高考数学一轮总复习第二章第5节对数函数练习

合集下载

2019版人教版a版高考数学练习:第二章 第五节 对数函数 含解析

2019版人教版a版高考数学练习:第二章 第五节 对数函数 含解析

课时规范练 A 组 基础对点练1.函数y =1log 2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)解析:要使函数有意义,应满足⎩⎪⎨⎪⎧x -2>0,log 2(x -2)≠0,即⎩⎪⎨⎪⎧x >2,x -2≠1,解得x >2且x ≠3.故选C. 答案:C2.设a =⎝⎛⎭⎫1213,b =log 132,c =log 123,则( )A .a >b >cB .a >c >bC .b >c >aD .c >a >b解析:∵b =-log 32∈(-1,0),c =-log 23<-1,a =⎝⎛⎭⎫1213>0,∴a >b >c ,选A. 答案:A3.(2016·高考全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =x B .y =lg x C .y =2xD .y =1x解析:函数y =10lg x 的定义域为(0,+∞),又当x >0时,y =10lg x =x ,故函数的值域为(0,+∞).只有D 选项符合. 答案:D4.函数y =⎩⎪⎨⎪⎧3x ,x ∈(-∞,1),log 2x ,x ∈[1,+∞)的值域为( )A .(0,3)B .[0,3]C .(-∞,3]D .[0,+∞)解析:当x <1时,0<3x <3;当x ≥1时,log 2x ≥log 21=0,所以函数的值域为[0,+∞). 答案:D5.(2018·焦作模拟)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )解析:若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =loga |x |的大致图象如图所示. 故选B. 答案:B6.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( ) A .a >1,c >1 B .a >1,0<c <1 C .0<a <1,c >1 D .0<a <1,0<c <1解析:由对数函数的性质得0<a <1,因为函数y =log a (x +c )的图象在c >0时是由函数y =log a x 的图象向左平移c 个单位得到的,所以根据题中图象可知0<c <1. 答案:D7.(2018·吉安模拟)如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析:因为y =log 12x 在(0,+∞)上为减函数,所以x >y >1.答案:D8.函数y =x 2ln|x ||x |的图象大致是( )解析:易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D.答案:D9.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,若实数a 满足f (2log 3a )>f (-2),则a 的取值范围是( ) A .(-∞,3) B .(0,3) C .(3,+∞)D .(1,3)解析:本题主要考查函数的奇偶性及单调性.∵f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,∴f (x )在区间[0,+∞)上单调递减.根据函数的对称性,可得f (-2)=f (2),∴f (2log 3a )>f (2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a <3,故选B.答案:B10.已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 124),c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:函数y =f (x )是定义在R 上的偶函数, 当x ∈(-∞,0]时,f (x )为减函数, ∴f (x )在[0,+∞)上为增函数, ∵b =f (log 124)=f (-2)=f (2),又1<20.3<2<log 25,∴c >b >a .故选B. 答案:B11.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =adD .d =a +c解析:由已知得5a =b,10c =b ,∴5a =10c ,∵5d =10,∴5dc =10c ,则5dc =5a ,∴dc =a ,故选B. 答案:B12.已知函数f (x )=ln(1+4x 2-2x )+3,则f (lg 2)+f ⎝⎛⎭⎫lg 12=( ) A .0 B .-3 C .3D .6解析:由函数解析式,得f (x )-3=ln(1+4x 2-2x ),所以f (-x )-3=ln(1+4x 2+2x )=ln11+4x 2-2x=-ln(1+4x 2-2x )=-[f (x )-3],所以函数f (x )-3为奇函数,则f (x )+f (-x )=6,于是f (lg 2)+f ⎝⎛⎭⎫lg 12=f (lg 2)+f (-lg 2)=6.故选D. 答案:D13.已知4a =2,lg x =a ,则x =________. 解析:∵4a =2,∴a =12,又lg x =a ,x =10a =10.答案:1014.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=log 2x -1,则f ⎝⎛⎭⎫-22=________. 解析:因为f (x )是定义在R 上的奇函数,所以f ⎝⎛⎭⎫-22=-f ⎝⎛⎭⎫22=-⎝⎛⎭⎫log 222-1=32. 答案:3215.函数f (x )=log 2(-x 2+22)的值域为________.解析:由题意知0<-x 2+22≤22=232,结合对数函数图象(图略),知f (x )∈⎝⎛⎦⎤-∞,32,故答案为⎝⎛⎦⎤-∞,32. 答案:⎝⎛⎦⎤-∞,32 16.若log 2a 1+a 21+a <0,则a 的取值范围是________.解析:当2a >1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a>1. ∵1+a >0,∴1+a 2>1+a .∴a 2-a >0,∴a <0或a >1,此时不合题意. 综上所述,a ∈⎝⎛⎭⎫12,1. 答案:⎝⎛⎭⎫12,1B 组 能力提升练1.已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4f (x +1),x <4,则f (1+log 25)的值为( )A.14 B.⎝⎛⎭⎫1221log 5+ C.12D.120解析:∵2<log 25<3,∴3<1+log 25<4,则4<2+log 25<5,f (1+log 25)=f (1+1+log 25)=f (2+log 25)=⎝⎛⎭⎫1222log 5+=14×⎝⎛⎭⎫122log 5=14×15=120,故选D. 答案:D2.(2018·四川双流中学模拟)已知a =log 29-log 23,b =1+log 27,c =12+log 213,则( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a解析:a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 是增函数,且27>33>26,所以b >a >c ,故选B. 答案:B3.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:∵f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,∴对定义域内的x 值,有f (0)=0, 由此可得a =-1,∴f (x )=lg 1+x1-x, 根据对数函数单调性,由f (x )<0,得0<1+x1-x <1,∴x ∈(-1,0).答案:A4.已知a ,b >0,且a ≠1,b ≠1.若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0解析:根据题意,log a b >1⇔log a b -log a a >0⇔log a ba>0⇔⎩⎪⎨⎪⎧ 0<a <10<ba <1或⎩⎪⎨⎪⎧a >1b a>1,即⎩⎪⎨⎪⎧ 0<a <10<b <a 或⎝ ⎛ a >1b >a .当⎩⎪⎨⎪⎧0<a <10<b <a 时,0<b <a <1,∴b -1<0,b -a <0;当⎩⎪⎨⎪⎧a >1b >a 时,b >a >1,∴b -1>0,b -a >0. ∴(b -1)(b -a )>0.故选D. 答案:D5.已知函数f (x )是定义在(-∞,+∞)上的奇函数,若对于任意的实数x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (2 014)+f (-2 015)+f (2 016)的值为( ) A .-1 B .-2 C .2D .1解析:∵当x ≥0时,f (x +2)=f (x ),∴f (2 014)=f (2 016)=f (0)=log 21=0,∵f (x )为R 上的奇函数,∴f (-2 015)=-f (2 015)=-f (1)=-1.∴f (2 014)+f (-2 015)+f (2 016)=0-1+0=-1.故选A. 答案:A6.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数解析:由题意可得,函数f (x )的定义域为(-1,1),且f (x )=ln1+x 1-x =ln ⎝⎛⎭⎫21-x -1,易知y =21-x-1在(0,1)上为增函数,故f (x )在(0,1)上为增函数,又f (-x )=ln(1-x )-ln(1+x )=-f (x ),故f (x )为奇函数,选A. 答案:A7.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x 的取值范围是( ) A.⎝⎛⎭⎫1100,1 B.⎝⎛⎭⎫0,1100∪(1,+∞) C.⎝⎛⎭⎫1100,100 D .(0,1)∪(100,+∞)解析:不等式可化为⎩⎪⎨⎪⎧ lg x ≥0lg x <2或⎩⎪⎨⎪⎧lg x <0-lg x <2,解得1≤x <100或1100<x <1.∴1100<x <100.故选C. 答案:C8.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)解析:由f (x )=|log 12x |,m <n ,f (m )=f (n )可知,log 12m =-log 12n >0,从而0<m =1n<1,m +3n =m +3m (0<m <1),若直接利用基本不等式,则m +3m ≥23(当且仅当m =3m =3时取得最小值,但这与0<m <1矛盾),利用函数g (x )=x +3x 的单调性(定义或导数)判断当0<x <1时g (x )单调递减,故g (x )>g (1)=4,可知选D. 答案:D9.已知函数y =f (x )(x ∈D ),若存在常数c ,对于∀x 1∈D ,存在唯一x 2∈D ,使得f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c .若f (x )=lg x ,x ∈[10,100],则函数f (x )在[10,100]上的均值为( ) A .10 B.34 C.710D.32解析:因为f (x )=lg x (10≤x ≤100),则f (x 1)+f (x 2)2=lg x 1x 22等于常数c ,即x 1x 2为定值,又f (x )=lg x (10≤x ≤100)是增函数,所以取x 1=10时,必有x 2=100,从而c 为定值32.选D.答案:D10.已知函数f (x )=(e x -e -x )x ,f (log 5x )+f (log 15x )≤2f (1),则x 的取值范围是( )A.⎣⎡⎦⎤15,1 B .[1,5] C.⎣⎡⎦⎤15,5D.⎝⎛⎦⎤-∞,15∪[5,+∞) 解析:∵f (x )=(e x -e -x )x ,∴f (-x )=-x (e -x -e x )=(e x -e -x )x =f (x )(x ∈R),∴函数f (x )是偶函数.∵f ′(x )=(e x -e -x )+x (e x +e -x )>0在(0,+∞)上恒成立.∴函数f (x )在(0,+∞)上单调递增.∵f (log 5x )+f (log 15x )≤2f (1),∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.答案:C11.设方程log 2x -⎝⎛⎭⎫12x=0与log 14x -⎝⎛⎭⎫14x =0的根分别为x 1,x 2,则( ) A .0<x 1x 2<1 B .x 1x 2=1 C .1<x 1x 2<2D .x 1x 2≥2解析:方程log 2x -⎝⎛⎭⎫12x=0与log 14x -⎝⎛⎭⎫14x =0的根分别为x 1,x 2,所以log 2x 1=⎝⎛⎭⎫12x 1,log 14x 2=⎝⎛⎭⎫14x 2,可得x 2=12,令f (x )=log 2x -⎝⎛⎭⎫12x ,则f (2)f (1)<0,所以1<x 1<2,所以12<x 1x 2<1,即0<x 1x 2<1.故选A. 答案:A12.(2017·江西红色七校模拟)已知函数f (x )=ln e x e -x,若f ⎝⎛⎭⎫e 2 013+f ⎝⎛⎭⎫2e 2 013+…+f ⎝⎛⎭⎫2 012e 2 013=503(a +b ),则a 2+b 2的最小值为( ) A .6 B .8 C .9D .12解析:∵f (x )+f (e -x )=ln e x e -x +ln e (e -x )x =ln e 2=2,∴503(a +b )=f ⎝⎛⎭⎫e 2 013+f ⎝⎛⎭⎫2e 2 013+…+f ⎝⎛⎭⎫2 012e 2 013=12⎣⎡f ⎝⎛⎭⎫e 2 013+f ⎝⎛⎭⎫2 012e 2 013+f ⎝⎛⎭⎫2e 2 013+f ⎝⎛⎭⎫2 011e 2 013+…+f ⎝⎛⎭⎫2 012e 2 013+f⎦⎤⎝⎛⎭⎫e 2 013=12×(2×2 012)=2 012, ∴a +b =4,∴a 2+b 2≥(a +b )22=422=8,当且仅当a =b =2时取等号.∴a 2+b 2的最小值为8. 答案:B13.若函数f (x )=⎩⎪⎨⎪⎧log a x , x >2,-x 2+2x -2, x ≤2(a >0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是________. 解析:x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1, f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1,又f (x )的值域是(-∞,-1],∴当x >2时, log a x ≤-1,故0<a <1,且log a 2≤-1, ∴12≤a <1. 答案:⎣⎡⎭⎫12,114.(2018·湘潭模拟)已知函数f (x )=ln x 1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________.解析:由题意可知ln a 1-a +ln b1-b=0,即ln ⎝⎛⎭⎫a 1-a ×b 1-b =0,从而a 1-a ×b1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14,又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 答案:⎝⎛⎭⎫0,14 15.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由于f (x )>1恒成立,所以f (x )min =log a (8-2a )>1,故1<a <83.当0<a <1时,f (x )=log a (8-ax )在[1,2]上是增函数, 由于f (x )>1恒成立, 所以f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4, 故这样的a 不存在. ∴1<a <83.答案:⎝⎛⎭⎫1,83 16.若函数f (x )=log a (x 2-ax +5)(a >0,且a ≠1)满足对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 2)-f (x 1)<0,则实数a 的取值范围为________.解析:当x 1<x 2≤a 2时,f (x 2)-f (x 1)<0,即函数在区间(-∞,a2]上为减函数,设g (x )=x 2-ax+5,则⎩⎪⎨⎪⎧a >1g ⎝⎛⎭⎫a 2>0,解得1<a <2 5.答案:(1,25)。

