2010年台湾省中考数学试题
2010年中考数学试题精选:不等式

2010年部分省市中考数学试题分类汇编不等式(组)1. (2010年浙江省东阳县)不等式组的解集在数轴上表示正确的是()【关键词】不等式组的解法【答案】A2、(2010年宁波市)请你写出一个满足不等式的正整数的值:____________。
【关键词】不等式【答案】1,2,3中填一个即可3、(2010年宁波市)请你写出一个满足不等式的正整数的值:____________。
【关键词】不等式【答案】1,2,3中填一个即可4.(2)(2010年安徽省芜湖市)求不等式组的整数解【关键词】不等式(组)及其解集整数解【解】解不等式得;........................2分解不等式得..........................4分∴,又∵为整数,∴满足不等式组的整数解为,,,,,,,.....6分5.(2010浙江省喜嘉兴市)(1)解不等式:3x-2>x+4;【关键词】一元一次不等式【答案】.①②6.(2010年浙江台州市)解不等式组,并把解集在数轴上表示出来.【关键词】一元一次不等式【答案】解①得,<3,解②得,>1,∴不等式组的解集是1<<3.在数轴上表示7.(2010年益阳市)解不等式,并将解集在数轴上表示出来.【关键词】一元一次不等式、数轴【答案】.解:8.(2010江西)不等式的解集是( )A.x >-3 B.x>3 C.-3<x<3 D.无解【关键词】一元一次不等式组【答案】B9.(2010山东德州)不等式组的解集为_____________.【关键词】一元一次不等式组【答案】10(2010年广东省广州市)不等式的解集是()A.-<x≤2 B.-3<x≤2 C.x≥2 D.x<-3【关键词】解不等式组【答案】B11(2010年四川省眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【关键词】一元一次方程(组)、一元一次不等式(组)、一次函数型的最值问题【答案】解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗尾,由题意得:………………………………………(1分)解这个方程,得:∴答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.…………………(2分)(2)由题意得:……………………………(3分)解这个不等式,得:即购买甲种鱼苗应不少于2000尾.………………………………(4分)(3)设购买鱼苗的总费用为y,则(5分)由题意,有………………………(6分)解得:…………………………………………………………(7分)在中∵,∴y随x的增大而减少∴当时,.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)12(2010年重庆)不等式的解集为()A. B.x≤4 C. D.3<x≤4【答案】D13.(2010重庆市)不等式组的解集为()A.x>3 B.x≤4 C.3<x<4 D.3<x ≤4解析:将两个不等式的解集求出,可得,根据不等式组“大小小大,中间找”取解法,可得解集为3<x≤4答案:D10.(2010江苏泰州,10,3分)不等式的解集为.【答案】>3【关键词】一元一次不等式的解法23.(2010江苏泰州,23,10分)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?【答案】设调进绿豆x吨,根据题意,得解得 600≤x≤800.答:调进绿豆的吨数应不少于600吨,并且不超过800吨.【关键词】一元一次不等式组的应用1.(2010年浙江省绍兴市)不等式-的解是_______________.【答案】(2010年宁德市)(每小题7分,满分14分)⑵解不等式≤1,并把它的解集在数轴上表示出来.⑵解:2(2x-1)-3(5x+1)≤6.4x-2-15x-3≤6.4x-15x≤6+2+3.-11x≤11.x≥-1.这个不等式的解集在数轴上表示如下:3.(2010重庆市)不等式组的解集为()A.x>3 B.x≤4 C.3<x<4 D.3<x ≤4解析:将两个不等式的解集求出,可得,根据不等式组“大小小大,中间找”取解法,可得解集为3<x≤4答案:D1.(2010年四川省眉山市)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【关键词】一元一次方程、不等式与实际问题【答案】解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗尾,由题意得:解这个方程,得:∴答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.(2)由题意得:解这个不等式,得:即购买甲种鱼苗应不少于2000尾.(3)设购买鱼苗的总费用为y,则由题意,有解得:在中∵,∴y随x的增大而减少∴当时,.2.(2010年福建省晋江市)不等式组的解集是___________.【关键词】不等式组、解集【答案】12. (2010年安徽中考)不等式组的解集是_______________.【关键词】不等式组的解集【答案】2<x≤41、(2010年宁波市)请你写出一个满足不等式的正整数的值:____________。
