\frac{1}{4a}$,即 $y = -\\frac{D}{4a} - \\frac{1}{4a}$。

5. 抛物线的开口方向二次函数中的参数a决定了抛物线的开口方向。

当a>0时,抛物线开口向上。

当a<0时,抛物线开口向下。

6. 抛物线与坐标轴的交点对于二次函数y=ax2+bx+c,抛物线与x轴的交点可以通过求解该函数的根来得到。

设抛物线与x轴的交点为(x1,0)和(x2,0),则有以下关系成立:ax12+bx1+c=0ax22+bx2+c=0二、一元二次方程1. 一元二次方程的定义一元二次方程是指具有如下形式的方程:ax2+bx+c=0其中,a、b、c是常数,且a eq0。

2. 一元二次方程的求解求解一元二次方程的一般步骤如下:(1)将方程转化为标准形式:ax2+bx+c=0(2)计算方程的判别式D=b2−4ac(3)根据判别式的值确定方程的解的情况:•当D>0时,方程有两个不相等的实数解;•当D=0时,方程有两个相等的实数解;•当D<0时,方程没有实数解;(4)根据判别式的值,使用求根公式求解方程的根:•当D>0时,方程的两个根为 $x_1 = \\frac{-b + \\sqrt{D}}{2a}$ 和$x_2 = \\frac{-b - \\sqrt{D}}{2a}$;•当D=0时,方程的唯一解为 $x = \\frac{-b}{2a}$;•当D<0时,方程没有实数解。

2022-2023学年北师大版九年级数学下册《1-6利用三角函数测高》填空专项练习题(附答案)