2021年高考数学大一轮复习 第二章 第5节 对数函数课时冲关 理 新人教A版

2021年高考数学大一轮复习 第二章 第5节 对数函数课时冲关 理 新人教A版

2021年高考数学大一轮复习 第二章 第5节 对数函数课时冲关 理 新人教A 版对应学生用书课时冲关理八/第247页 文八/第215页1.(xx·长沙模拟)已知a =5log3.42,b =5log3.64,c =⎝ ⎛⎭⎪⎫15log 30.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b解析:c =⎝ ⎛⎭⎪⎫15log 30.3可化为c =5log3103 如图所示,结合指数函数的单调性可知选项C 正确.答案:C2.(xx·福建高考)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:因为函数y =log a x 过点(3,1),所以1=log a 3,解得a =3, 所以y =3-x不可能过点(1,3),排除选项A ;y =(-x )3=-x 3不可能过点(1,1),排除选项C ; y =log 3(-x )不可能过点(-3,-1),排除选项D.故选B.答案:B3.若log a (a 2+1)<log a (2a )<0,则a 的取值范围是( ) A .(0,1)B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)∪(1,+∞)解析:∵a 2+1>1,又log a (a 2+1)<0,∴0<a <1.又log a (a 2+1)<log a (2a )<0,∴⎩⎪⎨⎪⎧a 2+1>2a2a >1∴a >12且a ≠1.所以12<a <1,故选C.答案:C 4.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:由f (x )是奇函数可得a =-1, ∴f (x )=lg 1+x 1-x,定义域为(-1,1).由f (x )<0,可得0<1+x1-x <1,∴-1<x <0.故选A.答案:A5.已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是( ) A .(212,+∞)B .[22,+∞)C .(3,+∞)D .[3,+∞)解析:函数f (x )=|lg x |的大致图象如图所示. 由题意结合图知0<a <1,b >1.∵f (a )=|lg a |=-lg a =lg 1a=f (b )=|lg b |=lg b ,∴b =1a .∴a +2b =a +2a .令g (a )=a +2a,则易知g (a )在(0,2)上为减函数,∴当0<a <1时,g (a )=a +2a>g (1)=1+2=3.故选C.答案:C6.(xx·南阳三模)已知函数f (x )=⎩⎪⎨⎪⎧|ln x |0<x ≤e ,2-ln x x >e .若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围为( )A .(1+e,1+e +e 2) B.⎝ ⎛⎭⎪⎫1e +2e ,2+e 2 C .(21+e 2,2+e 2)D.⎝ ⎛⎭⎪⎫21+e 2,1e +2e解析:不妨设a <b <c ,由已知和如图所示的图象可知1e <a <1<b <e<c <e 2,∵-ln a =ln b ,∴ab =1,∵ln b =2-ln c ,∴bc =e 2,∴a +b +c =1b +b +e2b =b +e 2+1bb ∈(1,e)位于函数的减区间,所以将b =1和b =3代入得a +b +c ∈⎝ ⎛⎭⎪⎫1e +2e ,2+e 2,∴a +b +c 的取值范围是⎝ ⎛⎭⎪⎫1e +2e ,2+e 2.答案:B 二、填空题7.(xx·济南模拟)设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,log 2x ,x >0,则f (f (-1))=________.解析:f (-1)=2-1=12,所以f (f (-1))=f ⎝ ⎛⎭⎪⎫12=log 212 =-1.答案:-18.计算:log 2.56.25+lg 0.001+ln e +2-1+log 23=________.解析:原式=log 2.5(2.5)2+lg10-3+ln e 12 +2log232 =2-3+12+32=1.答案:19.(xx·重庆高考)函数f (x )=log 2 x ·log2(2x )的最小值为________.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.答案:-1410.(文科)(xx·中山模拟)已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1恒成立,则f (x )min=log a (8-2a )>1,解得1<a <83.若0<a <1时,f (x )在x ∈[1,2]上是增函数,由f (x )>1恒成立,则f (x )min =log a (8-a )>1,且8-2a >0,∴a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83. 答案:⎝ ⎛⎭⎪⎫1,83 10.(理科)(xx·哈尔滨模拟)已知函数f (x )=ln x1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________.解析:由题意可知ln a 1-a +ln b1-b =0,即ln ⎝⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1, 化简得a +b =1,故ab =a (1-a )=-a 2+a=-⎝ ⎛⎭⎪⎫a -122+14,又0<a <b <1,所以0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14.答案:⎝ ⎛⎭⎪⎫0,14 三、解答题11.(xx·珠海模拟)函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式. (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12 (-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12-x ,x <0.(2)因为f (4)=log 124=-2,因为f (x )是偶函数,所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5). 12.已知函数f (x )=lnx -1x +1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x -1x +1>ln mx +17-x恒成立,求实数m 的取值范围.解:(1)由x -1x +1>0, 解得x <-1或x >1,∴定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x -1-x +1=ln x +1x -1=ln ⎝⎛⎭⎪⎫x -1x +1-1=-ln x -1x +1=-f (x ), ∴f (x )=lnx -1x +1是奇函数. (2)由x ∈[2,6]时,f (x )=lnx -1x +1>lnmx+17-x恒成立.∴x-1x+1>mx+17-x>0,∵x∈[2,6],∴0<m<(x-1)(7-x)在x∈[2,6]上成立.令g(x)=(x-1)(7-x)=-(x-4)2+9,x∈[2,6],由二次函数的性质可知x∈[2,4]时函数g(x)单调递增,x∈[4,6]时函数g(x)单调递减,x∈[2,6]时,g(x)min=g(6)=5,∴0<m<5.[备课札记]22269 56FD 国21823 553F 唿33154 8182 膂 35302 89E6 触`23162 5A7A 婺i32985 80D9 胙!28520 6F68 潨20930 51C2 凂(S33878 8456 葖。

高考数学一轮总复习第二章函数 5对数函数课件

高考数学一轮总复习第二章函数 5对数函数课件
第二章 函数
2.5 对数函数
1.通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数
函数的图象,探索并了解对数函数的单调性与特殊点.
2.知道对数函数 = log 与指数函数 = 互为反函数( > 0,且 ≠ 1).
【教材梳理】
1.对数函数
= log
≠ 1)的图象一定相交,且交点必在直线 = 上.
( ×)
2.若函数 = log 2 + 1 的定义域是[0,1],则函数 的值域为(
A.[0,1]