2010年中考模拟试卷 数学卷

2010年中考模拟试卷 数学卷考生须知:1.本科目试卷分试题卷和答题卷两部分. 满分120分,考试时间100分钟.2.答题前,必须在答题卷的密封区内填写某某与某某号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,只需上交答题卷.试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.2010年3月5日,第十一届全国人大三次会议在人民大会堂开幕. 温家宝总理在政府工作报告中指出,2009年,我国国内生产总值达到33.5万亿元。
用科学记数法表示应为: …………………………………………………………() 《原创》 A. ×1012元B. ×1012 元 C.×1013元D. ×1011元2.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )《原创》 A .2个或3个 B .3个或4个 C .4个或5个 D .5个或6个3. 某校初一年级有十个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )《原创》 A .将十个平均成绩之和除以10,就得到全年级学生的平均成绩 B .全年级学生的平均成绩一定在这十个平均成绩的最小值与最大值之间 C .这10个平均成绩的中位数就是全年级学生的平均成绩 D .这10个平均成绩的众数不可能是全年级学生的平均成绩 4. 视力表对我们来说并不陌生.如图是视力表的一部分,五个不同方向的“E ”之间存在的变换有( )《原创》主视图俯视图(第2题)标准对数视力表A .平移、旋转B .旋转、相似C .轴对称、平移、相似D .相似、平移5. 已知(3x -5)(7x -11)- (7x -11)(11x -23)可因式分解成(ax +b )(8x +c ),其中a 、b 、c 均为整数,则b -a +c=( )B 《原创》A .-36B .0C .36D .-146. 在一个不透明的布袋中,红色、黑色、白色的球共有120个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )个.A 《原创》7. 已知0|84|=--+-m y x x ,当m >2时,点P (x,y )应在直角坐标系的( )D A.第一象限B.第二象限C.第三象限D.第四象限《原创》8. 如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,PH ⊥AB 于H ,若EF =3,PH=1. 则梯形ABCD 的面积为()C 《原创》 A .9B .C .12D .15第9题9. 如图,已知O ⊙的半径为5,锐角ABC △内接于O ⊙,弦AB=8,BD AC ⊥于点D ,OM AB ⊥于点M ,则sin CBD ∠的值等于( )《原创》 B.0.8 C.0.510.对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n nA B 表示这两点间的距离,则201020102211......B A B A B A ++的值是( ) A .20112010B .20082009C .20102009D .20092010《根据2009年某某中考试题改编》二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案 11.21-的倒数是,写出一个比-3大而比-2小的无理数是. 《原创》 12.数据1、5、6、5、6、5、6、6的众数是,方差是. 《原创》13.正方形ABCD 的边长为a cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是cm 2.《根据书本改编》14.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有3个整数解,则实数a 的取值X 围是.《根据书本改编》15.如图,已知矩形OABC 的面积为325,它的对角线OB 与双曲线x k y =相交于点D ,且DB ∶OD =2∶3,则k =____________.《根据书本改编》16.如图,在直角坐标系中,已知点0P 的坐标为(10),,将线段0OP 按逆时针方向旋转45,再将其长度伸长为0OP 的2倍,得到线段1OP ;又将线段1OP 按逆时针方向旋转45,长度伸长为1OP 的2倍,得到线段2OP ;如此下去,得到线段3OP ,4OP ,则点的坐标为5P ; 点2010P 的坐标为56POP △的面积为;《根据书本改编》 第13题三.全面答一答(本题有8个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以17.(本小题满分6分)(1)计算:4|21|27)132(60tan 30⨯----+︒;(2)化简:a a a -+-21422《根据书本改编》18.