2022-2023学年北师大版九年级数学下册《1-6利用三角函数测高》填空专项练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.6利用三角函数测高》填空专项练习题(附答案)1.喜迎二十大,“龙舟故里”赛龙舟.丹丹在汨罗江国际龙舟竞渡中心广场点P处观看200米直道竞速赛.如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=200米,则点P到赛道AB的距离约为米(结果保留整数,参考数据:≈1.732).2.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,2小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是海里.(结果保留根号)3.如图,码头A在码头B的正东方向,它们之间的距离为10海里.一货船由码头A出发,沿北偏东45°方向航行到达小岛C处,此时测得码头B在南偏西60°方向,那么码头A 与小岛C的距离是海里(结果保留根号).4.如图,海中有一个小岛A,一艘轮船由西向东航行,在点B处测得小岛A在它的北偏东60°方向上,航行12海里到达点C处,测得小岛A在它的北偏东30°方向上,那么小岛A到航线BC的距离等于海里.5.如图,城中有一高层建筑物A,一辆汽车在一条东西方向的笔直公路上由西向东行驶,在点B处测得建筑物A位于它的东北方向,此时汽车与建筑物相距2公里,继续行驶至点D处,测得建筑物A在它的北偏西60°方向,此时汽车与建筑物距离AD为公里.6.如图,已知公路l上A,B两点之间的距离为20米,点B在C的南偏西30°的方向上,A在C的南偏西60°方向上,则点C到公路l的距离为米.7.如图,上午9时,一艘船从小岛A出发,以12海里/小时的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是海里.8.如图所示,海面上有一座小岛A,一艘船在B处观测A位于西南方向20km处,该船向正西方向行驶2小时至C处,此时观测A位于南偏东60°,则船行驶的路程约为.(结果保留整数,≈1.41,≈1.73,≈2.45)9.一艘轮船以15千米时的速度向正东方向航行,到达A点时测得小岛C在点A北偏东60°方向;继续航行一小时到达B点,这时测得小岛C在点B的东北方向;再继续航行小时,轮船刚好到达小岛C的正南方向.10.如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P 的距离为海里(结果保留根号).11.如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12nmile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是nmile(≈1.73,结果用四舍五入法精确到0.1).12.如图,甲,乙两艘船同时从港口A出发,甲船沿北偏东45°的方向前进,乙船沿北偏东75°方向以每小时30海里的速度前进,两船航行两小时分别到达B,C处,此时测得甲船在乙船的正西方向,则甲船每小时行驶海里.13.如图,在一次夏令营活动中,小明从营地A出发,沿北偏东53°方向走了400m到达B 点,然后再沿北偏西37°方向走了300m到达目的地C.此时A,C两点之间的距离为m.14.如图,为测量一段笔直自西向东的河流的河面宽度,小雅同学在南岸B处测得对岸A 处一棵柳树位于北偏东60°方向,她沿着河岸向东步行60米后到达C处,此时测得柳树位于北偏东30°方向,则河面的宽度是米.15.一艘轮船在小岛A的北偏东60°方向距小岛60海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.16.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走70m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为m.(参考数据:tan37°≈,tan53°≈)17.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为km.18.如图,一个机器人从A地沿着西南方向先前进了4米到达B地,观察到原点O地在它的南偏东60°的方向上,则A、O两地的距离等于米.19.如图,一艘货轮以40海里/小时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B,货轮继续向北航行30分钟后到达C点,发现灯塔B在它北偏东75°方向,则此时货轮与灯塔B的距离为海里.(结果精确到0.1海里,参考数据:≈1.414,≈1.732)20.如图,某海监船以30海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为海里.21.如图,某天然气公司的主输气管道从A市的北偏东60°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市北偏东30°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向.当在主输气管道AC上寻找支管道连接点N,使到该小区M铺设的管道最短时,AN的长为米.22.如图,为了测量河宽CD,先在A处测得对岸C点在其北偏东30°方向,然后沿河岸直行100米到点B,在B点测得对岸C点在其北偏西45°方向,则河宽CD是米.(结果保留根号)23.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,则B,C两地的距离千米.24.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A、C两港之间的距离为km.参考答案1.解:过点P作PC⊥AB,垂足为C,设PC=x米,在Rt△APC中,∠APC=30°,∴AC=PC•tan30°=x(米),在Rt△CBP中,∠CPB=60°,∴BC=CP•tan60°=x(米),∵AB=200米,∴AC+BC=200,∴x+x=200,∴x=50≈87,∴PC=87米,∴点P到赛道AB的距离约为87米,故答案为:87.2.解:作BD⊥AC于点D.∵∠CBA=25°+50°=75°,∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∴∠ABD=90°﹣∠DAB=30°,∴∠CBD=∠CBA﹣∠ABD=75°﹣30°=45°.在Rt△ABD中,∠CAB=60°,AB=2×20=40,BD=AB•sin∠CAB=40•sin60°=40×=20.在Rt△BCD中,∠CBD=45°,cos C=,∴∠C=90﹣∠CBD=45°,则BC=BD=20(海里).故答案为:20.3.解:过C作CD⊥BA于D,如图:则∠CDB=90°,由题意得:∠BCD=60°,∠CAD=90°﹣45°=45°,∴△ACD是等腰直角三角形,∴CD=AD,AC=CD,设CD=AD=x海里,则AC=x海里,在Rt△BCD中,tan∠BCD==tan60°=,∴BD=CD=x(海里),∵BD=AD+AB,∴x=x+10,解得:x=5+5,∴x=×(5+5)=5+5,即AC=(5+5)海里,故答案为:(5+5).4.解:过点A作AE⊥BC交BC的延长线于点E,由题意得:BC=12海里,∠ABC=90°﹣60°=30°,∠ACE=90°﹣30°=60°,∴∠BAC=∠ACE﹣∠ABC=30°,∴∠BAC=∠ABC,∴AC=BC=12海里,在Rt△ACE中,sin∠ACE=,∴AE=AC•sin∠ACE=12×=6(海里),即小岛A到航线BC的距离是6海里,故答案为:6.5.解:如图,过点A作AC⊥BD于点C,根据题意可知,∠BAC=∠ABC=45°,∠ADC=30°,AB=2公里,在Rt△ABC中,AC=BC=AB•sin45°=2×=(公里),在Rt△ACD中,∠ADC=30°,∴AD=2AC=2(公里),即此时汽车与建筑物距离AD为2公里.故答案为:2.6.解:如图,过点C作CD⊥公路l于点D,则∠ADC=90°,∠BCD=30°,∠ACD=60°,AB=20米,∴∠ACB=∠ACD﹣∠BCD=60°﹣30°=30°,∠CAD=90°﹣∠ACD=90°﹣60°=30°,∴∠ACB=∠CAD,∴BC=AB=20米,在Rt△BCD中,cos∠BCD=,∴CD=BC•cos∠BCD=20×=10(米),故答案为:10.7.解:连接AB幷延长,如图,由题意得:AB=12×=20(海里),∵从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,∴∠CAB=34°,∠ACB=68°﹣34°=34°,∴∠CAB=∠ACB,∴BC=AB=20海里,即小岛B处到灯塔C的距离是20海里,故答案为:20.8.解:作AD⊥BC于D,则∠ABD=90°﹣45°=45°,∠ACD=90°﹣60°=30°,∴BD=AD=AB=10,CD=AD=10,∴BC=BD+CD=10+10≈39(km);故答案为:39km.9.解:如图,由题意得,AB=15千米,∠EAC=60°,∠FBC=45°,过点C作CD⊥AB交AB的延长线于点D,∵∠EAC=60°,∠FBC=45°,∴∠CAD=90°﹣60°=30°,∠CBD=90°﹣45°=45°,设CD=x千米,则AD=(x+15)千米,在Rt△ACD中,∵∠CAD=30°,∴AD=CD,即15+x=x,解得x=(千米),即CD=BD=千米,需要的时间为:÷15=(时),答:再继续航行小时,轮船刚好到达小岛C的正南方向.10.解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.11.解:过点A作AE⊥BC交BC的延长线于点E,由题意得,∠BAE=60°,∠CAE=30°,∴∠ABC=30°,∠ACE=60°,∴∠BAC=∠ACE﹣∠ABC=30°,∴∠BAC=∠ABC,∴AC=BC=12nmile,在Rt△ACE中,sin∠ACE=,∴AE=AC•sin∠ACE=6≈10.4(nmile),故小岛A到航线BC的距离是10.4nmile,故答案为10.4.12.解:设甲船每小时行驶x海里,则AB=2x海里,如图,作BD⊥AC于点D,在AC上取点E,使BE=CE,根据题意可知:∠BAD=30°,∠C=15°,∴∠BED=30°,∴AD=DE=x,CE=BE=AB=2x,∴AD+DE+CE=60,即x+x+2x=60,解得x=15(﹣1)(海里).答:甲船每小时行驶15(﹣1)海里.故答案为:15(﹣1).13.解:如图,由题意得:AB=400m,BC=300m,∠CBD=37°,∠BAF=53°,AF∥DE,∴∠ABE=∠BAF=53°,∴∠ABC=180°﹣∠CBD﹣∠ABE=180°﹣37°﹣53°=90°,∴AC===500(m),即A,C两点之间的距离为500m,故答案为:500.14.解:如图,过A作AD⊥BC于D,由题意可知:BC=60米,∠ABD=30°,∠ACD=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴∠ABC=∠BAC,∴BC=AC=60(米).在Rt△ACD中,AD=AC•sin60°=60×=30(米).即这条河的宽度为30米,故答案为:30.15.解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=60海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=30,BQ=AQ=30,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=30,∴BC=30+30=3x,解得:x=10+10(海里/时).即该船行驶的速度为(10+10)海里/时;故答案为:10+10.16.解:如图,过C作CE⊥BA于E.设EC=xm,BE=ym,在Rt△ECB中,tan53°=≈,即≈①,在Rt△AEC中,tan37°=≈,即≈②,由①②得:x=120,y=90,∴EC=120m,BE=90m,∴AE=70+90=160(m),∴AC===200(m),故答案为:200.17.解:如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OA sin∠AOD=4×sin30°=4×=2(km),OD=OA cos∠AOD=4×cos30°=4×=2(km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=2+2(km),故答案为:(2+2).18.解:如图,过点B作BC⊥OA于C,在Rt△ABC中,AB=4米,∠BAC=45°,∴AC=BC=AB=4(米).在Rt△OBC中,∠OBC=90°﹣60°=30°,∴OC=BC=(米),∴AO=AC+CO=(4+)米,故答案为:(4+).19.解:如图,过点C作CD⊥AB于点D,则∠CDA=∠CDB=90°,∵货轮以40海里/小时的速度在海面上航行,向北航行30分钟后到达C点,∴AC=40×=20(海里),∵∠A=45°,∠BCE=75°,∴∠B=∠BCE﹣∠A=30°,∵CD=AC sin45°=20×=10(海里),∴BC=2CD=20≈28.3(海里),即此时货轮与灯塔B的距离约为28.3海里,故答案为:28.3.20.解:在Rt△P AB中,∠APB=30°,∴PB=2AB,由题意得BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2P A,∵P A=AB•tan60°,AB=30×1=30(海里),∴PC=2×30×=60(海里),故答案为:60.21.解:如图,过C作东西方向线的平行线交过A的南北方向线AE于B,过M作MN⊥AC交于N点,则MN最短,∵∠EAC=60°,∠EAM=30°,∴∠CAM=30°,∴∠AMN=60°,又∵C处看M点为北偏西60°,∴∠FCM=60°,∴∠MCB=30°,∵∠EAC=60°,∴∠CAD=30°,∴∠BCA=30°,∴∠MCA=∠MCB+∠BCA=60°,∴∠AMC=90°,∠MAC=30°,∴MC=AC=1000,∠CMN=30°,∴NC=MC=500,∵AC=2000米,∴AN=AC﹣NC=2000﹣500=1500(米),即该小区M铺设的管道最短时,AN的长为1500米,故答案为:1500.22.解:设CD=x米,由题意得:CD⊥AB,∠ACD=30°,∠BCD=45°,∴∠ADC=∠BDC=90°,∴AD=CD=x米,BD=CD=x米,∵AD+BD=AB=100米,∴x+x=100,解得:x=150﹣50,即河宽CD是(150﹣50)米,故答案为:(150﹣50).23.解:过B作BD⊥AC于点D.在Rt△ABD中,∠BAD=60°,AB=4,sin∠BAD=,∴BD=AB•sin∠BAD=4×=2(千米),在Rt△BCD中,∠CBD=45°,∴∠C=90°﹣∠CBD=90°﹣45°=45°,∴∠CBD=∠C,∴CD=BD=2千米,∴BC2=BD2+CD2=(2)2+(2)2=24,∴BC=2(千米).答:B,C两地的距离是2千米,故答案为:2.24.解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30km,∴AE=BE=AB=15(km),在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===5(km),∴AC=AE+CE=(15+5)km,∴A,C两港之间的距离为(15+5)km,故答案为:(15+5).。

