协方差 相关系数

合集下载

协方差及相关系数

协方差及相关系数

所以X与Y不独立.
1/8 0 1/8 2/8 1/8 1/8 1/8 3/8 3/8 2/8 3/8 1
若(X,Y) ~ N(1,2 ,12, 22,),即(X,Y)概率密度函数为
f
( x,
y)
1
2 1 2
1
2
exp{
1
2(1 2 ) [(
x 1 1
)2
2( x 1 )( y 2 ) ( y 2 )2 ]}
(1) 求 Z 的数学期望和方差. (2) 求 X 与 Z 的相关系数.
解 (1)由E( X ) 1, D( X ) 9, E(Y ) 0, D(Y ) 16.
得 E(Z ) E( X Y ) 1 E( X ) 1 E(Y )
32 3
2
1. 3
D(Z ) D( X ) D(Y ) 2Cov( X ,Y )
注:若Y aX b, 则 a<0时,ρXY=-1
例2 (X,Y)的联合分布为:
求相关系数ρXY,并判断X, Y是否相关,是否独立.
解:
E( X ) xi pi 0
i
E(Y ) y j p. j 0
j
X Y -1 0 1 -1 1/8 1/8 1/8 0 1/8 0 1/8 1 1/8 1/8 1/8
3
1
2
( z5)2
e 18 ,
z
契比雪夫不等式
定理 设随机变量 X 具有数学期望 E(X ) μ,
方差 D( X ) σ2,则对于任意正数ε, 不等式
P{
X
μ
ε}
σ2 ε2
成立.
证明 取连续型随机变量的情况来证明. 设 X 的概率密度为 f ( x),则有

第14讲 协方差与相关系数

第14讲 协方差与相关系数

X 和 Y 独立时 X 和 Y 不相关, 反之不一定成立。 但对下述情形,独立与不相关是一回事: 若(X, Y )服从二维正态分布,则
X 与Y 独立的充分必要条件是X与Y不相关。 参见P70-例3.6.3: X与Y独立 XY=0
练习2 1) X ~ U (0,1), Y X 2 , 求 XY
2 1 x2 1 2 dy = 1 x -1 x 1 1 x2 f X ( x) 0, 其他 1 2 E( X ) x 1 x2 d y 0
1

E ( XY )
1
x 2 y 2 1 1 1
( xy/ ) dxdy
期望、方差、协方差的性质对比
期望
E(c)=C E(aX)=aE(X), E(X+Y) =E(X)+E(Y) 当X与Y独立时 E(XY)=E(X)E(Y)
方差
D(c)=0 D(aX)=a2D(X),
协方差
Cov(c,X)=0
Cov(aX,bY) =abCov(X,Y) D(X+Y)=D(X)+ Cov(X+Y,Z) D(Y)+2Cov(X,Y) =Cov(X,Z) +Cov(Y,Z)
y 1
1 y 2 1 y 2
xdx dy
1 0 dy 0.
所以,Cov(X, Y)= E(XY)-E(X) E(Y) = 0 . 此外,Var(X) > 0, Var(Y) > 0 . 所以,XY = 0,即 X 与 Y 不相关。 但是,在第三章已计算过: X与Y不独立。
第十四讲 协方差与相关系数
前面我们介绍了随机变量的数学期望 和方差,对于多维随机变量,反映分量之 间关系的数字特征中,最重要的,就是本 讲要讨论的 协方差和相关系数

方差、标准差、协方差、相关系数

方差、标准差、协方差、相关系数

方差、标准差、协方差、相关系数定义:用来衡量一组数据的离差。

在统计描述中,方差用于计算每个变量(观察值)与总体均值之间的差异。

公式: \sigma^{2}=\frac{\Sigma(X-\mu)^{2}}{N}为样本方差,X为变量,为样本均值,N为样本例数。

2、标准差定义:标准差(Standard Deviation),是离均差平方的算术平均数的算术平方根,用σ表示。

标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。

公式: \sigma=\sqrt{\frac{\Sigma(X-\mu)^{2}}{N}} 变异系数: C_{v}=\frac{\sigma}{\mu} ,其中 \mu 指数据的平均数3、协方差定义:协方差(Covariance)用于衡量两个变量的总体误差。