(本小题满分6分)现有半径为50cm 一个圆形彩纸片,小明同学为了在毕业联欢晚会上表演节目,她打算用这个圆形彩纸片制作成若干个底面半径为20cm 的圆锥形纸帽(接缝处不重叠). (1) 求一个圆锥形纸帽的侧面积;(2) 应剪去的扇形纸片的圆心角为多少度?《原创》19.(本小题满分6分)《改编》如图(1),∠ABC =90°,O 为射线BC 上一点,OB = 4,以点O 为圆心,22长为半径作⊙O 交BC 于点D 、E .(1)当射线BA 绕点B 按顺时针方向旋转多少度时与⊙O 相切?请说明理由.(2)若射线BA 绕点B 按顺时针方向旋转600时与⊙O 相交于M 、N 两点,如图(2),求线段MN 与⌒MN 所围成图形的面积;《根据书本改编》20.(本小题满分8分) 如图,已知线段a 和∠1.图(2)图(1)(1)只用直尺和圆规,求作△ABC ,使BC= a ,∠ACB =2B ∠=2∠1(要求保留作图痕迹,不必写出作法). (2)根据要求作图:① 作ACB ∠的平分线交AB 于D ; ② 过D 点作DE ⊥BC ,垂足为E . (3)在(2)的基础上写出一对全等三角形和一对相似比不为.......1.的相似三角形: △≌△;△∽△.《原创》21.(本小题满分8分)某校对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A B C D 、、、四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了__________名同学的体育测试成绩,扇形统计图中A 、B 、C 级所占的百分比分别为a=___________;b=___________;c=_________; (2)补全条形统计图;(3)若该校九年级共有800名同学,请估计该校九年级同学体育测试达标(测试成绩B 级以上,含B 级)约有___________名.《原创》4 8 12 16 20 24 28 32 20 324 A 级 C 级 D 级 等级B 级 D 级,d =5%C 级,c =?A 级,a =?B 级, b =?频数(人数)22. (本小题满分10分)阅读理解:对于任意正实数a b ,,2(0a b-≥,0a b ∴-≥,a b ∴+≥,只有点a b =时,等号成立.结论:在a b +≥a b ,均为正实数)中,若ab为定值p ,则a b +≥, 只有当a b =时,a b+有最小值. 根据上述内容,回答下列问题:(1)若0m >,只有当m =时,1m m+有最小值. (2)思考验证:如图,AB 为半圆O 的直径,C 为半圆上任意一点,(与点A B ,不重合).过点C 作CD AB ⊥,垂足为D ,AD a =,DB b =.试根据图形验证a b +≥〈根据课本改编〉23.(本小题满分10分)为实现区域均衡发展,某市计划对甲、乙两类贫困村的环境全部进行改造.根据预算,共需资金1575万元.改造一个甲类贫困村和两个乙类贫困村共需资金230万元;改造两个甲类贫困村和一个乙类贫困村共需资金205万元.(1)改造一个甲类贫困村和一个乙类贫困村所需的资金分别是多少万元? (2)若该市的甲类贫困村不超过5个,则乙类贫困村至少有多少个?(3)该市计划今年对甲、乙两类贫困村共6个进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入甲、乙两类贫困村的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?〈根据2009襄樊市中考试题改编〉24.(本小题满分12分)如图,抛物线2y ax bx c =++与x 轴交于A B 、两点,与y 轴相交于点C .连结AC 、BC ,B 、C 两点的坐标分别为B (1,0)、(0C ,且当x=-10和x=8时函数的值y 相等.第22题图(1)求a 、b 、c 的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.连结MN ,将BMN △沿MN 翻折,当运动时间为几秒时,B 点恰好落在AC 边上的P 处?并求点P 的坐标;(3)上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D ,对称轴与x 轴的交点为E ,若△ODE 与△OBC 相似,求新抛物线的解析式。
中考数学试题分类汇编二次根式

2010年部分省市中考数学试题分类汇编 二次根式9.2010年山东省青岛市= .关键词二次根式计算答案3.2010浙江省喜嘉兴市设a >0,b >0,则下列运算错误的是A 2=a D 关键词二次根式的运算答案B12、2010浙江省喜嘉兴市比较大小:π.填“>”、“<”或“=” 关键词估算、二次根式答案<172010年浙江省金华.本题6分 计算:04cos30+°. 关键词二次根式、三角函数值、零指数幂答案:原式﹦1+33-32…………5分三式化简对1个2分,对2个4分,对3个5分 ﹦1+3.7.2010江西的结果是A .3B .-3CD .关键词二次根式答案A2010A .3B .3-C .3±D . 9 关键词2a 的化简答案A2010年广东省广州市若a <1,1=A .a ﹣2B .2﹣aC .aD .