2022-2023学年北师大版九年级数学下册《1-4解直角三角形》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《1-4解直角三角形》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.4解直角三角形》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.2.在△ABC中,∠A和∠C都是锐角,且sin A=,tan C=,则△ABC是()A.直角三角形B.钝角三角形C.等边三角形D.不能确定3.在平面直角坐标系xOy中,已知点P(1,3)与原点O的连线与x轴的正半轴的夹角为α(0°<α<90°),那么cosα的值是()A.3B.C.D.4.如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.25.在Rt△ABC中,∠B=90°,如果∠A=α,BC=a,那么AC的长是()A.a•tanαB.a•cotαC.D.6.等腰三角形底边与底边上的高的比是2:,则它的顶角为()A.30°B.45°C.60°D.120°7.阅读理解:为计算tan15°三角函数值,我们可以构建Rt△ACB(如图),使得∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,可得到∠D=15°,所以tan15°====2﹣.类比这种方法,请你计算tan22.5°的值为()A.+1B.﹣1C.D.8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cos B=,E为边AC的中点,则cos∠ADE的值为()A.B.C.D.9.如图,在△ABC中,AB=AC=10,BC=12,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于()A.B.C.D.10.如图,在△ABC中,∠BAC=120°,AC=8,AB=4,则BC的长是()A.B.C.6D.8二.填空题11.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A,若AC=4,cos A=,则BD的长度为.12.已知等腰三角形两条边的长分别是4,6,底角为α,则cosα=.13.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为.14.如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x轴正半轴所夹的锐角为α,当n=2时,则tanα=;当tanα的值最大时,n的值为.15.如图,在△ABC中,AD⊥BC于D,点E在AC上,∠ABE=45°,tan∠CBE=,若AD=BC,AC=2,则线段BC的长是.三.解答题16.根据下列条件解直角三角形:(1)在Rt△ABC中,∠C=90°,c=8,∠A=60°;(2)在Rt△ABC中,∠C=90°,a=3,b=9.17.如图,在平面直角坐标系中,OB=4,sin∠AOB=,点A的坐标为(,0).(1)求点B的坐标;(2)求sin∠OAB的值.18.如图,点C在线段AB上,点D,E在直线AB的同侧,∠A=∠DCE=∠CBE=90°,∠ADC=∠ABD,AC=3,BC=,求tan∠CDB的值.19.如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,过B作BE⊥CD,交CD的延长线于点E,AC=30,sin B=,求:(1)线段CD的长.(2)cos∠BDE的值.20.如图(1),在Rt△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,以下是某同学推理证明的过程:证明:∵sin A=,sin B=∴c=,c=∴根据你掌握的三角函数知识,请在图(2)中的锐角△ABC中,求证:.参考答案一.选择题1.解:如图,在Rt△ABC中,∠C=90°,BC=2,∴sin A===,∴AB=3,∴AC===.故选:A.2.解:∵sin A=,∴∠A=60°,∵tan C=,∴∠C=60°,∴∠B=180°﹣∠A﹣∠C=180°﹣60°﹣60°=60°.∴△ABC是等边三角形.故选:C.3.解:如图,过P点作P A⊥x轴于A,则∠POA=α,∵点P的坐标为(1,3),∴OA=1,P A=3,∴tan∠POA===3,即tanα=3.故选:D.4.解:∵∠C=90°,sin A==,BC=,∴AB=BC=×=2,∴AC====.故选:C.5.解:如图:在Rt△ABC中,AC==.故选:D.6.解:如图,AB=AC,AD⊥BC,∴BD=CD,∵BC:AD=2:,∴tan B==,∴∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故选:C.7.解:如图:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,∴∠BAD=∠D=22.5°,设AC=BC=1,则AB=BD=AC=,∴CD=BC+BD=1+,在Rt△ADC中,tan22.5°===﹣1,故选:B.8.解:∵AD⊥BC,BD=9,cos B=,∴AB==15,AD==12,∵DC=5,∴AC==13,∵E为边AC的中点,∴ED=,∴∠EDA=∠DAE,∴cos∠EDA=cos∠DAE=,故选:D.9.解:连接AD,∵△ABC中,AB=AC=10,BC=12,D为BC中点,∴AD⊥BC,BD=BC=6,∴AD=,∴tan∠BAD=.∵AD⊥BC,DE⊥AB,∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,∴∠BDE=∠BAD,∴tan∠BDE=tan∠BAD=,故选:C.10.解:如图,过点C作CE⊥BA交BA的延长线于E.∵∠BAC=120°,∴∠CAE=180°﹣120°=60°,∴AE=AC•cos60°=4,EC=AC•sin60°=4,∵AB=4,∴BE=AB+AE=8,∴BC===4,故选:B.二.填空题11.解:∵∠C=90°,AC=4,cos A=,∴AB=5,∴BC===3,∵∠DBC=∠A.∴cos∠DBC=cos∠A==,∴BD=3×=,故答案为:.12.解:分两种情况:当等腰三角形的腰长为4,底边长为6时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=4,AD⊥BC,∴BD=DC=BC=3,在Rt△ABD中,cos B==,当等腰三角形的腰长为6,底边长为4时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=6,AD⊥BC,∴BD=DC=BC=2,在Rt△ABD中,cos B===,综上所述:cosα=或,故答案为:或.13.解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故答案为:2.14.解:过点A作AM⊥y轴于点M,作AN⊥BG于点N,如图所示:则∠AMC=90°,∠ANB=90°,∵直线y=﹣2与x轴平行,∴∠ABN=α,∠CGB=90°,∵AC⊥BC,∴∠ACB=90°,∵∠ACM+∠MAC=90°,∠ACM+∠BCG=90°,∴∠CAM=∠BCG,∵∠AMC=∠CGB=90°,∴△AMC∽△CGB,∴,设BG=m,∵点A坐标为(4,3),点C坐标为(0,n),∴AM=4,GC=n+2,CM=3﹣n,∴=,当n=2时,可得,解得m=1,∴GB=1,BN=3,∴tanα==;∵tanα=,当BN最小,即BG最大时,tanα最大,∵=,∴m=﹣(n﹣3)(n+2)=﹣(n﹣)2+,∵﹣<0,∴当n=时,m取得最大值,即tanα最大,故答案为:,.15.解:如图,过点A作AF⊥BE于点F,设AD与BF交于点G,∵∠ABE=45°,∴△ABF是等腰直角三角形,∴AF=BF,∵∠GDB=∠AFG=90°,∠BGD=∠AGE,∴∠GBD=∠F AG,∴tan∠GBD=tan∠F AG,∴==,设DG=x,则BD=2x,∴BG==x,设FG=a,则AF=2a,∴BF=AF=2a,AG==a,∴BG=BF﹣FG=a,∴a=x,∴AD=AG+DG=a+x=6x,∵DC=BC﹣BD=AD﹣BD=a+x﹣2x=a﹣x=4x,在Rt△ADC中,根据勾股定理得AD2+DC2=AC2,∴(6x)2+(4x)2=(2)2,∴x=1(负值舍去),∴BC=AD=6x=6.故答案为:6.三.解答题16.解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∴a=b=12,∴∠B=30°,b=4,a=12;(2)在Rt△ABC中,∠C=90°,a=3,b=9,∴tan A===,∴∠A=30°,∴∠B=90°﹣∠A=60°,c=2a=6,∴∠A=30°,∠B=60°,c=6.17.解:(1)过点B作BC⊥OA于点C,在Rt△BOC中,OB=4,sin∠AOB=,∴BC=OB•sin∠AOB=4×=3,∴,∴点B的坐标为(,3);(2)∵点A的坐标为(,0),∴OA=,∴AC=OA﹣OC==,∵∠ACB=90°,∴,∴,∴sin∠OAB的值为.18.解:如图,设CE交BD于G.∵∠A=∠A=90°,∠ADC=∠ABD,∴△ADC∽△ABD,∴,,解得AD=5,∴DC==,DB==,∵∠A=∠ECD=∠CBE=90°,∴∠ACD+∠ECB=90°,∠ACD+∠ADC=90°,∴∠ADC=∠ECB,设∠DBA=∠CDA=α,则∠ECB=α,∴∠GCB=∠GBC=α,∴CG=GB,设CG=GB=x,∴DG=﹣x,∴()2+x2=(﹣x)2,解得x=,∴tan∠CDB==.19.解:(1)∵∠ACB=90°,AC=30,sin B==,∴AB=50,∵D为直角三角形ABC斜边上的中点,∴CD=AB=25;(2)∵AB=50,D为AB的中点,∴AD=BD=25,∵BE⊥CD,∴∠E=90°,由勾股定理得:BC===40,由勾股定理得:BE2=BD2﹣DE2=BC2﹣CE2,即252﹣DE2=402﹣(25+DE)2,解得:DE=7,∴cos∠BDE==.20.解:过C点作CD⊥AB于D,过B点作BE⊥AC于E,∴sin A=,sin B=,∴CD=b sin∠A=a sin B,∴,同理,∴.。

