用高等几何的方法证明中学几何题解析

合集下载

初中生如何做好几何证明题(含答案)

初中生如何做好几何证明题(含答案)

14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DFCF BA ED图1分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

八年级数学几何证明题技巧(含答案)

八年级数学几何证明题技巧(含答案)

几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例 1. 已知:如图 1 所示,ABC 中, C 90 ,AC BC,AD DB,AE CF 。

求证: DE= DFAEDC F B图1分析:由 ABC 是等腰直角三角形可知, A B 45 ,由 D 是 AB 中点,可考虑连结CD ,易得 CD AD ,DCF 45 。

从而不难发现DCF DAE证明:连结 CDAC BCA BACB 90 ,AD DBCD BD AD,DCB B AAE CF, A DCB ,AD CDADE CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

高中数学《调和点列与极点极线(解析几何)》(学生+解析版)

高中数学《调和点列与极点极线(解析几何)》(学生+解析版)

调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB |=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.类型3:证明直线过定点或三点共线【例4】如图, 过直线l:5x-7y-70=0上的点P作椭圆x225+y29=1的切线PM和PN, 切点分别为M,N, 连结MN.(1)当点P在直线l上运动时, 证明:直线MN恒过定点Q;(2)当MN⎳l时, 定点Q平分线段MN.【例5】已知A,B分别为椭圆E:x2a2+y2=1(a>1)的左、右顶点, G为E的上顶点, AG⋅GB=8,P为直线x=6上的动点, PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.类型4:证明两直线垂直【例6】已知A (-2,0),B (2,0), 点C 是动点, 且直线AC 和直线BC 的斜率之积为-34.(1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P , 与直线x =4相交于点Q , 且F (1,0), 求证:∠PFQ =90∘.类型5:证明向量数量积(或线段长度之积)为定值【例7】如图, 椭圆有两顶点A (-1,0),B (1,0), 过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点, 并与x 轴交于点P , 直线AC 与直线BD 交于点Q .(1)当|CD |=322时, 求直线l 的方程A (-1,0);(2)当点P 异于A 、B 两点时, 求证:OP ⋅OQ 为定值.类型6:与斜率有关的定值问题【例8】设P x0,y0为桞圆x24+y2=1内一定点(不在坐标轴上), 过点P的两条直线分别与椭圆交于点A,C和B、D, 且AB⎳CD.(1)证明:直线AB的斜率为定值;(2)过点P作AB的平行线, 与椭圆交于E、F两点, 证明:点P平分线段EF.【例9】如图, 椭圆E:x2a2+y2b2=1(a>b>0 的离心率为22, 直线l:y=12x与椭圆E相交于A、B两点, AB=25,C、D是椭圆E上异于A、B的任意两点, 且直线AC、BD相交于点M, 直线AD、BC相交于点N, 连结MN.(1)求椭圆E的方程;(2)求证:直线MN的斜率为定值.【例10】四边形ABCD是椭圆x23+y22=1的内接四边形, AB经过左焦点F1,AC,BD交于右焦点F2, 直线AB与直线CD的斜率分别为k1,k2.(1)证明:k1k2为定值;(2)证明:直线CD过定点, 并求出该定点的坐标.类型7:等角问题【例11】设椭圆C:x22+y2=1的右焦点为F, 过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时, 求直线AM的方程;(2)设O为坐标原点, 证明:∠OMA=∠O MB.【例12】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F, 点-1,32在椭圆C上, 过原点O的直线与椭圆C相交于M、N两点, 且|MF|+|NF|=4.(1)求椭圆C的方程;(2)设P(1,0),Q(4,0), 过点Q且斜率不为零的直线与椭圆C相交于A、B两点, 证明:∠APO=∠BPQ类型8:三斜率成等差数列引理:二次曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0与直线PQ交于点P,Q, 定点O在直线PQ上, PQ与O点关于曲线C的极线交于点R. 曲线C上有两动点A,B, 且直线AO、BO分别交曲线Γ于点C, D, 直线AB,CD分别交PQ于点M,N. 则M,O,N,R成调和点列.【证明】延长XO交BC于点E, 由定理5可知:B,E,C,Y成调和点列(完全四边形中的调和点列), 故M,O,N,R也成调和点列(调和点列在射影变换下的不变性).【例13】椭圆C:x2a2+y2b2=1,P的坐标是x0,0,Q点在P关于椭圆的极线x=a2x0上. 过P作直线交椭圆于点A,B. 求证:直线AQ,PQ,BQ的斜率成等差数列.该结论对于拋物线, 双曲线同样适用. 特别地,当Q点在x轴上时, 就是等角线, 此时PQ斜率为0 , PQ平分∠AQB.【例14】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0), 过焦点F任作一直线交椭圆C于A,B两点, 交F相应的准线于点M,P为过F与x轴垂直的直线上的任意一点, 则直线PA,PM,PB的斜率成等差数列.【例15】如下图, 椭圆x2a2+y2b2=1(a>b>0)的左右顶点为A1,B1,Q为直线x=m上一点, QA1,QB1分别于椭圆交于点A,B, 过点P作直线交桞圆于A,B两点, 直线AB与x轴交于点P, 与直线x=m交于点M, 记直线QA1,QB1,QP的斜率分别为k1,k2,k0, 则:(1)k1,k0,k2成等差数列;(2)x P x Q=a2.【例16】椭圆x2a2+y2b2=1(a>b>0)经过点M1,32, 离心率e=12.(1)求椭圆的方程;(2)设P是直线x=4上任意一点, AB是经过椭圆右焦点F的一条弦(不经过点M). 记直线PA,PF,PB的斜率依次为k1,k2,k3. 问:是否存在常数λ, 使得k1+k3=λk2. 若存在, 求λ的值;若不存在, 说明理由.调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定【答案】B .【解析】因为 ax +by =1 是圆 x 2+y 2=1 的切点弦方程, 所以直线与圆相交, 故选 B .类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【答案】 x9+y 2=1.【解析】该题实质上就是求椭圆 x 29+y 25=1 内一点 M (1,2) 对应的极线方程,答案为 x9+y 2=1.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB|=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.【答案】 (1)x 24+y 22=1;(2) 见解析.【解析】(1)由题意得:c 2=22a 2+1b 2=1c 2=a 2-b 2 ,解得a 2=4b 2=2 ,所求椭圆方程为x24+y 22=1.(2) 解法 1: 定比点差法设点 Q 、A 、B 的坐标分别为 (x ,y ),x 1,y 1 ,x 2,y 2由题设知 |AP |,|PB |,|AQ |,|QB | 均不为零, 记 λ=|AP ||PB |=|AQ||QB |, 则 λ>0 且 λ≠1又 A ,P ,B ,Q 四点共线, 从而 AP =-λPB ,AQ=λQB 于是 4=x 1-λx 21-λ,1=y 1-λy 21-λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ,从而:4x =x 21-λ2x 221-λ2⋯⋯⋯⋯(1)y =y 21-λ2y 221-λ2⋯⋯⋯.. (2)又点 A 、B 在椭圆 C 上,即:。