﹣a 关键词二次根式的化简答案D2010重庆市潼南县计算:=+312 .答案:3311. 2010年安徽中考计算:=-⨯263_______________.关键词实数的运算答案11. 2010年浙江省东阳市如图,在数轴上点A 和点B 之间的整数是 ▲ .关键词实数答案21.2010年山东聊城化简:错误!-错误!+错误!=_____关键词二次根式1. 2010年兰州市 函数y=+中自变量x 的取值范围是A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3 关键词二次根式性质答案D1、2010福建德化下列计算正确的是A 、=B 、C 、 D答案:B2、2010福建德化若整数满足条件=且<,则的值是 . 答案:03、2010福建德化化简:错误!错误!+2- 错误!;答案: =1、2010福建德化下列计算正确的是 A 、= B 、 C 、 D关键词:二次根式的运算 答案:B2、2010福建德化若整数满足条件=且<,则的值是 .x -231-x 20102632=⋅224=-3=-m 2)1(+m 1+m m 52m a a a -+2a 220102632=⋅224=-3=-m 2)1(+m 1+m m 52m关键词:二次根式的性质 答案:03、2010盐城使2-x 有意义的x 的取值范围是 ▲ 关键词:二次根式有意义的条件 答案:x ≥2 3、2010福建德化化简:错误!错误!+2- 错误!;关键词:二次根式的运算 答案: =1.2010年山东省济南市下列各式中,运算正确的是AB .C .D. 关键词二次根式的计算答案A2.2010年台湾省计算169136254之值为何 A 2125 B 3125 C 4127 D 5127; 关键词二次根式的计算答案Ba a a -+2a 2==632a a a ÷=325()a a =。
2024年台湾省中考数学试卷【含解析】

2024年台湾省中考数学试卷一、第一部分:选择题(1~25题)1.(3分)算式之值为何?()A.B.C.D.2.(3分)如图为一个直三角柱的展开图,其中三个面被标示为甲、乙、丙.将此展开图折成直三角柱后,判断下列叙述何者正确?()A.甲与乙平行,甲与丙垂直B.甲与乙平行,甲与丙平行C.甲与乙垂直,甲与丙垂直D.甲与乙垂直,甲与丙平行3.(3分)若二元一次联立方程式的解为,则a+b之值为何?()A.﹣28B.﹣14C.﹣4D.144.(3分)若想在如图的方格纸上沿着网格线画出坐标平面的x轴、y轴并标记原点,且以小方格边长作为单位长,则下列哪一种画法可在方格纸的范围内标出(5,3)、(﹣4,﹣4)、(﹣3,4)、(3,﹣5)四点?()A.B.C.D.5.(3分)阿贤利用便利贴拼成一个圣诞树图案,圣诞树图案共有10层,每一层由三列的便利贴拼成,前3层如图所示.若同一层中每一列皆比前一列多2张,且每一层第一列皆比前一层第一列多2张,则此圣诞树图案由多少张便利贴拼成?()A.354B.360C.384D.3906.(3分)箱内有50颗白球和10颗红球,小慧打算从箱内抽球31次,每次从箱内抽出一球,如果抽出白球则将白球放回箱内,如果抽出红球则不将红球放回箱内.已知小慧在前30次抽球中共抽出红球4次,若她第31次抽球时箱内的每颗球被抽出的机会相等,则这次她抽出红球的机率为何?()A.B.C.D.7.(3分)图1有A、B两种图案,其中A经过上下翻转后与B相同,且图案的外围是正方形,图2是将四个A图以紧密且不重叠的方式排列成大正方形,图3是将两个A图与两个B图以紧密且不重叠的方式排列成大正方形.判断图2、图3是否为轴对称图形?()A.图2、图3皆是B.图2、图3皆不是C.图2是,图3不是D.图2不是,图3是8.(3分)若a=3.2×10﹣5,b=7.5×10﹣5,c=6.3×10﹣6,则a、b、c三数的大小关系为何?()A.a<b<c B.a<c<b C.c<a<b D.c<b<a9.(3分)癌症分期是为了区别恶性肿瘤影响人体健康的程度,某国统计2011年确诊四种癌症一到四期的患者在3年后存活的比率(3年存活率),並依据癌症类别与不同分期将资料整理成如图.甲、乙两人对该国2011年确诊上述四种癌症的患者提出看法如下:(甲)一到四期的乳癌患者的3年存活率皆高于50%(乙)在这四种癌症中,三期与四期的3年存活率相差最多的是胃癌对于甲、乙两人的看法,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确10.(3分)下列何者为多项式5x(5x﹣2)﹣4(5x﹣2)2的因式分解?()A.(5x﹣2)(25x﹣8)B.(5x﹣2)(5x﹣4)C.(5x﹣2)(﹣15x+8)D.(5x﹣2)(﹣20x+4)11.(3分)将化简为,其中a、b为整数,求a+b之值为何?()A.5B.3C.﹣9D.﹣1512.(3分)甲、乙两个二次函数分别为y=(x+20)2+60、y=﹣(x﹣30)2+60,判断下列叙述何者正确?()A.甲有最大值,且其值为x=20时的y值B.甲有最小值,且其值为x=20时的y值C.乙有最大值,且其值为x=30时的y值D.乙有最小值,且其值为x=30时的y值13.