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。

如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

公式1: C o v(X,Y)=E[(X-E[X])*(Y-E[Y])]\\=E[XY]-2E[X]E[Y]+E[X]E[Y]\\=E[XY]-E[X]E[Y]公式2: Cov=E[(X-\mu_{x})(Y-\mu_{y})] ------该公式易于理解公式2---可以有如下理解:如果有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻的乘积求和并求出均值。

注:1.协方差可以反映两个变量之间的合作关系以及变化趋势是否一致。

向同一个方向或方向变化。

2.X变大,同时Y也变大,说明两个变量是同向变化的,这时协方差就是正的。

3.X变大,同时Y变小,说明两个变量是反向变化的,这时协方差就是负的。

4.从数值上看,协方差越大,两个变量的同向程度越大。

协方差相关系数公式

协方差相关系数公式

协方差相关系数公式协方差和相关系数这两个概念,在咱们的数学学习中可有着相当重要的地位呢!先来说说协方差吧。

协方差呀,简单来讲就是衡量两个变量一起变化的程度。

比如说,有个班级进行了两次考试,一次是语文,一次是数学。

咱把每个同学的语文成绩和数学成绩看作两个变量,如果大部分同学语文成绩高的时候数学成绩也高,语文成绩低的时候数学成绩也低,那这两个变量的协方差就比较大,说明它们一起变化的趋势比较明显。

协方差的公式是:Cov(X,Y) = E[(X - E(X))(Y - E(Y))] 。

这看起来有点复杂,是吧?其实呀,就是先算出每个变量与它们各自平均值的差值,然后把这两个差值乘起来,最后求个平均值。

举个例子吧,咱们假设有五个同学,他们的语文成绩分别是 80、85、90、95、100 ,数学成绩分别是 70、75、80、85、90 。

先算出语文成绩的平均值是 90 ,数学成绩的平均值是 80 。

然后呢,第一个同学语文成绩与平均值的差值就是 80 - 90 = -10 ,数学成绩与平均值的差值就是 70 - 80 = -10 ,这两个差值乘起来就是 (-10)×(-10) = 100 。

按照这样的方法把五个同学的都算出来,再求个平均值,这就是协方差啦。

再说说相关系数。

相关系数呢,其实就是把协方差标准化了一下,这样能更方便地比较不同变量之间的关系强度。

相关系数的取值范围在 -1 到 1 之间。

如果相关系数是 1 ,那就说明两个变量完全正相关,比如身高和体重,一般来说长得高的人体重也会重一些;如果是 -1 ,就是完全负相关,比如价格和需求量,价格越高,需求量往往越低;要是 0 呢,就说明这两个变量没啥关系。

相关系数的公式是:ρ(X,Y) = Cov(X,Y) / (σ(X)σ(Y)) 。

这里面的σ 表示标准差,就是衡量变量分散程度的一个指标。

记得我之前教过一个学生,他一开始对协方差和相关系数那是一头雾水。

相关系数和协方差的关系

相关系数和协方差的关系

相关系数和协方差的关系
一、首先要明白这2个的定义
1、相关系数是协方差与两个投资方案投资收益标准差之积的比值,
其计算公式为:
相关系数总是在-1到+1之间的范围内变动,-1代表完全负相关,+1代表完全正相关,0则表示不相关。

2、协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。

其计算公式为:
当协方差为正值时,表示两种资产的收益率呈同方向变动;协方差为负值时,表示两种资产的收益率呈反方向变动。

二、要辨清两者的关系
1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。

单个资产是没有相关系数和协方差之说的。

2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。

3、(1)协方差表示两种证劵之间共同变动的程度:相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。

(2)相关系数是变量之间相关程度的指标,相关系数在0到1之间,表示两种报酬率的增长是同向的;相关系数在0到-1之间,表示两种报酬率的增长是反向的,所以说相关系数是变量之间相关程度的指标。

总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是两项资产的收益率之间相对运动的状态。

两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差。

协方差cov和相关系数的关系

协方差cov和相关系数的关系

协方差cov和相关系数的关系协方差(covariance)和相关系数(correlation coefficient)是统计学中常用的两个概念,用于衡量两个变量之间的关系。