初中数学几何图形证明十大解法盘点,祝你圆梦中考!

初中数学几何图形证明十大解法盘点,祝你圆梦中考!

初中数学几何图形证明十大解法盘点,祝你圆梦中考!
数学几何一直是数学考试中的重点和难点,所占分值比较大。

同学们早这方面失分也比较多。

我记得以前我上几何课的时候老是不知道从何下手,看到几何图形就头疼!一上课就睡觉.
原因是对数学没有兴趣,但后来在数学老师的耐心讲解下,自己也尝试着去做,结果还做对了,从此就对数学越来越感兴趣,每次遇到数学几何题都用老师讲解的方法去做。

然后数学成绩才得以提升!
前几天微信上的家长对我说,家里小孩数学成绩特别不好,特别是几何题,总是不会用公式,也不知道该从何下手,一遇到几何题就不做了。

家长也不知道该怎么办。

对于这种情况,我特意总结了初中几何图形的几大解法,家长可以帮孩子存着,拿去教孩子做几何题!
一、分割法
二、添加辅助线法
三、倍比法
四、割补平移法
五、等量代换法
六、等腰直角三角形法
七、扩倍/缩倍法
八、代数法
九、外高法
十、概念法
学习是一个不断积累的过程,我一直坚信,没有学不会的孩子,只有不会学的孩子,家长应该在孩子还小记忆力强的时候多培养孩子对数学的兴趣,把数学成绩抓起来!
作为一名老师,真正重要的不是教给学生多少知识,而是教给学生好的学习方法。