(3分)如图为阿成调整他的计算机画面的分辨率时看到的选项,当他从建议选项1920×1080调整成1400×1050时,由于比例改变(1920:1080≠1400:1050),画面左右会出现黑色区域,当比例不变就不会有此问题.判断阿成将他的计算机画面分辨率从1920×1080调整成下列哪一种时,画面左右不会出现黑色区域?()A.1680×1050B.1600×900C.1440×900D.1280×102414.(3分)小玲搭飞机出国旅游,已知她搭飞机产生的碳排放量为800公斤,为了弥补这些碳排放量,她决定上下班时从驾驶汽车改成搭公交车.依据图(九)的信息,假设小玲每日上下班驾驶汽车或搭公交车的来回总距离皆为20公里,则与驾驶汽车相比,她至少要改搭公交车上下班几天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量?()每人使用各种交通工具每移动1公里产生的碳排放量●自行车:0公斤●公交车:0.04公斤●机车:0.05公斤●汽车:0.17公斤A.310天B.309天C.308天D.307天15.(3分)甲、乙两个最简分数分别为、,其中a、b为正整数.若将甲、乙通分化成相同的分母后,甲的分子变为50,乙的分子变为54,则下列关于a的叙述,何者正确?()A.a是3的倍数,也是5的倍数B.a是3的倍数,但不是5的倍数C.a是5的倍数,但不是3的倍数D.a不是3的倍数,也不是5的倍数16.(3分)有研究报告指出,1880年至2020年全球平均气温上升趋势约为每十年上升0.08℃.已知2020年全球平均气温为14.88℃,假设未来的全球平均气温上升趋势与上述趋势相同,且每年上升的度数相同,则预估2020年之后第x年的全球平均气温为多少℃?(以x表示)()A.14.88+0.08xB.14.88+0.008xC.14.88+0.08[x+(2020−1880)]D.14.88+0.008[x+(2020−1880)]17.(3分)△ABC中,∠B=55°,∠C=65°.今分别以B、C为圆心,BC长为半径画圆B、圆C,关于A点位置,下列叙述何者正确?()A.在圆B外部,在圆C内部B.在圆B外部,在圆C外部C.在圆B内部,在圆C内部D.在圆B内部,在圆C外部18.(3分)如图,平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,其中E在DC上,F在BC上,C在FG上.若AB=7,AD=5,FC=3,则四边形ECGH的周长为何?()A.21B.20C.19D.1819.(3分)如图的数在线有A(−2)、O(0)、B(2)三点.今打算在此数在线标示P(p)、Q(q)两点,且p、q互为倒数,若P在A的左侧,则下列叙述何者正确?()A.Q在AO上,且AQ<QO B.Q在AO上,且AQ>QOC.Q在OB上,且OQ<QB D.Q在OB上,且OQ>QB20.(3分)四边形ABCD中,E、F两点在BC上,G点在AD上,各点位置如图所示.连接GE、GF后,根据图中标示的角与角度,判断下列关系何者正确?()A.∠1+∠2<∠3+∠4B.∠1+∠2>∠3+∠4C.∠1+∠4<∠2+∠3D.∠1+∠4>∠2+∠321.(3分)如图,、皆为半圆,与相交于E点,其中A、B、C、D在同一直在线,且B为AC 的中点.若=58°,则的度数为何?()A.58B.60C.62D.6422.(3分)如图,△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3.若△ABC 的重心为G,则下列叙述何者正确?()A.△GBC与△DBC的面积相同,且DG与BC平行B.△GBC与△DBC的面积相同,且DG与BC不平行C.△GCA与△DCA的面积相同,且DG与AC平行D.△GCA与△DCA的面积相同,且DG与AC不平行23.(3分)如图1,等腰梯形纸片ABCD中,AD∥BC,AB=DC,∠B=∠C,且E点在BC上,DE∥AB.今以DE为折线将C点向左折后,C点恰落在AB上,如图2所示.若CE=2,DE=4,则图2的BC与AC的长度比为何?()A.1:2B.1:3C.2:3D.3:5请阅读下列叙述后,回答24~25题.体重为衡量个人健康的重要指标之一,表(一)为成年人利用身高(公尺)计算理想体重(公斤)的三种方式,由于这些计算方式没有考虑脂肪及肌肉重量占体重的比例,因此结果仅供参考.女性理想体重男性理想体重算法①身高×身高×22身高×身高×22算法②(100×身高﹣70)×0.6(100×身高﹣80)×0.7算法③(100×身高﹣158)×0.5+52(100×身高﹣170)×0.6+6224.(3分)以下为甲、乙两个关于成年女性理想体重的叙述:(甲)有的女性使用算法①与算法②算出的理想体重会相同(乙)有的女性使用算法②与算法③算出的理想体重会相同对于甲、乙两个叙述,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确25.(3分)无论我们使用哪一种算法计算理想体重,都可将个人的实际体重归类为表(二)的其中一种类别.