北师大版初三数学9年级下册 第1章 1.6 利用三角函数测高 同步练习题(含答案)

北师大版初三数学9年级下册 第1章 1.6 利用三角函数测高 同步练习题(含答案)

北师大版九年级数学下册《1.6利用三角函数测高》同步练习题(附答案)1.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( )A.50B.51C.50+1D.1012.如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A 处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )A.100m B.50m C.50m D.m3.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B 处与灯塔P的距离为( )A.40海里B.40海里C.80海里D.40海里4.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为( )A.20米B.米C.米D.米5.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C 地,此时王英同学离A地( )A.m B.100m C.150m D.m6.如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为( )A.82米B.163米C.52米D.30米7.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 m(结果保留根号).8.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为 米.9.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为 m(结果不作近似计算).10.小兰想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m 至B处,测得仰角为60°,那么塔高约为 m.(小兰身高忽略不计,取)11.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为 米.12.如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)13.如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船c的求救信号.已知A、B两船相距100(+3)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处200海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)14.某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)15.军方派出搜救船在失事海域搜寻飞机残骸和黑匣子(如图).在海面A处搜救船测得俯角为30°正前方的海底有黑匣子信号发出,继续直线航行2千米后再次在B处测得俯角为45°正前方的海底有黑匣子信号发出,求海底C处距离海面的深度?(参考数据:)16.如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).(1)用含α、β和m的式子表示h;(2)当α=45°,β=60°,m=50米时,求h的值.(精确到0.1m,≈1.41,≈1.73)17.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2021米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)18.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).19.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A 点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.20.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m)21.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A处,情况危急!救援队伍在B处测得A在B的北偏东60°的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A处救人,同时第二组从陆地往正东方向奔跑120米到达C处,再从C处下水游向A 处救人,已知A在C的北偏东30°的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A处?请说明理由.(参考数据=1.732)22.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.23.某中学初三(2)班数学活动小组利用周日开展课外实践活动,他们要在湖面上测量建在地面上某塔AB的高度.如图,在湖面上点C测得塔顶A的仰角为45°,沿直线CD 向塔AB方向前进18米到达点D,测得塔顶A的仰角为60度.已知湖面低于地平面1米,请你帮他们计算出塔AB的高度.(结果保留根号)24.如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°,已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)25.如图,要测量A点到河岸BC的距离,在B点测得A点在B点的北偏东30°方向上,在C点测得A点在C点的北偏西45°方向上,又测得BC=150m.求A点到河岸BC的距离.(结果保留整数)(参考数据:≈1.41,≈1.73)参考答案1.解:设AG=x米,在Rt△AEG中,∵tan∠AEG=,∴EG==x(m),在Rt△ACG中,∵tan∠ACG=,∴CG==x(m),∴x﹣x=100,解得:x=50.则AB=(50+1)米.故选:C.2.解:根据题意得:∠ABC=30°,AC⊥BC,AC=100m,在Rt△ABC中,BC===100(m).故选:A.3.解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.4.解:∵点G是BC中点,EG∥AB,∴EG是△ABC的中位线,∴AB=2EG=30米,在Rt△ABC中,∠CAB=30°,则BC=AB tan∠BAC=30×=10米.如图,过点D作DF⊥AF于点F.在Rt△AFD中,AF=BC=10米,则FD=AF•tanβ=10×=10米,综上可得:CD=AB﹣FD=30﹣10=20米.故选:A.5.解:AD=AB•sin60°=50;BD=AB•cos60°=50,∴CD=150.∴AC==100.故选:D.6.解:设楼高AB为x.在Rt△ADB中有:DB==x,在Rt△ACB中有:BC==x.而CD=BD﹣BC=(﹣1)x=60,解得x≈82.故选:A.7.解:∵自楼的顶部A看地面上的一点B,俯角为30°,∴∠ABC=30°,∴AC=AB•tan30°=30×=10(米).∴楼的高度AC为10米.故答案为:10.8.解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故答案为:750.9.解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DC=BE=AB﹣AE=18﹣6=12(m).故答案为:12.10.解:∵∠DAB=30°,∠DBC=60°,∴BD=AB=50m.∴DC=BD•sin60°=50×=43.3.故答案为:43.3.11.解:过点D作DE⊥AB,垂足为E,由题意可知,四边形ACDE为矩形,则AE=CD=6米,AC=DE.设BE=x米.在Rt△BDE中,∵∠BED=90°,∠BDE=30°,∴DE=BE=x米,∴AC=DE=x米.在Rt△ABC中,∵∠BAC=90°,∠ACB=60°,∴AB=AC=×x=3x米,∵AB﹣BE=AE,∴3x﹣x=6,∴x=3,AB=3×3=9(米).即旗杆AB的高度为9米.故答案为9.12.解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=10m,∵BC=25m,∴BF=NE=(25+10)m,∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,答:建筑物AB的高为(35+10)m.13.解:(1)作CE⊥AB于点E,则∠ABC=45°,∠BAC=60°,设AE=x海里,∵在Rt△AEC中,CE=AE•tan60°=x,在Rt△BCE中,BE=CE=x,∴AE+BE=x+x=100(3+),解得x=100,∴AC=2x=200.在△ACD中,∵∠DAC=60°,∠ADC=75°,∴∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得y=100(3﹣),∴AD=2y=200(3﹣).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(3﹣)海里;(2)∵由(1)可知,DF=AF=×100(3﹣)≈219.∵219>200,∴巡逻船A沿直线AC去营救船C,在去营救的途中无触暗礁危险.14.解:在Rt△CDA中,∠ACD=30°,CD=3000米,∴AD=CD tan∠ACD=1000米,在Rt△CDB中,∠BCD=60°,∴BD=CD tan∠BCD=3000米,∴AB=BD﹣AD=2000米.答:此时渔政船和渔船相距2000米.15.解:过C作CD垂直AB于D点,设CD为x,在Rt△ACD与Rt△BCD中,∠CAD=30°,∠CBD=45°,AC=CD=2x,AD =AB+CD=2+x,∴在Rt△ACD中有:(2+x)2+x2=(2x)2,∴(舍去).答:海底C处距海面2.732千米.16.解:(1)在Rt△ABC中,有BC=AB÷tanα=;同理:在Rt△ABD中,有BD=AB÷tanβ=;且CD=BC﹣BD=m;即﹣=m;故h=,(2)将α=45°,β=60°,m=50米,代入(1)中关系式可得h=,=,=75米+25米,≈118.3米.17.解:设CF=x米,在Rt△ACF和Rt△BCF中,∵∠BAF=30°,∠CBF=45°,∴BC=CF=x米,=tan30°,即AC=x米,∵AC﹣BC=1200米,∴x﹣x=1200,解得:x=600(+1),则DF=h﹣x=2021﹣600(+1)≈382(米).答:钓鱼岛的最高海拔高度约382米.18.解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD约为:415m.19.解:根据题意得:∠CAB=90°﹣60°=30°,∠CBD=90°﹣30°=60°,AB=200米,CD⊥AB,则∠ACB=∠CBD﹣∠CAB=60°﹣30°=30°,则BC=AB=200米,在Rt△CBD中,CD=BC•sin60°=200×=100(米).答:河宽CD为100米.20.解:设CE=xm,则由题意可知BE=xm,AE=(x+100)m.在Rt△AEC中,tan∠CAE=,即tan30°=,∴,3x=(x+100),解得x=50+50=136.6,∴CD=CE+ED=136.6+1.5=138.1≈138(m).答:该建筑物的高度约为138m.21.解:过A作AD⊥BC,交BC的延长线于点D,∵A在B北偏东60°方向上,∴∠ABD=30°,又∵A在C北偏东30°方向上,∴∠ACD=60°又∵∠ABC=30°,所以∠BAC=30°,∴∠ABD=∠BAC,所以AC=BC∵BC=120,所以AC=120在Rt△ACD中,∠ACD=60°,AC=120,∴CD=60,AD=在Rt△ABD中,∵∠ABD=30°,∴AB=第一组时间:第二组时间:因为207.84>150所以第二组先到达A处.答:第二组先到.22.解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°﹣45°=45度.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°﹣60°=30°∴AD=x∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.23.解:如图,延长CD,交AB的延长线于点E,则∠AEC=90°,∠ACE=45°,∠ADE=60°,CD=18,设线段AE的长为x米,在Rt△ACE中,∵∠ACE=45°,∴CE=x,在Rt△ADE中,∵tan∠ADE=tan60°=,∴DE=x,∵CD=18,且CE﹣DE=CD,∴x﹣x=18,解得:x=27+9,∵BE=1米,∴AB=AE﹣BE=(26+9)(米).答:塔AB的高度是(26+9)米.24.解:设AF=x;在Rt△AGF中,有GF==x,同理在Rt△AEF中,有EF==x.结合图形可得:GE=CD=EF﹣GF=30即x﹣x=30,解可得:x=15;故AB=15+答:塔高AB为15+米.25.解:过点A作AD⊥BC于点D,设AD=xm.在Rt△ABD中,∵∠ADB=90°,∠BAD=30°,∴BD=AD•tan30°=x.在Rt△ACD中,∵∠ADC=90°,∠CAD=45°,∴CD=AD=x.∵BD+CD=BC,∴x+x=150,∴x=75(3﹣)≈95.即A点到河岸BC的距离约为95m.。

