数控机床发展史
机械一周解一惑系列:全球数控系统演进简史与中国国产化之路

一周解一惑系列:全球数控系统演进简史与中国国产化之路2023年03月26日➢本周关注:宏华数科、铁建重工、中铁工业、科德数控、华中数控。
➢ 数控机床集电子/计算机/控制/信息技术为一体。
数控机床采用数字编程、程序执行、伺服控制等技术,实现按照零件图样编制的数字化加工程序自动控制机床的轨迹运动和运行,从此NC 技术就使得机床与电子、计算机、控制、信息等技术的发展密不可分。
随后,为了解决NC 程序编制的自动化问题,采用计算机代替手工的自动编程工具(APT )和方法成为关键技术,计算机辅助设计/制造(CAD /CAM )技术也随之得到快速发展和普及应用。
可以说,制造数字化肇始于数控机床及其核心数字控制技术的诞生。
数控系统(CNC 系统)是数控机床的重要部分,有数控程序、输入输出设备、CNC 装备(核心)、可编程控制器(plc )、主轴驱动单元和给进驱动单元(包括检测装备)等组成。
数控系统随着计算机技术的发展而进步。
➢ 数控系统在AI 赋能下有望加快插补技术进步。
数控系统完成诸多信息的存储和处理的工作,并将信息的处理结果以控制信号的形式传给后续的伺服电机,这些控制信号的工作效果依赖于两大核心技术:①曲线曲面的插补运算,②机床多轴的运动控制。
高性能的坐标轴进给伺服装置构成了实现多轴联动控制的物理基础。
现代数控机床普遍采用数字计算机通过软件实现轨迹插补。
当前5轴联动插补可高效方便地实现各种复杂曲线和曲面插补的功能,并进一步发展样条插补和先进的速度、加速度、加速度变化率(Jerk )等控制功能,是高速度、高精度、高动态响应加工的核心技术。
未来,数控系统还将发展自由曲面直接插补功能(SDI )并可望与基于人工智能和数字孪生的走刀轨迹规划相结合,在考虑多轴联动动力学模型以及轨迹误差和速度约束条件下,实现由3D 模型驱动的刀轨生成和最优控制的多轴联动直接插补。
➢ 当下我国高端数控系统处在创新链链产业链加快融合阶段。
中国第一台数控机床

中国第一台数控机床
958 年,北京第一机床厂与清华大学合作,试制出中国第一台数控机床X53K1 三坐标数控机床。
这台数控机床的诞生,填补中国在数控机床领域的空白。
金日成万岁?没错,就是这五个字,这是中国人的数控设备第一次在世界面前发威。
而这一台型号为X53K1 的数控机床也是亚洲第一台数控设备。
1958 年秋天,当朝鲜劳动D 主席金日成在周恩来总理的陪同下兴致勃勃的来到清华大学的车间参观时,等候多时的师生们热烈的欢迎了这位异国客人:没有用鲜花,没有用掌声,而是聚精会神的操作着一台结构复杂的机床,加工着什么。
不一会儿,一块刻有金日成万岁五个字的钢板被递到了金日成的手里,他立刻饶有兴致的接过来,抚摸着,询问着。
随后,又一块写着毛主席万岁的钢板被递到了周恩来总理的手中。
金日成主席对这一先进的技术赞不绝口。
立刻题词留念。
这台完成了刻字的设备就是我国第一台数控机床:X53K1。
由清华大学和北京第一机床厂联合研制。
上面的这个故事,是这种设备第一次公开的表演。
跟如今先进的加工设备相比,上面那一台设备显得极尽简陋:只能实现三个坐标的联动,控制设备采用的是直线插补电子管系统,装入控制柜后体积足足有10 台电视机那么大。
传动系统为最简单的步进电机伺服系统,在现在的新型数控机床上基本上被淘汰了。
但是不管怎么说,这次研制成功,算是完成了中国机械工业史上一次伟大的飞跃。
从此,我国的机械加工从依靠手艺向依靠技术转变。
50 年代数控加工技术开始得到广泛应用。
智能制造技术的发展历程与趋势

智能制造技术的发展历程与趋势智能制造技术是近年来备受关注的领域之一。
随着科技的不断进步,人们对生产技术的要求越来越高,智能制造技术成为人们不断探索的领域。
本文将对智能制造技术的发展历程进行回顾,并展望未来的趋势。
一、智能制造技术的发展历程智能制造技术的起源可以追溯到20世纪50年代。
当时,瑞典生产了第一台数控机床。
以此为基础,人们在不断的探索中,发展了各种各样的智能制造技术。
以下是主要的里程碑事件。
1. 第一台数控机床1952年,瑞典姆卡公司生产了第一台数控机床。
这台机床是由美国麻省理工学院的约翰·T·希尔斯和罗伯特·舒尔曼发明的。
2. 第一台工业机器人1961年,美国发明了第一台工业机器人。
这台机器人是由一家名为“不可止”的公司发明的。
3. 工业自动化工业自动化是智能制造技术的重要组成部分之一。
20世纪70年代,工业自动化技术应用于工业生产中。