B. 0,1
C.(−∞, 1]
)
D.[1, +∞)
解:由题意,知 在[0,1]上单调递增.又 0 = 0, 1 = 1,所以 ∈ [0,1].故选A.
1
4
< < 4.
1
故的取值范围是( ,4).故选C.
4
命题角度3 综合应用
例4 已知函数 = 2log 4 − 2
log 4 +
(1)当 ∈ [1,16]时,求 的值域;
(2)求不等式 > 2的解集.
1
2
.
解:(1)令 = log 4 ,当 ∈ [1,16]时, ∈ [0,2].
3
0,
4
∪ 1, +∞ .
【点拨】 在解决与对数函数相关的不等式问题时,要优先考虑利用对数函数的
单调性.在利用单调性时,一定要明确底数的取值对函数增减性的影响,同时注意真
数必须为正.
变式3(1) 若log 2 + 1 < log 2 < 0,则的取值范围是(
A. 0,1
1

高考数学一轮复习第二章函数、导数及其应用第5讲对数与对数函数课件文新人教版

高考数学一轮复习第二章函数、导数及其应用第5讲对数与对数函数课件文新人教版

3.(2018·成都模拟)函数y= log0.54x-3的定义域为 ________. [解析] 由log0.5(4x-3)≥0且4x-3>0,得34<x≤1. [答案] 34,1
题型一 对数的基本运 (基础保分题,自主练透)
例1 (1) log232-4log23+4+log213=(
2.对数的性质与运算法则 (1)对数的运算法则 如果 a>0 且 a≠1, M>0,N>0,那么 ①loga(MN)= logaM+logaN ; ②logaMN= logaM-logaN ; ③logaMn= nlogaM (n∈R); ④logamMn= mn logaM(m,n∈R,且 m≠0) .
方法感悟 对数运算的一般思路 1.首先利用幂的运算把底数或真数进行变形,化成分数指数幂 的形式,使幂的底数最简,然后正用对数运算性质化简合并. 2.将对数式化为同底数对数的和、差、倍数运算,然后逆用对 数的运算性质,转化为同底对数真数的积、商、幂的运算. 3.ab=N⇔b=logaN(a>0,且a≠1)是解决有关指数、对数问题 的有效方法,在运算中应注意互化.
1
1
A.4
B.2
C.2
D.4
[解析]
法一:原式=llgg
9 lg 2·lg
43=2llgg
23··2lglg32=4.
法二:原式=2log23·lloogg2243=2×2=4. [答案] D
2.(2017·北京)根据有关资料,围棋状态空间复杂度的上限M约
为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数
(2)对数的性质 ①alogaN= N ;②logaaN= N (a>0 且 a≠1). (3)对数的重要公式 ①换底公式: logbN=llooggaaNb (a,b 均大于零且不等于 1); ②logab=log1ba,推广 logab·logbc·logcd= logad .