2020年春北师大版本九年级数学下册 第二章 二次函数周周测10(全章)

2020年春北师大版本九年级数学下册 第二章 二次函数周周测10(全章)

(第5(第3题)第二章 二次函数自我检测题(满分85分)一、选择题(每题5分,共25分)1.抛物线的顶点坐标是()342-=x y A .(3,0)B .(-3,0)C .(0,3)D .(0,-3)2.若直线经过第一、三、四象限,则抛物线的顶点必在()3y x m =+2()1y x m =-+A .第一象限 B .第二象限 C .第三象限 D .第四象限3.你知道吗?平时我们跳大绳时,绳甩到最高处时的形状可近似地看做抛物线。

如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4m ,距地面均为1m ,学生丙、丁分别站在距甲拿绳的手水平距离1m ,2.5m 处。

绳子在甩到最高处时刚好通过他们的头顶。

已知学生丙的身高是1.5m ,则学生丁的身高为(建立的平面直角坐标系如图所示)()A .1.5m B .1.625m C .1.66m D .1.67m4.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为()5.已知抛物线和直线l 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线l 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系为( )A. y 1<y 2<y 3 B. y 3<y 1<y 2 C. y 3<y 2<y 1 D. y 2<y 1<y 3二、填空题(每题5分,共25分)6.已知抛物线y=ax 2+b x +c 经过(-1,2)和(3,2)两点,则4a +2b+3的值为 .7.若将二次函数y =x 2-2x +3配方为y =(x -h )2+k 的形式,则y = .8.在距离地面2米高的某处把一物体以初速度(米/秒)竖直向上抛出,在不计空气阻v力的情况下,其上升高度(米)与抛出时间(秒)满足: (其中是s t 2021gt t v s -=g 常数,通常取10米/秒2),若米/秒,则该物体在运动过程中最高点距离地面100=v _______米.9.已知抛物线的对称轴是,且经过点和点,则该抛物c bx ax y ++=22=x )4,1()0,5(线的解析式为________。

北师大版数学九年级下册:圆章节知识点及练习题

北师大版数学九年级下册:圆章节知识点及练习题

圆章节知识点及其练习题一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;A2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;图4图5(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

2024-2025学年北师大版九年级数学下册《2.2二次函数的图象与性质》同步练习题(附答案)