(高中段)大题考法立体几何中平行与垂直关系的证明2

(高中段)大题考法立体几何中平行与垂直关系的证明2

[证明] (1)∵侧面 AA1B1B 是矩形,∴A1B1∥AB. 又∵A1B1⊄平面 ABC,AB⊂平面 ABC, ∴A1B1∥平面 ABC. 同理可得 A1C1∥平面 ABC. ∵A1B1∩A1C1=A1,∴平面 ABC∥平面 A1B1C1. (2)∵侧面 AA1B1B,BB1C1C,CC1A1A 都是矩形, ∴A1A⊥AB. 又∵AC⊥AB,A1A∩AC=A, ∴AB⊥平面 AA1C1C. ∵A1M⊂平面 AA1C1C, ∴AB⊥A1M.
[解] (1)证明:在平面四边形 ABCD 中,∠BAD=60°,AB=BD,所以△ ABD 为正三角形.
在三棱锥 C′-ABD 中,取 BD 的中点 M,连接 AM,C′M, 则 AM⊥BD,C′M⊥BD,又 AM∩C′M=M, 所以 BD⊥平面 C′AM,从而 AC′⊥BD. (2)由 AB=BD=AD=2,得 AM= 3,C′M=1, 又 AC′=1,所以△C′AM 为等腰三角形,且∠AMC′ =30°. 取 AM 的中点 O,连接 C′O, 则 C′O⊥AM, 又 C′O⊥BD,AM∩BD=M,
Ⅲ-2 大题考法——立体几何中平行与垂直关系的证明
题型(一) 空间平行、垂直关系的证明 方法例解 [典例] 如图,该几何体的三个侧面AA1B1B,BB1C1C, CC1A1A都是矩形. (1)证明:平面ABC∥平面A1B1C1; (2)若AA1=2AC,AC⊥AB,M为CC1中点,证明:A1M⊥ 平面ABM.
又 F 为 PD 的中点, ∴S△PBF=S△BDF, ∴VC-PBF=VC-BDF=12VC-PBD. ∴VG-BCF=VC-BGF=12VC-PBF=14VC-PBD=14VP-BCD =18VP-BCDE=18×13×2×2×2=13.
题型(三) 空间线面关系的探索性问题 方法例解 [典例] 如图所示,平面 ABCD⊥平面 BCE,四边形 ABCD 为矩形,BC=CE,点 F 为 CE 的中点. (1)证明:AE∥平面 BDF. (2)点 M 为 CD 上任意一点,在线段 AE 上是否存在点 P, 使得 PM⊥BE?若存在,确定点 P 的位置,并加以证明;若不存在,请说明 理由.