高考数学一轮复习讲义 第2章 第5节 对数与对数函数

高考数学一轮复习讲义 第2章  第5节  对数与对数函数

第五节对数与对数函数[考纲要求]1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).突破点一对数的运算[基本知识]1.对数的概念、性质及运算概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a Nlog a1=0,log a a=1,a log a N=_N_运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)(1)换底公式:log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0);(2)log a b=1log b a,推广log a b·log b c·log c d=log a d.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)(-2)3=-8可化为log(-2)(-8)=3.()(2)log2x2=2log2x.()(3)存在这样的M,N使得log2(MN)=log2M·log2N.()答案:(1)×(2)×(3)√二、填空题1.已知log62=p,log65=q,则lg 5=________(用p,q表示).解析:lg 5=log65log610=qlog62+log65=qp+q.答案:q p +q2.计算:2312log +lg 8+32lg 25+⎝⎛⎭⎫925-12=________. 解析:原式=13+3(lg 2+lg 5)+53=5.答案:53.已知4a =2,lg x =a ,则x =________. 解析:∵4a =22a =2,∴a =12.∴lg x =12,∴x =10.答案:104.log 225·log 34·log 59=________.解析:原式=lg 25lg 2·lg 4lg 3·lg 9lg 5=2lg 5lg 2·2lg 2lg 3·2lg 3lg 5=8.答案:8[典例感悟]计算下列各式的值: (1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64.解:(1)原式=log 535+log 550-log 514+2log 12212=log 535×5014+log 122=log 553-1=2.(2)原式=[(log 66-log 63)2+log 62·log 6(2×32)]÷log 64=⎣⎡⎦⎤⎝⎛⎭⎫log 6632+log 62·(log 62+log 632)÷log 622 =[(log 62)2+(log 62)2+2log 62·log 63]÷2log 62 =log 62+log 63=log 6(2×3)=1.[方法技巧]解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2+lg 5=1.[针对训练]1.计算:⎝⎛⎭⎫lg 14-lg 25÷100-12=________. 解析:原式=lg ⎝⎛⎭⎫14×125×10012=lg 10-2×10=-2×10=-20. 答案:-202.计算:lg 5(lg 8+lg 1 000)+(lg 23)2+lg 16+lg 0.06=________.解析:原式=lg 5(3lg 2+3)+3(lg 2)2+lg ⎝⎛⎭⎫16×0.06 =3lg 5·lg 2+3lg 5+3(lg 2)2-2= 3lg 2(lg 5+lg 2)+3lg 5-2=3lg 2+3lg 5-2=1.答案:13.(2019·宁波期末)已知4a =5b =10,则1a +2b =________.解析:∵4a =5b =10,∴a =log 410,1a =lg 4,b =log 510,1b =lg 5,∴1a +2b =lg 4+2lg 5=lg 4+lg25=lg 100=2.答案:2突破点二 对数函数的图象及应用[基本知识]1.对数函数的图象 函数y =log a x ,a >1y =log a x,0<a <1图象图象特征 在y 轴右侧,过定点(1,0)当x 逐渐增大时,图象是上升的当x 逐渐增大时,图象是下降的2.底数的大小决定了图象相对位置的高低不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,如图,0<c <d <1<a <b .在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大) 3.指数函数与对数函数的关系指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎪⎫1a -1,函数图象不在第二、三象限.( )(2)函数y =log 2(x +1)的图象恒过定点(0,0).( ) 答案:(1)√ (2)√ 二、填空题1.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________. 解析:y =log a x 的图象恒过点(1,0),令x -3=1,得x =4,则y =-1. 答案:(4,-1)2.函数y =log 3|2x -m |的图象关于x =12对称,则m =________.答案:13.若f (x )=log 2x ,则f (x )>0的x 的范围是________. 答案:(1,+∞)[全析考法]考法一 对数函数图象的辨析[例1] (2019·海南三市联考)函数f (x )=|log a (x +1)|的大致图象是( )[解析] 法一:函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图象可知选C.法二:||y =log a (x +1)的图象可由y =log a x 的图象左移1个单位,再向上翻折得到,结合选项知选C.[答案] C [方法技巧]研究对数型函数图象的思路研究对数型函数的图象时,一般从最基本的对数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,要注意底数a >1或0<a <1这两种不同情况.考法二 对数函数图象的应用[例2] (2019·辽宁五校联考)已知函数f (x )=|ln x |.若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是( )A .(4,+∞)B .[4,+∞)C .(5,+∞)D .[5,+∞)[解析] 由f (a )=f (b )得|ln a |=|ln b |,根据函数y =|ln x |的图象及0<a <b ,得-ln a =ln b,0<a <1<b ,1a =b .令g (b )=a +4b =4b +1b ,易得g (b )在(1,+∞)上单调递增,所以g (b )>g (1)=5. [答案] C [易错提醒]应用对数函数图象求解问题时易出现作图失误导致求解错误,要记准记牢图象的变换规律.[集训冲关]1.[考法一]函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:选A由函数f(x)的解析式可确定该函数为偶函数,图象关于y轴对称.设g(x)=log a|x|,先画出x>0时,g(x)的图象,然后根据g(x)的图象关于y轴对称画出x<0时g(x)的图象,最后由函数g(x)的图象向上整体平移一个单位即得f(x)的图象,结合图象知选A.2.[考法二]已知函数f(x)=|log12x|的定义域为⎣⎢⎢⎡⎦⎥⎥⎤12m,值域为[0,1],则m的取值范围为________.解析:作出f(x)=|log12x|的图象(如图),可知f⎝⎛⎭⎫12=f(2)=1,f(1)=0,由题意结合图象知:1≤m≤2.答案:[1,2]3.[考法二]使log2(-x)<x+1成立的x的取值范围是________.解析:在同一坐标系中分别画出函数y=log2(-x)和y=x+1的图象(如图所示),由图象知使log2(-x)<x+1成立的x的取值范围是(-1,0).答案:(-1,0)突破点三对数函数的性质及应用[基本知识]对数函数的性质函数y=log a x(a>0,且a≠1)a>10<a<1性质定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值变化规律当x=1时,y=0当x>1时,y>0; 当x>1时,y<0;当0<x <1时,y <0当0<x <1时,y >0一、判断题(对的打“√”,错的打“×”) (1)当x >1时,log a x >0.( )(2)函数y =lg(x +3)+lg(x -3)与y =lg[(x +3)(x -3)]的定义域相同.( ) (3)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( ) 答案:(1)× (2)× (3)× 二、填空题1.函数y =log 2x -1的定义域为________. 答案:[2,+∞)2.函数y =log 12(3x -1)的单调递减区间为________.答案:⎝ ⎛⎭⎪⎪⎫13+∞3.