虽然它们都可以用来描述两个变量之间的关联程度,但是它们之间存在一定的区别和联系。

协方差是用来衡量两个变量之间的总体关系的一个指标。

它的计算公式是两个变量的每个对应数据点的差值乘积的平均值。

协方差的值可以为正、负或零,正值表示两个变量呈正相关关系,负值表示两个变量呈负相关关系,零表示两个变量之间没有线性关系。

然而,协方差的值大小受到变量本身量纲的影响,使得不同变量之间的协方差难以直接比较。

为了解决这个问题,引入了相关系数。

相关系数是由协方差除以两个变量的标准差得到的。

相关系数的取值范围在-1到1之间,绝对值越接近1表示两个变量之间的关系越强,绝对值越接近0表示两个变量之间的关系越弱。

相关系数的绝对值等于1表示两个变量之间存在完全的线性关系,其中正值表示正相关,负值表示负相关。

相关系数为0表示两个变量之间没有线性关系,但并不意味着它们之间没有其他类型的关系。

协方差和相关系数之间的关系可以用一个简单的公式表示:相关系数等于协方差除以两个变量的标准差的乘积。

这意味着相关系数可以通过协方差来计算,同时还考虑了变量本身的标准差,使得相关系数更具有可比性。

协方差和相关系数的应用非常广泛。

在金融领域,协方差和相关系数可以用来衡量不同股票之间的关联程度,帮助投资者进行风险管理和资产配置。

在工程领域,协方差和相关系数可以用来分析不同变量之间的关系,帮助设计师优化产品设计。

在医学研究中,协方差和相关系数可以用来分析不同因素对疾病发生的影响,帮助医生制定预防和治疗策略。

需要注意的是,协方差和相关系数只能衡量两个变量之间的线性关系,不能反映非线性关系。

此外,相关系数只能描述两个变量之间的关系,不能确定因果关系。

因此,在应用中需要综合考虑其他因素,避免误导性的结论。

多元统计分析-协方差,相关系数

多元统计分析-协方差,相关系数

多元统计分析-协⽅差,相关系数协⽅差
协⽅差⽤来描述两个变量的相关性
若两个随机变量正相关则cov(x,y) > 0
负相关则cov(x,y)<0
不相关则cov(x,y) = 0
公式 cov(x,y) = E[(x-u x) *(y-u y)]
r xy = cov(x,y) / ( sqrt(cov(x,x)) * sqrt(cov(y,y)) )
就是求x - x的均值与 y-y的均值的乘积的期望
因为若两个向量正相关则对于多数的(x,y), (x-u x) *(y-u y) > 0, 其期望⾃然也就⼤于0
若两个向量负相关则对于多数的(x,y), (x-u x) *(y-u y) < 0, 其期望⾃然也就⼩于0
若两个向量完全不相关则(x-u x) *(y-u y) 有时⼤于0,有时⼩于0,其期望等于0
相关系数:
σ:⽅差
相关系数是消除了量刚(尺度)的协⽅差
⽐如X是均值为1000的随机变量 Y是均值为0的随机变量,先将其标准化处理再计算协⽅差就是相关系数 -1<=p<=1
相关系数为1表⽰完全正相关,为-1表⽰负相关,为0表⽰完全不相关
术语解释:
标准化:
对于均值为u,⽅程为a的正太分布随机变量X
可通过Y =(x-u)/a将其变为均值为0⽅差为1的正太分布随机变量Y。

协方差相关系数公式推导

协方差相关系数公式推导

协方差相关系数公式推导一、协方差公式推导。

1. 定义。

- 设X和Y是两个随机变量,E(X)表示X的期望,E(Y)表示Y的期望。

- 协方差Cov(X,Y)=E[(X - E(X))(Y - E(Y))]。

2. 展开推导。

- 首先将(X - E(X))(Y - E(Y))展开得到XY - XE(Y)-YE(X)+E(X)E(Y)。

- 然后求期望E[(X - E(X))(Y - E(Y))]=E(XY - XE(Y)-YE(X)+E(X)E(Y))。

- 根据期望的线性性质E(A + B)=E(A)+E(B),可得:- E(XY - XE(Y)-YE(X)+E(X)E(Y))=E(XY)-E(XE(Y))-E(YE(X)) +E(E(X)E(Y))。