实际体重类别大于理想体重的120%肥胖介于理想体重的110%~过重120%正常介于理想体重的90%~110%介于理想体重的80%~90%过轻小于理想体重的80%消瘦当身高1.8公尺的成年男性使用算法②计算理想体重并根据表(二)归类,实际体重介于70×90%公斤至70×110%公斤之间会被归类为正常.若将上述身高1.8公尺且实际体重被归类为正常的成年男性,重新以算法③计算理想体重并根据表(二)归类,则所有可能被归类的类别为何?()A.正常B.正常、过重C.正常、过轻D.正常、过重、过轻二、第二部分:非选择题(1~2题)26.「健康饮食餐盘」是一种以图画呈现饮食指南的方式,图画中各类食物区块的面积比,表示一个人每日所应摄取各类食物的份量比.某研究机构对于一般人如何搭配「谷类」、「蛋白质」、「蔬菜」、「水果」这四大类食物的摄取份量,以「健康标语」说明这四大类食物所应摄取份量的关系如图1,并绘制了「健康饮食餐盘」如图2.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)请根据图1的「健康标语」,判断一个人每日所应摄取的「水果」和「蛋白质」份量之间的大小关系.(2)将图2的「健康饮食餐盘」简化为一个矩形,且其中四大类食物的区块皆为矩形,如图3所示.若要符合图1的「健康标语」,在纸上画出图3的图形,其中餐盘长为16公分,宽为10公分,则a、b 是否可能同时为正整数?27.某教室内的桌子皆为同一款多功能桌,4张此款桌子可紧密拼接成中间有圆形镂空的大圆桌,上视图如图1所示,其外围及镂空边界为一大一小的同心圆,其中大圆的半径为80公分,小圆的半径为20公分,且任两张相邻桌子接缝的延长线皆通过圆心.为了有效运用教室空间,老师考虑了图2及图3两种拼接此款桌子的方式.这两种方式皆是将2张桌子的一边完全贴合进行拼接.A、B两点为图2中距离最远的两个桌角,C、D 两点为图3中距离最远的两个桌角,且CD与2张桌子的接缝EF相交于G点,G为EF中点.请根据上述信息及图2、图3中的标示回答下列问题,完整写出你的解题过程并详细解释:(1)GF的长度为多少公分?(2)判断CD与AB的长度何者较大?请说明理由.2024年台湾省中考数学试卷参考答案与试题解析一、第一部分:选择题(1~25题)1.(3分)算式之值为何?()A.B.C.D.【分析】根据有理数的减法的运算方法,求出算式的值即可.【解答】解:=+=.故选:A.【点评】此题主要考查了有理数的减法的运算方法,解答此题的关键是要明确有理数减法法则:减去一个数,等于加上这个数的相反数.2.(3分)如图为一个直三角柱的展开图,其中三个面被标示为甲、乙、丙.将此展开图折成直三角柱后,判断下列叙述何者正确?()A.甲与乙平行,甲与丙垂直B.甲与乙平行,甲与丙平行C.甲与乙垂直,甲与丙垂直D.甲与乙垂直,甲与丙平行【分析】画出折叠后的几何体,进行分析甲、乙、丙的位置关系.【解答】解:折叠后如图所示,,∴甲与乙平行,甲与丙垂直,乙与丙垂直,故选:A.【点评】本题考查了展开图折叠问题,关键是画出折叠后的几何体进行分析.3.(3分)若二元一次联立方程式的解为,则a+b之值为何?()A.﹣28B.﹣14C.﹣4D.14【分析】把代入得关于a,b的方程组,解方程组求出a,b,再代入求出a+b的值即可.【解答】解:把代入得:,把②代入①得:5a﹣3×(﹣3a)=28,5a+9a=28,14a=28,a=2,把a=2代入②得:b=﹣6,∴a+b=2+(﹣6)=﹣4,故选:C.【点评】本题主要考查了二元一次方程组的解,解题关键是熟练掌握二元一次方程组的解是使各个方程左右两边相等的未知数的值.4.(3分)若想在如图的方格纸上沿着网格线画出坐标平面的x轴、y轴并标记原点,且以小方格边长作为单位长,则下列哪一种画法可在方格纸的范围内标出(5,3)、(﹣4,﹣4)、(﹣3,4)、(3,﹣5)四点?()A .B .C .D .【分析】根据点的坐标特点解答即可.【解答】解:A 、坐标系中不能表示出点(3,﹣5),不符合题意;B 、坐标系中不能表示出点(3,﹣5),不符合题意;C 、坐标系中不能表示出点(5,3),不符合题意;D 、坐标系中能表示出各点,符合题意,故选:D .【点评】本题考查的是点的坐标,熟知各点坐标在平面直角坐标系中的表示方法是解题的关键.5.(3分)阿贤利用便利贴拼成一个圣诞树图案,圣诞树图案共有10层,每一层由三列的便利贴拼成,前3层如图所示.若同一层中每一列皆比前一列多2张,且每一层第一列皆比前一层第一列多2张,则此圣诞树图案由多少张便利贴拼成?()A.354B.360C.384D.390【分析】根据各层图案使用便利贴的张数,可得出第n层由(6n+3)张便利贴拼成,将前n层图案使用便利贴的张数相加,可得出前n层图案由(3n2+6n)张便利贴拼成,再代入n=10,即可求出结论.【解答】解:根据题意得:第一层由1+3+5=9(张)便利贴拼成,第二层由3+5+7=15(张)便利贴拼成,第三层由5+7+9=21(张)便利贴拼成,…,∴第n(n为正整数)层由2n﹣1+2n+1+2n+3=6n+3(张)便利贴拼成;∵9+15+21+…+6n+3==3n2+6n,∴当n=10时,3n2+6n=3×102+6×10=360,∴此圣诞树图案由360张便利贴拼成.故选:B.