函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________. 答案:2或12[全析考法]考法一 与对数有关的函数定义域问题[例1] (2018·西安二模)若函数y =log 2(mx 2-2mx +3)的定义域为R,则实数m 的取值范围是( )A .(0,3)B .[0,3)C .(0,3]D .[0,3][解析] 由题意知mx 2-2mx +3>0恒成立.当m =0时,3>0,符合题意;当m ≠0时,只需⎩⎨⎧m >0Δ=(-2m )2-12m <0解得0<m <3.综上0≤m <3,故选B. [答案] B [方法技巧]已知f (x )=log a (px 2+qx +r )(a >0,且a ≠1)的定义域为R,求参数范围时,要注意分p =0,p ≠0讨论.同时p ≠0时应结合图象说明成立条件.考法二 与对数有关的比较大小问题[例2] (2019·湖北华中师大第一附属中学期中)设a =2 01812019,b =log 2 018 2 019,c =log 2 019 2 018,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a[解析] ∵a =2 01812019>2 0180=1,1=log 2 0182 018>b =log 2 018 2 019>log 2 018 2 018=12,c =log 2 019 2 018<log 2 019 2 019=12,所以a >b >c .故选A. [答案] A[方法技巧] 对数函数值大小比较的方法 单调性法 在同底的情况下直接得到大小关系,若不同底,先化为同底中间量过渡法 寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”图象法根据图象观察得出大小关系考法三 与对数有关的不等式问题[例3] 设函数f (x )=⎩⎪⎨⎪⎧log 2xx >0log 12(-x )x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)[解析] 由题意得⎩⎨⎧a >0log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0-log 2(-a )>log 2(-a )解得a >1或-1<a <0.故选C. [答案] C [方法技巧]简单对数不等式问题的求解策略(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数a 的值有关,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.(3)某些对数不等式可转化为相应的函数图象问题,利用数形结合法求解. 考法四 对数函数性质的综合问题[例4] 若函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,则实数m 的取值范围为( )A.⎣⎢⎢⎡⎦⎥⎥⎤433B.⎣⎢⎢⎡⎦⎥⎥⎤432C.⎣⎢⎢⎡⎭⎪⎪⎫432 D.⎣⎢⎢⎡⎭⎪⎪⎫43+∞ [解析] 由-x 2+4x +5>0,解得-1<x <5.二次函数y =-x 2+4x +5的对称轴为x =2.由复合函数单调性可得函数f (x )= log 12(-x 2+4x +5)的单调递增区间为(2,5).要使函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,只需⎩⎪⎨⎪⎧3m -2≥2m +2≤53m -2<m +2解得43≤m <2.[答案] C [方法技巧]解决对数函数性质的综合问题的3个注意点(1)要分清函数的底数是a ∈(0,1),还是a ∈(1,+∞).(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行.(3)转化时一定要注意对数问题转化的等价性.[集训冲关]1.[考法一]函数f (x )=1ln (3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎪⎫-13+∞ B.⎝ ⎛⎭⎪⎪⎫-130∪(0,+∞) C.⎣⎢⎢⎡⎭⎪⎪⎫-13+∞ D .[0,+∞)解析:选B 由⎩⎪⎨⎪⎧3x +1>0ln (3x +1)≠0解得x >-13且x ≠0,故选B.2.[考法二]设a =log 50.5,b =log 20.3,c =log 0.32,则a ,b ,c 的大小关系是( ) A .b <a <c B .b <c <a C .c <b <aD .a >b >c解析:选B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg 2lg 0.3,log 50.5=lg 0.5lg 5=lg 2-lg 5=lg 2lg 0.2.∵-1<lg 0.2<lg 0.3<0,∴lg 2lg 0.3<lg 2lg 0.2,即c <a ,故b <c <a .故选B.3.[考法三](2019·湛江模拟)已知log a 34<1,那么a 的取值范围是________.解析:∵log a 34<1=log a a ,故当0<a <1时,y =log a x 为减函数,0<a <34;当a >1时,y =log a x 为增函数,a >34,∴a >1.综上所述,a 的取值范围是⎝ ⎛⎭⎪⎪⎫034∪(1,+∞).答案:⎝ ⎛⎭⎪⎪⎫034∪(1,+∞)4.[考法四](2019·盐城中学月考)已知函数f (x )=log a1-xb +x(0<a <1)为奇函数,当x ∈(-1,a ]时,函数f (x )的值域是(-∞,1],则a +b 的值为________.解析:由1-xb +x >0,解得-b <x <1(b >0).又奇函数定义域关于原点对称,故b =1.所以f (x )=log a1-x 1+x (0<a <1).又g (x )=1-x x +1=-1+2x +1在(-1,a ]上单调递减,0<a <1,所以f (x )在 (-1,a ]上单调递增.又因为函数f (x )的值域是(-∞,1],故f (a )=1,此时g (a )=a ,即1-a a +1=a ,解得a =2-1(负根舍去),所以a +b = 2.答案: 2[课时跟踪检测][A 级 基础题——基稳才能楼高]1.(log 29)(log 32)+log a 54+log a ⎝⎛⎭⎫45a (a >0,且a ≠1)的值为( ) A .2 B .3 C .4D .5解析:选B 原式=(2log 23)(log 32)+log a ⎝⎛⎭⎫54×45a =2×1+log a a =3. 2.(2018· 衡水名校联考)函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2)C.⎣⎢⎢⎡⎦⎥⎥⎤121 D.⎝ ⎛⎦⎥⎥⎤121 解析:选D 由log 23(2x -1)≥0⇒0<2x -1≤1⇒12<x ≤1.3.设a =log 3π,b =log 23,c =log 32,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .b >a >cD .b >c >a解析:选A 因为a =log 3π>log 33=1,b =log 23<log 22=1,所以a >b ; 又b c =12log 2312log 32=(log 23)2>1,c >0,所以b >c .故a >b >c . 4.(2019·武汉调研)函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是( ) A .(-∞,-2) B .(-∞,-1) C .(2,+∞)D .(5,+∞)解析:选D 由函数f (x )=log a (x 2-4x -5)得x 2-4x -5>0,得x <-1或x >5.令m (x )=x 2-4x -5,则m (x )=(x -2)2-9,m (x )在[2,+∞)上单调递增,又由a >1及复合函数的单调性可知函数f (x )的单调递增区间为(5,+∞),故选D.5.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.解析:设幂函数为f (x )=x α,因为函数y =log a (2x -3)+2的图象恒过点P (2,2),则2α=2,所以α=12,故幂函数为f (x )=x 12.答案:x 126.函数y =log 2|x +1|的单调递减区间为__________,单调递增区间为__________. 解析:作出函数y =log 2x 的图象,将其关于y 轴对称得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).答案:(-∞,-1) (-1,+∞)[B 级 保分题——准做快做达标]1.