4. CAD/CAM技术20世纪80年代,计算机辅助设计(CAD)和计算机辅助制造(CAM)技术开始得到广泛应用。
这种技术使得制造过程更自动化,提高了生产效率。
5. 物联网技术21世纪,物联网技术的出现给智能制造技术带来了新的发展机遇。
物联网技术将智能设备连接起来,使得生产过程更加智能化和自动化。
二、智能制造技术的趋势随着物联网技术不断发展,智能制造技术的未来也变得更加光明。
以下是智能制造技术发展的趋势:1. 机器人技术的发展机器人技术已经被广泛应用于工业生产中,未来将更加智能化。
机器人将不仅用于简单的重复性工作,而是将具有更智能的功能,能够感知和处理复杂的信息。
2. 人工智能技术的发展随着人工智能技术的不断发展,制造商将更轻松地分析和管理大量数据。
这将帮助他们更好地了解产品的需求和生产的效率水平。
3. 智能传感器技术的发展智能传感器技术将能够为制造商提供更多的信息,从而使他们更好地了解产品的需求和生产过程中的任何问题。
4. 大数据技术的发展大数据技术已经广泛应用于各个领域。
机床发展史

机床:机床(英文名称:machine tool)是指制造机器的机器,亦称工作母机或工具机,习惯上简称机床。
一般分为金属切削机床、锻压机床和木工机床等。
现代机械制造中加工机械零件的方法很多:除切削加工外,还有铸造、锻造、焊接、冲压、挤压等,但凡属精度要求较高和表面粗糙度要求较细的零件,一般都需在机床上用切削的方法进行最终加工。
机床在国民经济现代化的建设中起着重大作用。
发展历史十五世纪的机床雏形,由于制造钟表和武器的需要,出现了钟表匠用的螺纹车床和齿轮加工机床,以及水力驱动的炮筒镗床。
1501年左右,意大利人列奥纳多·达芬奇曾绘制过车床、镗床、螺纹加工机床和内圆磨床的构想草图,其中已有曲柄、飞轮、顶尖和轴承等新机构。
中国明朝出版的《天工开物》中也载有磨床的结构,用脚踏的方法使铁盘旋转,加上沙子和水来剖切玉石。
工业革命导致了各种机床的产生和改进。
十八世纪的工业革命推动了机床的发展。
1774年,英国人威尔金森(全名约翰·威尔金森)发明了较精密的炮筒镗床。
次年,他用这台炮筒镗床镗出的汽缸,满足了瓦特蒸汽机的要求。
为了镗制更大的汽缸,他又于1775年制造了一台水轮驱动的汽缸镗床,促进了蒸汽机的发展。
从此,机床开始用蒸汽机通过曲轴驱动。
1797年,英国人莫兹利创制成的车床由丝杠传动刀架,能实现机动进给和车削螺纹,这是机床结构的一次重大变革。
莫兹利也因此被称为“英国机床工业之父”。
19世纪,由于纺织、动力、交通运输机械和军火生产的推动,各种类型的机床相继出现。
1817年,英国人罗伯茨创制龙门刨床;1818年美国人惠特尼(全名伊莱·惠特尼)制成卧式铣床;1876年,美国制成万能外圆磨床;1835和1897年又先后发明滚齿机和插齿机。
工业技术发展的中心,从十九世纪起就悄悄从英国移向美国。
在把英国的技术声望夺过去的人中,惠特尼堪称佼佼者。
惠特尼聪颖过人,具有远见卓识,他率先研究出了作为大规模生产的可更换部件的系统。
我国数控系统的发展史

我国数控系统的发展史1.我国从1958年起,由一批科研院所,高档黉舍和少数机床厂起步进行数控系统的研制和开辟。
由于遭到那时国产电子元器件程度低,部分经济等的制约,未能获得较大的发展。
2.正在鼎新开放后,我国数控技能才渐渐获得本色性的成长。
颠末"六五"(81--85年)的引进外洋手艺,"七五"(86--90年)的消化吸取战"八五"(91~一-95年)国家构造的科技攻闭,才使得我国的数控手艺有了量的奔腾,其时经由过程国家攻关验支和判定的产物包罗北京珠峰公司的中华I型,华中数控公司的华中I型和沈阳高级数控国度工程研讨中间的蓝天I型,和其余经由过程"国度机床品质监视测试中央"测试及格的国产数控体系如北京四开公司的产物。
3.我国数控机床制造业在80年月曾有太高速发展的阶段,很多机床厂从传统产品实现向数控化产品的转型。
但总的来说,技术程度不高,质量欠安,所以在90年月早期面对国家经济由打算性经济向市场经济转移调整,履历了几年最坚苦的冷落期间,当时生产本领降到50%,库存跨越4个月。
从1 99 5年"九五"今后国家从扩展内需启念头床市场,增强限制入口数控设备的审批,投资重点撑持环节数控系统、设备、技术攻关,对数控设备生产起到了很大的增进感化,特别是在1 99 9年当前,国家向国防产业及关头平易近用产业部分投入大批技改资金,使数控设备制造市场一派繁华。
三,数控车的工艺取工装削浏览:133数控车床加工的工艺与一般车床的加工工艺近似,但由于数控车床是一次装夹,持续自动加工完成全部车削工序,因此应注意以下几个方面。