2024-2025学年北师大版九年级数学下册《2.2二次函数的图象与性质》同步练习题(附答案)一.选择题1.与抛物线y=﹣x2+1的顶点相同、形状相同且开口方向相反的抛物线所对应的函数表达式为()A.y=﹣x2B.y=x2﹣1C.y=﹣x2﹣1D.y=x2+12.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1B.1C.D.3.已知函数y=2mx2+(1﹣4m)x+2m﹣1,下列结论错误的是()A.当m=0时,y随x的增大而增大B.当m=时,函数图象的顶点坐标是(,﹣)C.当m=﹣1时,若x<,则y随x的增大而减小D.无论m取何值,函数图象都经过同一个点4.二次函数y=ax2+bx+c图象如图所示,则一次函数y=bx+c的大致图象是()A.B.C.D.5.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小7.二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣3﹣2﹣101y3m7n7则当x=3时,y的值是()A.3B.m C.7D.n8.已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有()①abc<0②3a+c>0③4a+2b+c<0④2a+b=0⑤b2>4acA.2B.3C.4D.59.若A(﹣4,y1),B(﹣1,y2),C(2,y3)为二次函数y=﹣(x+2)2+3的图象上的三点,则y1,y2,y3的关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 10.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和5二.填空题11.在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.请问:若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是.12.若函数y=(m2﹣m)x是二次函数,则m=.13.若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.14.二次函数y=﹣3(x﹣2)2+1顶点坐标.15.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)16.抛物线y=2x2+8x+5的顶点坐标为.17.把函数y=﹣x2﹣4x﹣5配方得,它的开口方向,顶点坐标是,对称轴是,当x=时,函数y有最值为.18.抛物线的顶点为(2,﹣3),与y轴交于点(0,﹣7),则该抛物线的解析式为.19.关于x的二次函数y=ax2+a2的最大值为4,则a的值为;三.解答题20.已知函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?21.当m=时,是关于x的二次函数.22.已知二次函数y1=ax2+bx+1(a>0),一次函数y2=x.(Ⅰ)若二次函数y1的图象与一次函数y2的图象只有一个交点,求a与b之间的关系;(Ⅱ)在(Ⅰ)的条件下,y1的图象与y2图象的交点为P,且点P的横坐标是2,若将y2向上平移t个单位,与y1交于两点Q,R,△PQR面积为2,求t;(Ⅲ)二次函数y1图象与一次函数y2图象有两个交点(x1,y1)(x2,y2),且满足x1<2<x2<4,此时设函数y1的对称轴为x=m,求m的范围.23.已知二次函数y=x2+4x+3.(1)用配方法将二次函数的表达式化为y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象;(3)根据(2)中的图象,写出一条该二次函数的性质.参考答案一.选择题1.解:与抛物线y=﹣x2+1顶点相同,形状也相同,而开口方向相反的抛物线,即与抛物线y=﹣x2+1只有二次项系数不同.即y=x2+1,故选:D.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第四个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:当m=0时,y=x﹣1,则y随x的增大而增大,故选项A正确,当m=时,y=x2﹣x=(x﹣)2﹣,则函数图象的顶点坐标是(,﹣),故选项B正确,当m=﹣1时,y=﹣2x2+5x﹣3=﹣2(x﹣)2,则当x<,则y随x的增大而增大,故选项C错误,∵y=2mx2+(1﹣4m)x+2m﹣1=2mx2+x﹣4mx+2m﹣1=(2mx2﹣4mx+2m)+(x﹣1)=2m(x﹣1)2+(x﹣1)=(x﹣1)[2m(x﹣1)+1],∴函数y=2mx2+(1﹣4m)x+2m﹣1,无论m取何值,函数图象都经过同一个点(1,0),故选项D正确,故选:C.4.解:∵二次函数的图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵函数图象经过原点,∴c=0,∴一次函数y=bx+c在坐标系中的大致图象是经过原点且从左往右下降的直线,故选:D.5.解:(1)因为图象过点(1,0),且对称轴是直线x=2,另一个对称点为(3,0),正确;(2)顶点的横坐标应为对称轴,本题的顶点坐标与已知对称轴矛盾,错误;(3)抛物线与x轴两交点为(1,0),(3,0),故在x轴上截得的线段长是2,正确;(4)图象过点(1,0),且对称轴是直线x=﹣=2时,则b=﹣4a,即a﹣4a+c=0,即可得出c=3a,正确.正确个数为3.故选:B.6.解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣)2+,顶点坐标是(,);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣﹣,|x2﹣x1|=+>,所以当m>0时,函数图象截x轴所得的线段长度大于,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0即对任意m,函数图象都经过点(1,0),函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=,在对称轴的右边y随x的增大而减小.因为当m<0时,=﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选:D.7.解:设二次函数的解析式为y=ax2+bx+c,∵当x=﹣1或1时,y=7,∴抛物线的对称轴为x=0,由抛物线的对称性可知x=﹣3与x=3对称,∴当x=3时,y=3.故选:A.8.解:①由抛物线的对称轴可知:>0,∴ab<0,∵抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵=1,∴b=﹣2a,∴由图可知x=﹣1,y<0,∴y=a﹣b+c=a+2a+c=3a+c<0,故②错误;③由(﹣1,0)关于直线x=1对称点为(3,0),(0,0)关于直线x=1对称点为(2,0),∴x=2,y>0,∴y=4a+2b+c>0,故③错误;④由②可知:2a+b=0,故④正确⑤由图象可知:Δ>0,∴b2﹣4ac>0,故⑤正确;故选:B.9.解:二次函数y=﹣(x+2)2+3的图象的开口向下(因为a=﹣1<0),对称轴是直线x =﹣2,所以在对称轴的右侧,y随x的增大而减小,点A关于对称轴对称的点的坐标为(0,y1),∵﹣1<0<2,∴y3<y1<y2,故选:C.10.解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,x=﹣1时y有最小值,是﹣4,故选:B.二.填空题11.解:依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数y′=的图象上(如图),当x=﹣5时,y=25﹣16=9,当y=9时,x2=7,∵x>0,∴x=∵﹣16≤y′≤16,当y′=16,代入y′=,得:x=4,当y=﹣16,代入上式得:x=4,若a<4,则y取不到﹣16;当a>4,则y取值超过范围;故≤a<4.12.解:由题意,得m2+m=2且m2﹣m≠0,解得m=﹣2.故答案为:﹣2.13.解:由题意,得m2﹣2m﹣1=2,且m2+m≠0,解得m=3,故答案为:3.14.解:二次函数y=﹣3(x﹣2)2+1图象的顶点坐标是(2,1).故答案为:(2,1).15.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a416.解:∵y=2x2+8x+5=2(x+2)2﹣3,∴该抛物线的顶点坐标为(﹣2,﹣3),故答案为:(﹣2,﹣3).17.解:y=﹣x2﹣4x﹣5=﹣(x2+4x+5)=﹣(x+2)2﹣1.∵a=﹣1<0,∴开口向下,顶点坐标(﹣2,﹣1),对称轴为直线x=﹣2.当x=﹣2时,函数y有最大值为﹣1,故答案为:y=﹣(x+2)2﹣1,下,(﹣2,﹣1),直线x=﹣2,﹣2,大,﹣1.18.解:∵抛物线的顶点为(2,﹣3),∴设这个二次函数的解析式y=a(x﹣2)2﹣3,∵抛物线与y轴交于点(0,﹣7),∴﹣7=4a﹣3,解得:a=﹣1,则这个二次函数的解析式y=﹣(x﹣2)2﹣3.故答案为y=﹣(x﹣2)2﹣319.解:∵关于x的二次函数y=ax2+a2的最大值为4,∴a<0,且a2=4,∴a<0且a=±2,∴a=﹣2.故答案为﹣2.三.解答题20.解:(1)函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m,若这个函数是二次函数,则m2﹣m≠0,解得:m≠0且m≠1;(2)若这个函数是一次函数,则m2﹣m=0,m﹣1≠0,解得m=0;(3)这个函数不可能是正比例函数,∵当此函数是一次函数时,m=0,而此时2﹣2m≠0.21.解:根据二次函数的定义:m2+m=2,解得:m=﹣2或1,又m+2≠0,m≠﹣2,故m=1.故答案为:1.22.解:(1)若二次函数y1的图象与一次函数y2的图象只有一个交点,即:ax2+bx+1=x,△=(b﹣1)2﹣4a=0,解得:b2﹣2b+1=4a,…①答:a与b之间的关系是b2﹣2b+1=4a;(2)图象如上图所示,若将y2向上平移t个单位后所在直线为PR所在直线为y=x+t,将P点坐标(2,2)代入二次函数方程得:4a+2b+1=2…②联立方程①②解得:b=0,a=,点Q、R的坐标由方程③和二次函数联立得:x2﹣x+1﹣t=0,则:|x Q﹣x P|=4,S△PQR=•|x Q﹣x P|•PH=2,解得:t=1,答:t=1;(3)若二次函数y1的图象与一次函数y2的图象有两个交点(x1,0)(x2,0),且满足x1<2<x2<4则ax2+(b﹣1)x+1=0有两不同实根x1,x2,且x1<2<x2<4,a>0故x=2时ax2+(b﹣1)x+1<0,x=4时ax2+(b﹣1)x+1>0,,②﹣3×①得:4a﹣2b>0,∵a>0,故m=﹣>﹣1,∴m>﹣1,解得:m>﹣1;答:m的范围为m>﹣1.23.解:(1)y=x2+4x+3=x2+4x+22﹣22+3=(x+2)2﹣1;(2)列表:x…﹣4﹣3﹣2﹣10…y…30﹣103…如图,(3)当x<﹣2时,y随x的增大而减小,当x>﹣2时,y随x的增大而增大.。