(2019·广东普通高中学业水平考试)对任意的正实数x ,y ,下列等式不成立的是( ) A .lg y -lg x =lg yxB .lg(x +y )=lg x +lg yC .lg x 3=3lg xD .lg x =ln xln 10解析:选B 由对数的运算性质可知lg x +lg y =lg(xy ),因此选项B 错误. 2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12xC .log 12xD .2x -2解析:选A 由题意知f (x )=log a x (a >0,且a ≠1). ∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x .3.已知函数f (x )=lg(1+4x 2+2x )+2,则f (ln 2)+f ⎝⎛⎭⎫ln 12=( ) A .4 B .2 C .1D .0解析:选A 由函数f (x )的解析式可得:f (x )+f (-x )=lg(1+4x 2+2x )+2+lg(1+4x 2-2x )+2=lg(1+4x 2-4x 2)+4=4, ∴f (ln 2)+f ⎝⎛⎭⎫ln 12=f (ln 2)+f (-ln 2)=4.故选A. 4.(2019·衡水中学模考)函数y =x ln|x ||x |的图象可能是( )解析:选B 易知函数y =x ln|x ||x |为奇函数,故排除A,C;当x >0时,y =ln x ,只有B 项符合.故选B.5.(2019·菏泽模拟)若函数f (x )=⎩⎪⎨⎪⎧-x +8x ≤2log ax +5x >2(a >0,a ≠1)的值域为[6,+∞),则a 的取值范围是( )A .(0,1)B .(0,1)∪(1,2)C .(1,2]D .[2,+∞)解析:选C 当x ≤2时,f (x )∈[6,+∞),所以当x >2时,f (x )的取值集合A ⊆[6, +∞).当0<a <1时,A =(-∞,log a 2+5),不符合题意;当a >1时,A =(log a 2+5,+∞),若A ⊆[6,+∞),则有log a 2+5≥6,得1<a ≤2.综上所述,选C.6.设a ,b ,c 均为正数,且2a =log 12a ,⎝⎛⎭⎫12b =log 12b ,⎝⎛⎭⎫12c =log 2c ,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <bD .b <a <c解析:选A ∵a >0,∴2a >1,∴log 12a >1,∴0<a <12.∵b >0,∴0<⎝⎛⎭⎫12b <1,∴0<log 12b <1,∴12<b <1. ∵c >0,∴⎝⎛⎭⎫12c >0,∴log 2c >0,∴c >1. ∴0<a <12<b <1<c ,故选A.7.已知函数f (x )=log a(2x -a )在区间⎣⎢⎡⎦⎥⎤1223上恒有f (x )>0,则实数a 的取值范围是()A.⎝ ⎛⎭⎪⎪⎫131B.⎣⎢⎢⎡⎭⎪⎪⎫131C.⎝ ⎛⎭⎪⎪⎫231 D.⎣⎢⎢⎡⎭⎪⎪⎫231 解析:选A 当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤1223上是减函数,所以log a⎝⎛⎭⎫43-a >0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间[ 12,23]上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值范围是⎝ ⎛⎭⎪⎪⎫131.8.(2019·六安一中一模)计算:(lg 3)2-lg 9+1-lg 13+8130.5 log 5=________.解析:原式=(lg 3)2-2lg 3+1+lg 3+33log 25=1-lg 3+lg 3+25=26.答案:269.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-2a )>1,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-a )>1,解得a >4,且0<a <1,故不存在.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎪⎫183.答案:⎝ ⎛⎭⎪⎪⎫18310.若函数f (x )=log a (x 2-26x +a )(a >0,且a ≠1)有最小值12,则实数a 的值等于________.解析:令g (x )=x 2-26x +a ,则f (x )=log a [g (x )].①若a >1,由于函数f (x )有最小值12,则g (x )应有最小值 a ,而g (x )=x 2-26x +a =(x -6)2+a -6,当x =6时,取最小值a -6,因此有⎩⎪⎨⎪⎧a >1a =a -6解得a =9.②若0<a <1,由于函数f (x )有最小值12,则g (x )应有最大值a ,而g (x )不存在最大值,不符合题意.综上,实数a =9.答案:911.已知函数f (x )=lg ⎝⎛⎭⎫x +ax -2,其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解:(1)由x +ax -2>0,得x 2-2x +a x >0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞);当a=1时,定义域为{x |x >0且x ≠1};当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax 2>0.因此g (x )在[2,+∞)上是增函数,∴f (x )在[2,+∞)上是增函数.则f (x )min =f (2)=lg a2.(3)对任意x ∈[2,+∞),恒有f (x )>0.即x +ax -2>1对x ∈[2,+∞)恒成立.∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝⎛⎭⎫x -322+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2.故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).12.(2019·邯郸模拟)已知函数f (x )=log a (3-ax ). (1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a , ∵当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0,∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎪⎫132.(2)由(1)知函数t (x )=3-ax 为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 在[1,2]上为增函数,∴a >1, 当x ∈[1,2]时,t (x )的最小值为3-2a ,f (x )的最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0log a (3-a )=1即⎩⎪⎨⎪⎧a <32a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.[C 级 难度题——适情自主选做]1.(2019·长沙五校联考)设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<1解析:选D 构造函数y =10x 与y =|lg(-x )|,并作出它们的图象,如图所示.因为x 1,x 2是10x =|lg(-x )|的两个根,所以两个函数图象交点的横坐标分别为x 1,x 2,不妨设x 2<-1,-1<x 1<0,则10x 1=-lg(-x 1),10x 2=lg(-x 2),因此10x 2-10x 1=lg(x 1x 2),因为10x 2-10x 1<0,所以lg(x 1x 2)<0,即0<x 1x 2<1.2.(2019·安丘一中期中)如图所示,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =2x ,y=x 12,y =⎝⎛⎭⎫22x 的图象上,且矩形的边分别平行于两坐标轴,若点A 的纵坐标为2,则点D 的坐标为________.解析:因为点A 的纵坐标为2,所以令2x =2,解得点A 的横坐标为12,故x D =12.令x 12=2,解得x =4,故x C=4.所以y C=⎝⎛⎭⎫224=14,故y D=14,所以D ⎝ ⎛⎭⎪⎫1214.答案:⎝ ⎛⎭⎪⎫12143.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:因为f (x )=|log 3x |=⎩⎨⎧-log 3x0<x <1log 3xx ≥1所以f (x )在(0,1)上单调递减,在(1, +∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎪⎨⎪⎧ 0<m <1n >1log 3n =-log 3m则⎩⎪⎨⎪⎧0<m <1n >1mn =1所以0<m 2<m<1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m =9.答案:9。