高中数学几何证明方法详解

高中数学几何证明方法详解

高中数学几何证明方法详解在高中数学中,几何证明是一个重要的部分,它要求学生通过推理和演绎的方法,以逻辑严密的方式证明几何命题。

本文将详细介绍一些常见的几何证明方法,并通过具体例题来说明其考点和解题技巧,以帮助高中学生更好地掌握几何证明。

一、直角三角形证明直角三角形证明是几何证明中最基础也是最常见的一种。

在直角三角形中,我们常常需要证明两条边相等、两个角相等或者两个三角形全等。

下面以一个具体的例题来说明直角三角形证明的方法。

例题:在直角三角形ABC中,已知∠B=90°,AC=BC,垂直平分线AD分别交BC和AB于点D和E,证明AD=DE。

解答:首先,我们可以利用∠B=90°和AC=BC来证明△ABC是一个等腰直角三角形。

由于AC=BC,所以∠A=∠C。

再结合直角三角形的性质,得知∠A=∠C=45°。

因此,△ABC是一个等腰直角三角形。

接下来,我们需要证明AD=DE。

由于AD是垂直平分线,所以∠BAD=∠DAE。

又因为∠A=45°,所以∠BAD=45°。

由此可得∠DAE=45°。

根据等腰直角三角形的性质,我们知道∠B=90°,所以∠ABD=45°。

结合之前的推导,我们可以得出∠ABD=∠DAE=45°。

根据等腰三角形的性质,我们可以得知AD=DE。

因此,我们证明了在直角三角形ABC中,垂直平分线AD分别交BC和AB于点D和E,且AD=DE。

通过这个例题,我们可以看出直角三角形证明的关键在于利用直角三角形的性质和等腰三角形的性质进行推导。

同时,我们还需要注意观察题目中给出的已知条件,合理运用几何知识进行推理。

二、相似三角形证明相似三角形证明是几何证明中较为复杂的一种。

相似三角形证明要求学生通过比较两个三角形的对应边长或对应角度的关系,来证明它们是相似的。

下面以一个具体的例题来说明相似三角形证明的方法。

例题:在△ABC中,D是边AC上的一点,且AD=CD。

几何证明题目及解题方法

几何证明题目及解题方法

几何证明题目及解题方法在学习几何学的过程中,我们经常需要面对各种证明题目。

几何证明题目的解题方法多种多样,本文将为大家介绍几种常见的几何证明题目及其解题方法。

一、证明两条直线平行首先,我们来讨论如何证明两条直线平行。

对于给定的两条直线AB和CD,我们可以通过以下步骤来进行证明:1. 过点A画一条与CD平行的直线AE。

2. 在AE上找一点F,使得角EFD等于角CDA。

3. 连接BF。

4. 若BF与CD重合,则可得出结论:AB与CD平行。

通过以上步骤,我们可以证明两条直线的平行关系。

二、证明三角形全等下面,我们来介绍如何证明两个三角形全等。

假设我们需要证明三角形ABC和三角形DEF全等,我们可以使用以下方法:1. 检查三组对应的边是否相等。

即检查AB是否等于DE,BC是否等于EF,以及AC是否等于DF。

2. 检查两组对应的角是否相等。

即检查∠ABC是否等于∠DEF,∠BCA是否等于∠EFD。

若以上两个条件都满足,则可以得出结论:三角形ABC和DEF全等。

三、证明两个三角形相似接下来,我们来讨论如何证明两个三角形相似。

假设我们需要证明三角形ABC和三角形DEF相似,我们可以使用以下方法:1. 检查两组对应的角是否相等。

即检查∠ABC是否等于∠DEF,∠BCA是否等于∠EDF。

2. 找到共同的角。

若在ABC中存在一个角∠B,使得∠BDE等于∠ABC,那么我们可以得出结论∠B等于∠B。

3. 检查两组对应的边的比例关系。

即检查AB与DE的比值是否等于BC与EF的比值,以及AC与DF的比值是否相等。

若以上三个条件都满足,则可以得出结论:三角形ABC和DEF相似。

综上所述,我们介绍了几何证明题目的一些解题方法及步骤。

希望通过这些方法,大家能够更好地应对几何证明题目,提高自己的解题能力。

同时,大家也可以根据具体题目的要求,灵活运用这些方法,并结合具体的几何性质来解题。

通过不断练习和掌握这些方法,相信大家在几何学的学习中会有更好的表现。

初中生如何做好几何证明题(含标准答案)

初中生如何做好几何证明题(含标准答案)

14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DFCF BA ED图1分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E CDF DE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨学院本科毕业论文(设计)题目:用高等几何的方法证明中学几何题院(系)理学院专业数学与应用数学年级2007级姓名赵润生学号07031334 指导教师姜秀英职称副教授2011年6月8日目录摘要 (1)ABSTRACT (2)第一章高等几何对中学几何的指导作用 (3)1.1 几何学的对象和分类 (3)1.2 对坐标系的认识 (4)1.3 关于直线和二次曲线理论 (5)第二章高等几何的一些基本理论 (8)2.1 平行射影 (8)2.2 仿射象和中心射影 (9)2.3 透视保持交比不变 (10)2.4 调和共轭 (11)第三章用高等几何的方法证明中学几何题 (14)3.1 利用平行射影证明中学几何题 (14)3.2 利用特殊仿射象证明中学几何题 (15)3.3 利用中心射影,将直线投射到无穷远处 (17)3.4 利用透视保持交比对中学几何题进行证明 (18)3.5 利用调和共轭证明线段相等和角相等 (19)参考文献 (21)后记 (22)摘要中学的几何证明题千变万化,精彩纷纭,有不少题目难于找到证明思路,高等几何为我们提供了解决中学几何证明题的一些方法,不仅能帮助教师思考问题,而且能启发我们获得初等证法,其证明过程还可以帮助我们发现新的中学几何命题,为中学生课外活动丰富了材料。