北师大版九年级数学下册第二章教学课件全套


双曲线
x
导入新知
正方体的六个面是全等的正方形(如图),设正 方体的棱长为x,表面积为y. 显然,对于x的 每一个值,y都有一个对应值,即y是x的函数, 它们的具体关系可以表示为 y=6x2.
这个函数与我们学过的函数不同,其中自变 量x的最高次数是2.
这类函数具有哪些性质呢?这就是本章要学 习的二次函数.
-2
(来自《点拨》)
总结
知1-讲
七点法,即先取原点,然后在原点两侧对称地取六 个点,由于关于y轴对称的两个点的横坐标互为相反数, 纵坐标相等,所以先计算y轴右侧三个点的坐标,则左 侧三个点的坐标对应写出即可.
(来自《点拨》)
知1-练
1 已知正方形的边长为x(cm),则它的面积y(cm2) 与边长x(cm)的函数关系图象为( C )
不要漏掉一些约束条件.列不等式组是求自变量的
取值范围的常见方法.
(来自《点拨》)
知3-练
1 圆的半径是1cm,假设半径增加x cm时,圆的面积增 加 y cm2. (1)写出y与x之间的关系式;
解: (1) y=π·(1+x)2-π·12=πx2+2πx, 即y与x之间的关系式为y=πx2+2πx.
(来自《教材》)
知3-练
2 一台机器原价60万元,如果每年的折旧率为x,两年 后这台机器的价格为y万元,则y与x之间的函数表达 式为( A )
A.y=60(1-x)2
B.y=60(1-x)
C.y=60-x2
D.y=60(1+x)2
(来自《典中点》)
知3-练
3 如图,在Rt△AOB中,AB⊥OB,且AB=OB=3,设
a≠0
二次项
一次项
指出方程各项的 系数时要带上前

北师大版九年级数学下册全册同步练习含答案

北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( )A. sin A=53B.cos A=23C.sin A=23D.tan A=522.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A.35B.45C.43D.343.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=35,AB=4,则AD的长为 ( )A.3 B.16 3C. 203D.165二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=34,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =163,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=35.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案 1.C[提示:sinA=BCAB.] 2.D[提示:过A 点作垂线交底部于C 点,则△ACB 为直角三角形,∴BC =2222106AB AC -=-=8(m),∴tan a =68=34.故选D .]3.B[提示:∠ADE 和∠EDC 互余,∴cos a =sin ∠EDC =35,sin ∠EDC =3,45EC EC DC ==∴EC =125.由勾股定理,得DE =165.在Rt △AED 中,cos a =16355DE AD AD ==,∴AD=163.故选B .] 4.4[提示:在Rt △BCA 中,AC =3米,cos ∠BAC =34AC AB =,所以AB =4米,即梯子的长度为4米.]5.48°[提示:∵sin 2a +cos 2a =l ,∴a =48°.] 6.提示:sin A =13,cos A =223,tan A =24.7.解:∵∠ACB =90°,CD ⊥AB ,∴△ACD ∽△CBD ,∴CD 2=AD ·DB =16,∴CD =4,∴AC =22203AD CD +=.∴sin A ==35CD AC =,cos A =45AD AC =,tan A =34CD AD =. 8.解:(1)如图l -27所示,作BH ⊥OA , 垂足为H .在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =3,∴OH =4,∴点B 的坐标为(4,3). (2)∵OA =10,OH =4,∴AH =6.在Rt △AHB 中,∵BH =3,∴AB =22223635BH AH +=+=,∴cos ∠BAO=635AH AB == 255. 9.解:(1)根据题意画出图形,如图1-28所示,∵AB =AC ,AD ⊥BC ,AD =BC ,∴BD =12B C = 12AD ,即AD =2BD ,∴AB =225BD AD +=BD ,∴tan ∠ABC=ADBD=2,sin ∠ABC=AD AB =255 (2)作BE ⊥AC 于E ,在Rt △BEC 中,sinC=sin ∠ABC=255.又∵sin C=,BEBC.5BE故BE=.1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC 中,∠A ,∠B 都是锐角,且 sin A =21,cos B =22,则△ABC 三个角的大小关系是( )A .∠C >∠A >∠B B .∠B >∠C >∠A C .∠A >∠B >∠CD .∠C >∠B >∠A2.若0°<<90°,且|sin -41|+223cos ⎪⎪⎭⎫ ⎝⎛-θ,则tan 的值等于( )A .3B .33 C .21 D .233.如图1—37所示,在△ABC 中,∠A =30°,tan B =32,AC =23,则AB 的长是 ( ) A .3+3 B .2+23 C. 5 D .924.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是( ) A .32a B .a C.12a D .12a 或32a 二、选择题5.在Rt △ACB 中,∠C =90°,AC =3,AB =2,则tan2B= . 6.若a 为锐角,且sin a =22,则cos a = . 7.在Rt △ACB 中,若∠C =90°,sin A =32,b +c =6,则b = . 8.(1)在△ABC 中,∠C =90°,sin A =21,则 cos B =________; (2)已知为锐角,且cos(90°-)=21,则 =________;(3)若1)10(tan 3=︒+α,则锐角 =________.三、计算与解答9.计算(1)sin 60°·cos 30°-12.(2) 2 cos 230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt △ACB 中,∠BCA =90°,CD 是斜边上的高,∠ACD =30°,AD =1,求AC ,CD ,BC ,BD ,AB 的长.11.如图1—39所示,在相距100米的A ,B 两处观测工厂C ,测得∠BAC =60°,∠ABC =45°,则A ,B 两处到工厂C 的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=53,若关于x的方程(53+b)x2+2ax+(53-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案 1. D ; 2 。