2019版高考数学一轮复习考点突破训练:第2章 第5讲 对数与对数函数

2019版高考数学一轮复习考点突破训练:第2章 第5讲 对数与对数函数

你是我心中的一片彩云你是我心中的一片彩云 你是我心中的一片彩云你是我心中的一片彩云 第五讲 对数与对数函数 考点1对数与对数运算 1.计算:2lg 5+lg 2(lg 2+2lg 5)+(lg 2)2=

2.计算:lg 5(lg 8+lg 1 000)+ +lg +lg 0.06= 3.已知2x=3,log4 =y,则x+2y的值为 4.已知log189=a,18b=5,求log3645. 考点2对数函数的图象与性质

5.已知函数 f(x)=lo (4x-2x+1+1)的值域是[0,+∞ ,则它的定义域可以是( ) A.(0,1] B.(0,1) C.(-∞,1] D.(-∞,0] 6.若函数f(x)=logax(0

A. B. C. D. 7.已知函数f(x)=logax(a>0,且a≠1 满足f( )>f( ),则f(1- )>0的解为( )

A.01 D.x>0 8. [2018湖北省部分重点中学起点考试]已知偶函数f(x)在 0,+∞ 上单调递增,a=f(log2 ), b=f( ),c=f(log32),则下列关系式中正确的是( ) A.a9.[2017天津模拟]已知函数f(x)=loga(4-ax)在[0,2]上是单调递减函数,则实数a的取值范围为( )

A.(0,1) B. 1,+∞ C.(1,2) D. 2,+∞ 10.[2015湖南,8,5分][文]设函数f(x)=ln(1+x)-ln(1-x),则f(x)是( ) 你是我心中的一片彩云你是我心中的一片彩云 你是我心中的一片彩云你是我心中的一片彩云 A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数

11.函数y=ln - 的图象为( )

A B C D 12.[2017成都市二诊]已知函数f(x)=ax(a>0,且a≠1 的反函数的图象经过点( , ).若函数g(x)的定义域为R,当x∈[-2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是( ) A.g π B.g π C.g( )D.g( )

高考数学复习 第二章 第五节 对数与对数函数 理


又当 x=12时,412=2,
即函数 y=4x 的图象过点12,2,
把点12,2代入函数 y=logax,得 a= 2ห้องสมุดไป่ตู้,若函数 y=4x 的图象在
函数 y=logax 图象的下方,则需 22<a<1(如上图所示).当 a>1 时,
不符合题意,舍去.所以实数
a
的取值范围是
22,1
答案 (1)B (2)B
[点评] 第(1)问的关键是画出f(x)与g(x)的图象,根据特殊点 对应的函数值,判断两图象的位置关系,从而判断交点个数; 第(2)问的关键是寻找临界位置,画出两者的函数图象,数形 结合求解.
方法2 对数函数的性质及应用 比较对数式的大小的常见情形及方法 (1)当底数相同时,可直接利用对数函数的单调性比较; (2)当底数不同、真数相同时,可转化为同底(利用换底公式)或利 用函数的图象,数形结合解决; (3)当底数不同、真数不同时,可利用中间值(如“0”或“1”)进行比 较.
第五节 对数与对数函数
考点梳理
考纲速览
命题解密
热点预测
(1)理解对数的概念及其运算性质
主要考查
对数的运算
,知道用换底公式能将一般对数 对数的运算法 、以对数函数为
1. 对 数 的 运
转化成自然对数或常用对数;了 则以及利用对 载体考查函数值
算.
解对数在简化运算中的作用. 数函数的性质 的大小比较及单
如果 a>0,且 a≠1,M>0,N>0,那么 ①loga(M·N)=_l_o_g_aM__+__l_o_g_aN__; ②logaMN =_l_o_g_aM__+__l_o_g_aN__; ③logaMn=_n_nl_o_g_aM___(n∈R); ④logamMn=_m_l_o_g_aM_ (n∈R,m≠0).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
1文档收集于互联网,如有不妥请联系删除.
【创新大课堂】(新课标) 高考数学一轮总复习 第二章 第5节 对
数函数练习
一、选择题
1.(2015·长沙模拟)已知a=5log23.4,b=5log43.6,c=(15)log30.3,则( )
A.a>b>c B.b>a>c
C.a>c>b D.c>a>b