本文从高等几何对中学几何的指导作用的探讨入手,把高等几何的理论应用到中学几何证明题中,通过具体实例论述了用高等几何的方法来解决中学几何证明题的问题。

关键词:平行射影;调和共轭;仿射象;中心射影;ABSTRACTMiddle school geometry proof topic protean, nobody has many topics wonderful find proof ideas, difficult to higher geometry offers us solve middle school geometry questions of some methods, proved not only can help the teacher of thinking, and can inspire us obtain elementary proofs its proof process can also help us find new middle school geometry proposition, for high school students extra-curricular activities enriched material. This article from the higher geometry to middle school geometry guidance to let the discussion of higher geometry theory applied to middle school geometry proof questions with concrete examples discussed higher geometry method to solve the problem of middle school geometry proof.Key words:Parallel projective; Harmonic conjugate; Affine like; Center projective;第一章高等几何对中学几何的指导作用1.1 几何学的对象和分类什么是几何学?它研究的对象是什么?这在中学教科书中虽然没有明确的定义,但初中平面几何开卷家告述读者,几何学要研究图形的“形状、大小和位置关系”虽然在中学几何中,已知图形的形状、大小是不变的,位置关系也是确定的。

但是离开中学教本,却有不同的情况发生。

空间一矩形经太阳照射,在地面留下的影子,一般不在是矩形,这样矩形就变成了非矩形,矩形的形状大小不再有意义!当你站在笔直的铁路上眺望远处的铁轨时,在你的视觉下,本来平行的铁轨似乎相交了,平行和相交这两种在中学几何里不相容的位置关系在一定条件下同一了,区别平行和相交不在有意义!这些也是图型的性质,但却不是中学几何课本研究的性质,他们是几何学研究的对象吗?“高等几何”通过克莱因观点,给出了几何学的定义,并界定了各种几何学的对象和内容,对上述问题做出了回答。

原来,几何学是与变换群联系在一起的。

中学几何的主要内容是属于比较小的运动群附属的欧氏几何。

除了运动群外,还有仿射群、射影群等。

在仿射群附属的仿射几何学中,矩形可以变成平行四边形,矩形的概念失去了意义;在射影群附属的射影几何学中,平行的概念失去了意义,任何两条不同直线必然相交,平行四边形也失去了意义。

因此,“研究图形的形状、大小和位置关系”可以作为欧氏几何的定义,但不能作为仿射几何和射影几何的定义。

“高等几何”告述我们,在中学几何之外,还有广阔的几何学新天地,这不仅大开了读者的眼界,而且有助于读者站在新的高度上,深入了解中学几何教材,从而提高对处理种教材的能力。

1.2 对坐标系的认识用解析法研究几何学的基础是坐标系。

坐标系的本质是将作为几何基本对象的点转化成有序数组的参照物,从而能将曲线转换成方程,使得用解析工具研究几何成为可能。

从这种认识出发,高等几何分析直角坐标系,去掉作为参照物的多余条件,推广而得到仿射坐标系。

再在奇次坐标系下,对仿射坐标改变看法,去掉特殊性而得到一般性的射影坐标系。

反之,从一般射影坐标系出发,增加特殊条件得到仿射坐标系。

再利用虚元素,从仿射坐标系得到直角坐标系。

对于坐标系的这种从特殊到一般,又从一般到特殊的研究方法是极富启发性的,不但可以提高我们对坐标系的认识,而且对培养数学素养也有一定的作用。

直角坐标系是保距变换下的不变坐标系,因而是研究欧氏几何的最适当坐标系;仿射坐标系是仿射变换下的不变坐标系因而是研究仿射几何的最适当坐标系;射影坐标系是射影变换下的不变坐标系,因而是研究射影几何的最适当坐标系。