第2章二次函数与几何综合 题型解读9 二次函数与胡不归阿氏圆问题-北师大版九年级数学下册

<<二次函数与几何综合>>题型解读9 二次函数与“胡不归问题、阿氏圆问题”【解题思路】1.题型特点:求形如“AB+k∙AD”最小值的题目,其中A是动点,B,D是定点①当动点A在直线上运动时,属“胡不归问题”;解题方法:利用特殊角的三角函数值转化,使“AB=k∙AM或k∙AD=AM”,则转化成将军饮马问题的“k∙AM+k∙AD=k(AM+AD)或AB+AM”情形,当A,M,D或A,B,M三点共线时,即有最小值;②当动点A在圆上运动时,属“阿氏圆问题”解题方法:把k∙AD由乘积式转化成比例式,构造一个与AD所在三角形相似的共角模型的三角形,且该三角形的一个顶点为动点A,进而可得k∙AD=过A的一条线段;2.技巧:题目中的“k”是精心设置的数字,一定是图中某两条已知线段的比值。

【例题详解】例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c 的图象交x 轴于A、B 两点,交y 轴于C 点,P 为y 轴上的一个动点,已知A(-2,0),C(0,-2√3),且抛物线的对称轴是直线x=1.(1)求此二次函数的解析式;(y=√34x2−√32x−2√3)(2)连接P B,则12PC+PB 的最小值是________;(3)连接PA、解析:(2)OA=2,OC=2√3,可得∠ACO=30°,作PM⊥AC于点M,则PM=12PC,则求12PC+PB 的最小值即求PM+PB的最小值,当B,P,M三点共线时,即BM⊥AC时有最小值,∠BAM=60°,AB=6,最小值PM=3√3.(3)二次函数与边角存在性问题,构造一线三垂直,两次相似即可解答。

①当P 在y 轴正半轴时,设P(0,a),由“一线三垂直”的相似可得EP=2,EA=a ,AF=2√3,FD=√3a ,设FD 与y 轴交于G 点,则GD=√3a-2,由OB//DG ,可得BO:DG=OP:PG ,即4:(√3a-2)=a:(2√3+a ),解得a=√3+√11,(负值舍去),故P 点坐标为(0,√3+√11)、(0,√3−√11). ②当P 在y 轴负半轴时,设P(0,a),由“一线三垂直”的相似可得EP=2,EA=-a ,AF=2√3,FD=−√3a ,设FD 与y 轴交于G 点,则GD=−√3a-2,由OB//DG ,可得BO:DG=OP:PG ,即4:(−√3a-2)=(-a ):(2√3-a ),解得a=−√3−√11, (正值舍去), 故P 点坐标为(0,√3+√11)、(0,−√3−√11).例2.如图,已知抛物线y=a(x+2)(x-4)(a 为常数,且a>0)与x 轴从左到右依次交于A,B 两点,与y 轴交于点C ,经过点B 的直线y =−√33x +4√33与抛物线的另一交点为D ,且点D 的横坐标为-5.(1)求抛物线的函数表达式;(2)该二次函数图像上有一点P(x,y),使S ∆BCD =S ∆ABP ,求点P 的坐标; (3)设F 为线段BD AF ,求2AF+DF 的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》练习题 01

一、选择题(每小题3分,满分24分)
1.下列函数:y=x(8-x),y=1-221x,y=42x,y=xx62,其中以x为自变
量的二次函数有( )
A.1个 B.2个 C.3个 D.4个

2.在函数2yx,5yx,2yx的图象中,关于y轴对称的图形有( )
A.0个 B.1个 C.2个 D.3个
3.点A(2,3)在函数21yaxx的图象上,则a等于( )
A.1 B.-1 C.2 D.-2
4.下列四个函数中,图象经过原点且对称轴在y轴左侧的二次函数是( )

A.xxy22 B.xxy22 C.y=2(1x)2 D.y=2(1x)2

5.在同一坐标系中,图象与22xy的图象关于x轴对称的函数为( )
A.221xy B.221xy C.22xy D.2xy
6.二次函数y=ax2+bx+c的图象如图所示,则下列结论正确是( )
A.a>0,b>0,c>0 B.a<0,b<0,c<0
C.a<0,b>0,c<0 D.a>0,b<0,c>0

7.将抛物线22xy经过平移得到抛物线2y(4x)21是( )
A.向左平移4个单位,再向下平移1个单位
B.向左平移4个单位,再向上平移1个单位
C.向右平移4个单位,再向下平移1个单位
D.向右平移4个单位,再向上平移1个单位
8.已知抛物线2(0)yxbxca的部分图象如图所示,
若y<0,则x的取值范围是 ( )
A.1<x<4 B.1<x<3
C.x<1或x>4 D.x<1或x>3

二、填空题(每小题3分,满分21分)
1.抛物线2241yxx的开口向 ;顶点坐标是 ;对称轴方程为 .
2.抛物线232yxx不经过第 象限.
3.若点),1(1yP、Q2(1,)y都在抛物线21yx上,则线段PQ的长为 .

4.如图所示,二次函数26yxx的图象交x轴于A、B两点,
交y轴于C点,则ABC的面积ABCS .
5.一条抛物线,顶点坐标为(4,2),且形状与抛物线22yx相同,则它的函数表
达式是 .
6.函数2412xxy的图象与x轴有 个交点;当 时,y值随x值增

大而增大;当x 时, y有最 值.
7.函数cbxaxy2的图象如图所示,则cba 0,
cba24
0.(用“=”、“>”或“<”填空)

三、解答题:
1.(9分)如图所示的是一个二次函数的图象,试求其解析式
解:

2.(10分)已知一抛物线经过点2,6,它与x轴的两交点间的距离为4,对称轴为直
线1x,求此抛物线的解析式.
解:

3.(12分)抛物线2yxbxc(0)a与x轴交于(1,0)A,(3,0)B两点.
(1)求该抛物线的解析式.
(2)一动点P在(1)中抛物线上滑动且满足10ABPS,求此时P点的坐标.

4.(12分)某商场销售一批名牌衬衫,平均每天售出20件,每件可盈利40元.为了扩
大销售增加盈利,尽快减少库存,商场决定采取适当降价措施。调查发现,每件少
盈利1元,商场平均每天可多售出2件衬衫。那么每件衬衫少盈利多少元时,商场
平均每天盈利最多?
解:

5.(12分)某地要修一条水渠,其横截面为等腰梯形(如图所示),其腰与水平线夹角
为60°,如果它的周长(两腰加渠底宽)为定值L,那么水渠渠深h为多少时,可
使水流量达到最大值?
解:

参考答案
一、选择题(每小题3分,满分24分)
1.B 2.B 3.A 4.A 5.C 6.D 7.C 8.B
二、填空题(每小题3分,满分21分).

1.上;(1,-3);x=1. 2. 三; 3.2; 4.15; 5.2(4)2yx;
6.两;x<2;2;大. 7.<;=.
三、解答题(满分55分)

1.2113424yxx。 2.
2
246yxx

3.(1)223yxx;(2)P的坐标为4,5或2,5.
4.每件衬衫少盈利15元时,商场平均每天盈利最多。

5.水渠渠深h为36L时,可使水流量达到最大值。

相关文档
最新文档