【点评】本题考查了规律型:图形的变化类,根据各层图案使用便利贴的张数的变化,找出变化规律“第n层由(6n+3)张便利贴拼成(n为正整数)”是解题的关键.6.(3分)箱内有50颗白球和10颗红球,小慧打算从箱内抽球31次,每次从箱内抽出一球,如果抽出白球则将白球放回箱内,如果抽出红球则不将红球放回箱内.已知小慧在前30次抽球中共抽出红球4次,若她第31次抽球时箱内的每颗球被抽出的机会相等,则这次她抽出红球的机率为何?()A.B.C.D.【分析】让红球的个数除以球的总数即为所求的概率.【解答】解:∵第31次抽球时箱内共有56个球,红球有6个,∴这次她抽出红球的概率为=.故选:D.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.7.(3分)图1有A、B两种图案,其中A经过上下翻转后与B相同,且图案的外围是正方形,图2是将四个A图以紧密且不重叠的方式排列成大正方形,图3是将两个A图与两个B图以紧密且不重叠的方式排列成大正方形.判断图2、图3是否为轴对称图形?()A.图2、图3皆是B.图2、图3皆不是C.图2是,图3不是D.图2不是,图3是【分析】根据轴对称图形的定义判断即可.【解答】解:观察可知,题图2的图形不是轴对称图形,题图3的图形是轴对称图形,对称轴如图所示.故选:D.【点评】本题主要考查线对称图形,本题是在以正方形为背景下来考查线对称图形,以正方形的四条的对称轴为基准,观察题图中的图形是否关于某一条对称.8.(3分)若a=3.2×10﹣5,b=7.5×10﹣5,c=6.3×10﹣6,则a、b、c三数的大小关系为何?()A.a<b<c B.a<c<b C.c<a<b D.c<b<a【分析】根据科学记数法的方法进行解题即可.【解答】解:∵a=3.2×10﹣5=0.000032,b=7.5×10﹣5=0.000075,c=6.3×10﹣6=0.0000063,0.0000063<0.000032<0.000075,∴c<a<b.故选:C.【点评】本题考查科学记数法﹣表示较小的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.熟记相关结论即可.9.(3分)癌症分期是为了区别恶性肿瘤影响人体健康的程度,某国统计2011年确诊四种癌症一到四期的患者在3年后存活的比率(3年存活率),並依据癌症类别与不同分期将资料整理成如图.甲、乙两人对该国2011年确诊上述四种癌症的患者提出看法如下:(甲)一到四期的乳癌患者的3年存活率皆高于50%(乙)在这四种癌症中,三期与四期的3年存活率相差最多的是胃癌对于甲、乙两人的看法,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】由条形图和百分数的意义,即可判断.【解答】解,由图知甲的看法正确,由图判断三期与四期的3年存活率相差最多的是大肠癌,由此乙的看法错误.故选:C.【点评】本题考查百分数的应用,关键是读懂条形图.10.(3分)下列何者为多项式5x(5x﹣2)﹣4(5x﹣2)2的因式分解?()A.(5x﹣2)(25x﹣8)B.(5x﹣2)(5x﹣4)C.(5x﹣2)(﹣15x+8)D.(5x﹣2)(﹣20x+4)【分析】多项式提公因式(5x﹣2)因式分解可得答案.【解答】解:5x(5x﹣2)﹣4(5x﹣2)2=(5x﹣2)[5x﹣4(5x﹣2)]=(5x﹣2)(﹣15x+8).故选:C.【点评】本题考查因式分解,熟练掌握提公因式法因式分解的方法是解题的关键.11.(3分)将化简为,其中a、b为整数,求a+b之值为何?()A.5B.3C.﹣9D.﹣15【分析】把将进行化简,求出a,b的值即可.【解答】解:∵===4+,∴a=4,b=1,∴a+b=4+1=5.故选:A.【点评】本题考查的是二次根式的混合运算及分母有理化,熟知二次根式分母有理化的法则是解题的关键.12.(3分)甲、乙两个二次函数分别为y=(x+20)2+60、y=﹣(x﹣30)2+60,判断下列叙述何者正确?()A.甲有最大值,且其值为x=20时的y值B.甲有最小值,且其值为x=20时的y值C.乙有最大值,且其值为x=30时的y值D.乙有最小值,且其值为x=30时的y值【分析】根据二次函数的最值问题解答即可.【解答】解:∵二次函数y=(x+20)2+60中,a=1>0,∴此函数有最小值,最小值为x=﹣20时y的值,∴A、B错误;∵二次函数y=﹣(x﹣30)2+60中,a=﹣1<0,∴此函数有最大值,最大值为x=30时y的值,∴C正确、D错误,故选:C.【点评】本题考查的是二次函数的最值问题,熟知二次函数y=ax2+bx+c(a≠0)中,当a>0时,函数图象有最低点,所以函数有最小值;当a<0时,函数图象有最高点,所以函数有最大值是解题的关键.13.(3分)如图为阿成调整他的计算机画面的分辨率时看到的选项,当他从建议选项1920×1080调整成1400×1050时,由于比例改变(1920:1080≠1400:1050),画面左右会出现黑色区域,当比例不变就不会有此问题.判断阿成将他的计算机画面分辨率从1920×1080调整成下列哪一种时,画面左右不会出现黑色区域?