1.公道挑选切削用量对付下服从的金属切削加工来讲,被加工质料、切削东西、切削条件是三大体素。
这些决议着加工时间、刀具寿命和加工质量。
经济有用的加工体式格局一定是公道的选择了切削前提。
切削前提的三因素:切削速度、进给量和切深间接引发刀具的毁伤。
数控发展史简介

摘要数控机床的发展空间是十分广阔的。
由于加工过程本身的复杂性,迄今对加工的机理尚未完全弄清楚,大多研究成果是建立在大量系统的工艺实验基础上完成的,所以对加工机理的深入研究,并以此直接指导和应用于实践加工是数控加工技术发展的根本。
在现有技术水平的基础上,不断开发新工艺将是数控加工技术发展方向。
如数控铣削加工是一种还不成熟的技术,值得继续研究的新工艺。
数控机床在结构设计、脉冲电源的开发方面将朝更合理、更具优势化的方向全面发展,提高加工性能,同时考虑降低机床制造的成本。
数控加工在控制技术上将朝自动化、智能化方面的更高层次发展,数控加工的网络管理技术在高档机床上已有初步应用,将逐步被推广及应用,获取更好的系统管理效果。
总之,数控加工技术以提高加工质量、提高加工效率、扩大加工范围、降低加工成本等为目标在工业中不断发展。
随着科学技术的发展,机械产品的形状和结构不断改进,对零件加工质量的要求也越来越高。
尤其是随着FMS和CIMS的兴起和不断成熟,对机床数控系统提出了更高的要求,现代数控加工正在向高速化、高精度化、高可靠性、柔性化、集成化和智能化等方向发展。
关键字:数控加工技术高速化高精度化高可靠性柔性化集成化智能化【abstract 】:Numerical control machine tool development space are very broad. Because of the complexity of the machining process itself and, so far, to the processing are not entirely clear, as most of the research is based on the process of system based on experiments completed, so for processing mechanism of thorough research, and to direct guidance and applied in practice processing is the foundation of nc machining technology.On the basis of existing technology level, and constantly develop new technology will be the nc machining technology development direction.Such as CNC milling is a kind of is not mature technology, and new technology continue to study. Numerical control machine tool in the structure design, the pulse power development in a more reasonable and more will be of advantage in the direction of the comprehensive development and the improvement of the machining performance and reduce the cost of machine tools to consider.Numerical control processing in control technology in general automatic and intelligent aspects of a higher level, numerical control processing network management technology in high-grade machine has an initial application, will gradually be popularization and application, get better