[解析] c=(15)log30.3 可化为c=5log3103 , 如图所示,结合指数函数的单调性可知选项
C正确.
[答案] C
2. (2014·福建高考)若函数y=logax(a>0,且a≠1)的图像如图所示,则下列函数图
像正确的是( )
[解析] 因为函数y=logax过点(3,1),所以1=loga3,解得a=3,所以y=3-x不可
能过点(1,3),排除选项A;
y=(-x)3=-x
3
不可能过点(1,1),排除选项C;

y=log3(-x
)不可能过点(-3,-1),排除选项D.故选B.

[答案] B

3.设f(x)=lg(x-a1-x)是奇函数,则使f(x)<0的x的取值范围是( )
A.(-1,0) B.(0,1)
C.(-∞,0) D.(-∞,0)∪(1,+∞)
[解析] 由f(x)是奇函数可得a=-1,

∴f(x)=lg1+x1-x,定义域为(-1,1).

由f(x)<0,可得0<1+x1-x<1,∴-1[答案] A
4.(2015·长春模拟)函数f(x)=log2(x-1+1)的值域为( )
A.R B.(0,+∞)
C.(-∞,0)∪(0,+∞) D.(-∞,1)

[解析] x-1+1=1x+1≠1,所以f(x)=log2(x-1+1)≠log21=0,即y≠0,所以f(x)
=log2(x-1+1)的值域是(-∞,0)∪(0,+∞).故选C.
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
2文档收集于互联网,如有不妥请联系删除.
[答案] C
5.(2015·辽宁五校协作联考)设函数f(x)=loga|x|在(-∞,0)上单调递增,则f(
a
+1)与f(2)的大小关系是( )
A.f(a+1)>f(2) B.f(a+1)C.f(a+1)=f(2) D.不能确定
[解析] 由已知得0(0,+∞)上单调递减,所以f(a+1)>f(2).
[答案] A
6.已知函数f(x)=|lg x|.若0A.(22,+∞) B.[22,+∞)
C.(3,+∞) D.[3,+∞)
[解析] 函数f(x)=|lg x|的大致图像如图所示.
由题意结合图知01.

∵f(a)=|lg a|=-lg a=lg1a=f(b)=|lg b|=lg b,

∴b=1a.∴a+2b=a+2a.
令g(a)=a+2a,
则易知g(a)在(0,2)上为减函数,
∴当0g(1)=1+2=3.故选C.
[答案] C
二、填空题

7.(2015·济南模拟)设函数f(x)= 2x,x≤0,log2x,x>0, 则f(f(-1))=________.
[解析] f(-1)=2-1=12,所以f(f(-1))=f(12)=log212=-1.
[答案] -1
8.计算: 0.001+ln e+=________.
[解析] 原式=log2.5(2.5)2+lg 10-3+ln e12 +2log232 =2-3+12+32=1.
[答案] 1
9.(2014·重庆高考)函数f(x)=log2x·log2(2x)的最小值为________.
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
3文档收集于互联网,如有不妥请联系删除.
[解析] 依题意得f(x)=12log2x·(2+2log2x)
=(log2x)2+log2x=log2x+122-14≥-14,当且仅当log2x=-12,即x=12时等号成立,
因此函数f(x)的最小值为-14.
[答案] -14
10.(2015·哈尔滨模拟)已知函数f(x)=lnx1-x,若f(a)+f(b)=0,且0ab
的取值范围是________.

[解析] 由题意可知ln a1-a+ln b1-b=0,

即ln(a1-a×b1-b)=0,从而a1-a×b1-b=1,
化简得a+b=1,故ab=a(1-a)=-a2+a
=-(a-12)2+14,又0<a<b<1,

所以0<a<12,故0<-(a-12)2+14<14.
[答案] (0,14)
三、解答题
11.(2015·珠海模拟)函数f(x)是定义在R上的偶函数,f(0)=0,当x>0时,f(x)=

log12x.
(1)求函数f(x)的解析式.
(2)解不等式f(x2-1)>-2.
[解] (1)当x<0时,-x>0,则f(-x)=log12 (-x).

因为函数f(x)是偶函数,所以f(-x)=f(x).
所以函数f(x)的解析式为

f(x
)= log12 x,x>0,0,x=0,log12 -x,x<0.
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
4文档收集于互联网,如有不妥请联系删除.
(2)因为f(4)=log12 4=-2,

因为f(x)是偶函数,所以不等式f(x2-1)>-2可化为f(|x2-1|)>f(4).
又因为函数f(x)在(0,+∞)上是减函数,
所以|x2-1|<4,解得-5<x<5,
即不等式的解集为(-5,5).

12.已知函数f(x)=lnx+1x-1.
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)=lnx+1x-1>ln mx-17-x恒成立,求实数m的取值范
围.
[解] (1)由x+1x-1>0,
解得x<-1或x>1,
∴定义域为(-∞,-1)∪(1,+∞),
当x∈(-∞,-1)∪(1,+∞)时,

f(-x)=ln-x+1-x-1=ln x-1x+1=-ln x+1x·1=-f(x
),

∴f(x)=ln x+1x-1是奇函数.
(2)由x∈[2,6]时,f(x)=ln x+1x-1>ln mx-17-x恒成立.
∴x+1x-1>mx-17-x>0,
∵x∈[2,6],
∴0令g(x)=(x+1)(7-x)
=-(x-3)2+16,x∈[2,6],
由二次函数的性质可知x∈[2,3]时函数g(x)单调递增,x∈[3,6]时函数g(x)单调递减,
x∈[2,6]时,g(x)min=g
(6)=7,

∴0

相关文档
最新文档