如果在欧氏几何中采用仿射坐标系,就会给计算带来麻烦。

反之,由于角度和长度在仿射几何中没有意义,故在仿射几何中不宜采用直角坐标系。

同样,由于在射影几何中没有向量的概念,故在射影几何中不宜采用仿射坐标系。

中学教材研究椭圆、双曲线和抛物线时,采用的是特殊的标准坐标系。

在特殊坐标系下研究出来的几何性质是否是图形的固有性质?这种用特殊研究一般的方法是否合理?这是教师应当明确的。

按照克莱因观点,几何学研究的是在相应的变换群的变换下的不变性质和不变量,而作为这些变换的表达式,既可看成点的变换,又可看成坐标的变换。

所以在变换群的变换下的不变性质和不变量,也可看成在相应坐标变换下的不变性质和不变量。

因而刻画图形几何性质的不变性质和不变量是与坐标系的选择无关的。

这就说明利用图形特征,选择与图形关系最密切的标准坐标系,来研究图形的几何性质是合理的,得到的结论是可靠的。

这样做的好处是可以大大简化计算和避免不必要的讨论。

在高等几何的研究中,针对不同图形的特征,利用特殊点、特殊之线、图形的对称性和点的平等性,选择适当坐标系的做法,将加深读者对坐标的理解,增强他们在解析几何中的教学能力1.3 关于直线和二次曲线理论直线形既是初等几何研究的对象,也是射影几何研究的对象。

但是,由于抽象的范围不同,研究的内容也不尽相同,射影几何有高度的概括性,它的一切结论在仿射几何和欧氏几何里适用。

它的基本性质结合性也是中学几何研究的内容,它的基本不变量交比有着初等意义。

因此,可以利用射影几何的方法来解决中学几何的问题,在一定条件下仿射几何和欧式几何的特有概念也可以纳入几何的轨道。

实际上,在扩大平面上,平行直线是相交于无穷远点的直线,线段的中点是第四调和点为无穷远点的第一个分点。

在引进虚元素后,我们又可以利用射影几何的方法定义垂直性和计算度等。

将射影问题的一些条件特殊化,可以获得中学几何的命题,一些中学几何的命题,可以简便的利用射影几何的方法来解决。

特别是有关集交与列座问题,用射影几何的方法解决起来比较方便。

有的初等几何命题还可以在射影几何的高度上统一起来,例如解决集交与列座问题常用Cava 定理和梅因劳斯定理,就可以统一在射影几何的下述命题中定理 设在三点形rsp 的三边q s ⨯、r q ⨯、s r ⨯上各取两点r '、a ';s '、b ';q '、c ',使用交比等式()()()1;;;-=''•''•''c q rs b s qr a r sp ,则三直线r r '⨯、s s '⨯、q q '⨯供电的充要条件是三点a '、b '、c '共线显然,当a '、b '、c '共于无穷远直线时,此定理简化成Cava 定理;设r r '⨯、s s '⨯、q q '⨯共于点t ,当qrst 是平行四边形时,定理简化成梅因劳斯定理。

中学解析几何与高等几何均将二次曲线作为主要研究对象,但是中学仅在欧式几何的范围内研究,而高等几何既在欧式几何范围内研究,又在仿射几何和射影几何范围内研究。

由于欧氏变换群⊂仿射变换群⊂射影变换群,故就内容多少而言,有欧氏几何⊃仿射几何⊃射影几何。

因此射影性质一定是仿射性质,仿射性质一定是度量性质。

这样读者不单能分清二次曲线各种性质的层次,而且能站在射影几何的高度上来认识中学解析几何中给出的二次曲线的性质。

射影几何给了二次曲线的配极定义和射影定义,它们分别从配极变换和一维射影对应的高度深刻的刻画了二次曲线的本质,是椭圆、双曲线和包无限的共同特征,即共性。

从配极定义到处了二次曲线的配极理论,将中学几何涉及的中心、直径、渐近线、焦点和准线统一在极点和极线理论之下,使这些对立的概念在射影几何的高度上得到同一。

从射影定义出发,几何上获得了确定一条二次曲线的条件。

这些能使读者在射影几何的高度上认识二次曲线。

在仿射平面上,抓住二次曲线与无穷远直线的关系,并非退化二次曲线分成了椭圆、双曲线和抛物线三类,刻画出这三种直线的本质差别,即个性。

这就使我们能够解释清楚仅凭中学解析几何知识无法解释的一些问题,例如:1.抛物线为什么没有中心?2.抛物线无限伸展时,为什么图形沿开口方向逐渐与对称平行?3.一条直线与二次曲线相交,为什么有的有两个交点,有的只有一个交点?4.对于椭圆和双曲线的每一切线,都有与他平行的另一切线,为什么对于抛物线的任何切线,却没有与它平行的另一切线?5.是否存在于抛物线两支都相切的直线?...................,等等。

相关文档
最新文档