system management effect. In short, CNC processing technology in order to improve the machiningquality, improve the processing efficiency,With the development of science and technology, mechanical productsshape and structure improvement, the requirements of thequality of the parts processing of more and more is also high. Especially with the FMS and the rise of CIMS and maturity, ncsystem to put forward higher request, modern nc machining ishigh, high precision, to, high reliability and flexibility, integration and intelligent development direction.Key word: Nc machining technology Fast pace High precision High reliability FlexibilityIntegration Intelligent1 数控加工技术的发展趋势随着科学技术的发展,机械产品的形状和结构不断改进,对窖件加工质量的要求也越来越高。
数控技术的发展史

数控技术的发展史1946年诞生了世界上第一台电子计算机,6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。
从此,传统机床产生了质的变化.1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。
由于样板形状复杂多样,精度要求高,一般加工设备难以适应,于是提出计算机控制机床的设想。
1949年,该公司在美国麻省理工学院伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。
这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。
数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。
世界上主要工业发达国家都十分重视数控加工技术的研究和发展。
经过几十年的发展,目前的数控机床已实现了计算机控制并在工业界得到广泛应用,在模具制造行业的应用尤为普及。
针对车削、铣削、磨削、钻削和刨削等金属切削加工工艺及电加工、激光加工等特种加工工艺的需求,开发了各种门类的数控加工机床。
数控机床种类繁多,一般将数控机床分为16大类:数控车床(含有铣削功能的车削中心),数控铣床(含铣削中心) ,数控铿床,以铣程削为主的加工中心,数控磨床(含磨削中心) ,数控钻床(含钻削中心) ,数控拉床,数控刨床,数控切断机床,数控齿轮加工机床,数控激光加工机床,数控电火花线切割机床,数控电火花成型机床(含电加工中心),数控板村成型加工机床,数控管料成型加工机床,其他数控机床。
如今的数控技术发展趋势有以下几个方面:1 高速、高精度、高效、高可靠性。
要提高加工效率,首先必须提高切削速度和进给速度,同时,还要缩短加工时间;要确保加工质量,必须提高机床部件运动轨迹的精度,而可靠性则是上述目标的基本保证。
为此,必须要有高性能的数控装置作保证。
2 柔性化、集成化。
数控技术历程总结范文

随着我国经济的快速发展,制造业已成为国家经济的支柱产业。
数控技术作为现代制造业的核心技术,在我国的发展历程中扮演着举足轻重的角色。
本文将从数控技术的发展历程、关键技术及其在我国的应用现状等方面进行总结。
一、数控技术发展历程1. 第一代数控技术(20世纪50年代):以继电器和电子管为基础的机床数控装置,主要用于简单的机械加工。
2. 第二代数控技术(20世纪60年代):以晶体管为基础的数控系统,功能逐渐增强,可实现多轴联动加工。
3. 第三代数控技术(20世纪70年代):以集成电路为基础的数控系统,性能得到显著提高,可实现复杂形状的加工。
4. 第四代数控技术(20世纪80年代):以微处理器为基础的数控系统,功能更加丰富,可实现实时监控和自适应加工。