- 因为E(X)和E(Y)是常数,所以E(XE(Y)) = E(Y)E(X),E(YE(X))=E(X)E(Y),E(E(X)E(Y)) = E(X)E(Y)。

- 最终得到Cov(X,Y)=E(XY)-E(X)E(Y)。

3. 样本协方差推导(对于样本数据x_1,x_2,·s,x_n和y_1,y_2,·s,y_n)- 样本均值¯x=(1)/(n)∑_i = 1^nx_i,¯y=(1)/(n)∑_i = 1^ny_i。

- 样本协方差s_xy=(1)/(n - 1)∑_i = 1^n(x_i-¯x)(y_i - ¯y)。

- 展开(x_i-¯x)(y_i-¯y)=x_iy_i - x_i¯y-y_i¯x+¯x¯y。

- 对其求和并求期望类似前面的推导过程,最终得到样本协方差的表达式。

二、相关系数公式推导。

1. 定义。

- 相关系数ρ_XY=(Cov(X,Y))/(√(D(X))√(D(Y))),其中D(X)是X的方差,D(Y)是Y的方差。

- 方差D(X)=E[(X - E(X))^2]=E(X^2)-E^2(X),同理D(Y)=E[(Y -E(Y))^2]=E(Y^2)-E^2(Y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

协方差相关系数
协方差与相关系数是统计指标,被用于研究两个变量之间关系的强度,并且可以帮助理解一组数据特征。

本文主要用来解释协方差和相关系数有何不同,以及如何使用它们对数据进行分析。

首先概述协方差,它是一个数量或比例度量,描述两个变量之间的变化。

它用来评估两变量是否有线性关系,它的取值范围为最小值到最大值,这在整个数据集内变化,并提出结论。

协方差用来衡量一个变量随另一个变量变化的趋势,它可以反映变量之间的相关性,也可以帮助研究者探究现象之间的关系。

相关系数是一种比率,用来衡量两个变量之间的变化是否是相互依赖的。

相关系数是协方差的经过标准化的版本,它的取值范围介于-1到1之间。

当相关系数介于-1和0之间时,可以认为两个变量之间有负相关,而当相关系数介于0和1之间时,可以认为两个变量之间有正相关。

协方差与相关系数可以用来测量数据之间的不同类型的相关性,包括线性相关性、非线性相关性以及正相关或负相关性。

当研究者测量数据之间的相关性时,可以基于以下三种情况来使用协方差和相关系数:
1.量变量之间的线性相关性。

这种情况下,研究者可以使用协方差来确定二者的变化趋势并找出规律,特别是当变量的单位不同时,因为协方差可以帮助揭示这种情况下的一般关系。

2.量变量之间的非线性相关性。

协方差也可以用来衡量非线性关
系,例如多项式曲线。

3.量变量之间的正或负相关性。

在这种情况下,研究者可以使用相关系数来测量变量之间的相关性,因为它的取值范围更容易接受。

当相关系数在-1和0之间时,它可以指出变量之间有负相关;而当它介于0和1之间时,则表明变量之间有正相关。

在科学研究领域,协方差与相关系数不但是可以用来测量变量之间的相关性,还可以帮助我们建立变量之间的模型。

模型建立完成之后,研究者就可以使用协方差或相关系数来验证模型的准确性,以获得更准确的结果。

例如,在研究销售量与价格的关系的时候,研究者可以使用协方差与相关系数,来确定商品销量随价格变动的情况,以此来构建销售量与价格的模型,帮助研究者确定最佳的价格策略。

协方差和相关系数可以用来测量数据集中变量之间的相关性,帮助研究者探究变量之间的影响。

它可以衡量线性关系与非线性关系,也可以衡量正负相关性。

此外,它也可以用来验证建立的模型的准确性,帮助研究者做出正确的决策。

相关文档
最新文档