5. 第五代数控技术(20世纪90年代):以嵌入式系统为基础的数控系统,具备更高的智能化和自动化水平。
6. 第六代数控技术(21世纪初):以网络化、智能化、绿色环保为特点的数控技术,推动制造业向高端、绿色、智能方向发展。
二、数控关键技术1. 数控编程:数控编程是数控技术的基础,主要包括语言编程、图形编程和参数编程等。
2. 数控系统:数控系统是实现数控加工的核心,包括数控控制器、伺服驱动器、执行机构等。
3. 伺服驱动技术:伺服驱动技术是实现数控加工高精度、高速度的关键,主要包括步进电机、伺服电机等。
4. 检测与反馈技术:检测与反馈技术是保证数控加工精度的重要手段,主要包括位移传感器、速度传感器等。
5. 人工智能与大数据:人工智能与大数据技术应用于数控加工,可实现加工过程的智能化、优化和预测。
三、数控技术在我国的应用现状1. 数控加工设备:我国数控加工设备产业已具备一定规模,产品涵盖了车床、铣床、磨床、镗床等。
2. 数控技术应用领域:数控技术广泛应用于航空航天、汽车、电子、能源、船舶等领域。
3. 人才培养:我国已形成较为完善的数控技术人才培养体系,为数控产业发展提供有力支撑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床发展史
一、引言
数控机床是指通过计算机控制系统,实现机床的自动化加工操作的一种高精度、高效率的机床。
它的出现彻底改变了传统机床的加工方式,极大地提高了加工精度和生产效率。
本文将从数控机床的发展历程、关键技术和应用领域等方面介绍数控机床的发展史。
二、数控机床的发展历程
数控机床的发展可以追溯到20世纪40年代,当时以美国为代表的工业发达国家开始研究数控技术。
1947年,美国麻省理工学院的数学家维茨尔(W.H.Witzel)提出了数控机床的概念,并设计出第一台数控铣床。
此后,数控技术得到了迅速发展,出现了一系列划时代的技术突破。
1952年,美国麻省理工学院的尤金·W·伯里(Eugene W.Berry)教授成功开发出世界上第一台数控车床。
此后,数控机床开始广泛应用于航空航天、军工、汽车等领域,并逐渐取代了传统机床。
1960年代,计算机技术的飞速发展为数控机床的进一步发展提供了坚实的基础。
计算机数控(CNC)系统的出现,使得数控机床的编程更加灵活方便,加工精度也得到了大幅提高。
此后,数控机床的发展进入了一个新的阶段。
1980年代,随着微电子技术和信息技术的不断进步,数控机床的性能得到了大幅提升。
高速切削技术、高精度测量技术等先进技术的应用,使得数控机床在加工效率和加工精度上达到了前所未有的水平。
到了21世纪,数控机床的发展进入了智能化阶段。
人工智能、云计算、大数据等技术的应用,使得数控机床具备了更高的自动化程度和智能化水平。
现如今,数控机床已经成为工业制造中不可或缺的设备。
三、数控机床的关键技术
数控机床的发展离不开一系列关键技术的突破。
首先是数控系统技术,包括硬件和软件两个方面。
硬件方面,数控系统需要具备高性能的计算机、精密的运动控制装置和灵敏的传感器等。
软件方面,数控系统需要具备强大的编程和控制功能,能够实现复杂的加工操作。
其次是伺服控制技术,伺服系统是数控机床实现高精度加工的关键。
伺服控制系统通过控制电机的转速和位置,实现工件的精确定位和运动控制。
高性能的伺服控制系统能够提供更高的加工精度和加工效率。
再次是刀具技术,刀具是数控机床进行加工的重要工具。
随着材料科学和刀具制造技术的不断进步,新型刀具材料和结构的应用使得
数控机床能够更好地适应不同的加工要求,提高加工质量和效率。
最后是测量技术,测量技术在数控机床中起到了至关重要的作用。
高精度的测量设备能够实时监测工件的加工精度,通过反馈控制系统对加工过程进行调整,保证加工质量的稳定性和一致性。
四、数控机床的应用领域
数控机床广泛应用于航空航天、军工、汽车、电子、模具等领域。
在航空航天领域,数控机床可以用于加工航空发动机零部件、飞机结构件等。
在军工领域,数控机床可以用于制造武器装备、军舰船体等。
在汽车领域,数控机床可以用于汽车零部件的加工。
在电子领域,数控机床可以用于电子元器件的加工。
在模具领域,数控机床可以用于模具的制造。
总结:
数控机床作为一种高精度、高效率的机床,经过多年的发展,已经成为工业制造中不可或缺的设备。
随着科技的不断进步,数控机床的性能将会进一步提升,应用领域也会更加广泛。
相信在不久的将来,数控机床将会在工业制造中发挥更加重要的作用。