()A.1680×1050B.1600×900C.1440×900D.1280×1024【分析】根据比例不变,画面左右不会出现黑色区域,即可得出答案.【解答】解:∵1920:1080=1600:900,∴阿成将他的计算机画面分辨率从1920×1080调整成1600×900时,画面左右不会出现黑色区域.故选:B.【点评】本题主要考查比例的性质,熟练掌握比例的性质是解题的关键.14.(3分)小玲搭飞机出国旅游,已知她搭飞机产生的碳排放量为800公斤,为了弥补这些碳排放量,她决定上下班时从驾驶汽车改成搭公交车.依据图(九)的信息,假设小玲每日上下班驾驶汽车或搭公交车的来回总距离皆为20公里,则与驾驶汽车相比,她至少要改搭公交车上下班几天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量?()每人使用各种交通工具每移动1公里产生的碳排放量●自行车:0公斤●公交车:0.04公斤●机车:0.05公斤●汽车:0.17公斤A.310天B.309天C.308天D.307天【分析】设改搭公交车上下班x天,利用减少产生的碳排放量=每天减少产生的碳排放量×改搭公交车上下班的天数,结合减少产生的碳排放量超过她搭飞机产生的碳排放量,可列出关于x的一元一次不等式,解之可得出x的取值范围,再取其中的最小整数值,即可得出结论.【解答】解:设改搭公交车上下班x天,根据题意得:(0.17﹣0.04)×20x>800,解得:x>,又∵x为正整数,∴x的最小值为308,∴至少要改搭公交车上下班308天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.15.(3分)甲、乙两个最简分数分别为、,其中a、b为正整数.若将甲、乙通分化成相同的分母后,甲的分子变为50,乙的分子变为54,则下列关于a的叙述,何者正确?()A.a是3的倍数,也是5的倍数B.a是3的倍数,但不是5的倍数C.a是5的倍数,但不是3的倍数D.a不是3的倍数,也不是5的倍数【分析】利用分数的基本性质,甲的分子分母都乘以5,乙的分子分母都乘以3,然后利用最简分数的定义可判断a为3的倍数,不是5的倍数.【解答】解:∵甲的分子变为50,乙的分子变为54,∴甲的分子分母都乘以5,乙的分子分母都乘以3,∵与为最简分数,∴a为3的倍数,不是5的倍数.故选:B.【点评】本题考查了约分和通分:熟练掌握分数的基本性质是解决问题的关键.16.(3分)有研究报告指出,1880年至2020年全球平均气温上升趋势约为每十年上升0.08℃.已知2020年全球平均气温为14.88℃,假设未来的全球平均气温上升趋势与上述趋势相同,且每年上升的度数相同,则预估2020年之后第x年的全球平均气温为多少℃?(以x表示)()A.14.88+0.08xB.14.88+0.008xC.14.88+0.08[x+(2020−1880)]D.14.88+0.008[x+(2020−1880)]【分析】先求出每年平均气温约上升多少度;再表示出x年平均气温上升多少度;最后加上2020年全球平均气温即可.【解答】解:14.88+x(0.08÷10)=14.88+0.008x,故选:B.【点评】本题考查了列代数式,解题的关键根据题中的数量关系来解答.17.(3分)△ABC中,∠B=55°,∠C=65°.今分别以B、C为圆心,BC长为半径画圆B、圆C,关于A点位置,下列叙述何者正确?()A.在圆B外部,在圆C内部B.在圆B外部,在圆C外部C.在圆B内部,在圆C内部D.在圆B内部,在圆C外部【分析】利用三角形内角和定理求出∠A=60°,再利用三角形中,较大的角所对的边较长,即可解决问题.【解答】解:∵∠B=55°,∠C=65°.∴∠A=60°,∴AB>BC>AC,∴点A在圆B外,在圆C内,故选:A.【点评】本题主要考查了点和圆的位置关系,判断出AB>BC>AC是解题的关键.18.(3分)如图,平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,其中E在DC上,F在BC上,C在FG上.若AB=7,AD=5,FC=3,则四边形ECGH的周长为何?()A.21B.20C.19D.18【分析】根据全等图形的性质、平行四边形的性质求解即可.【解答】解:∵平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,∴AB=CD=HE=FG=7,AD=HG=EF=5,∠DCB=∠GFE,∴EF=EC=5,∵FC=3,∴CG=FG﹣FC=4,∵四边形ECGH的周长=EC+CG+HG+EH=5+4+5+7=21,故选:A.【点评】此题考查了平行四边形的性质,全等图形,熟记平行四边形的对边相等,全等图形的对应边相等、对应角相等是解题的关键.19.(3分)如图的数在线有A(−2)、O(0)、B(2)三点.今打算在此数在线标示P(p)、Q(q)两点,且p、q互为倒数,若P在A的左侧,则下列叙述何者正确?()A.Q在AO上,且AQ<QO B.Q在AO上,且AQ>QOC.Q在OB上,且OQ<QB D.Q在OB上,且OQ>QB【分析】取特殊值法排除A选项,再用倒数的性质排除C、D选项.【解答】解:取P(﹣3),则Q(),则AQ=,OQ=,故A错误;∵p为负数,p、q互为倒数,∴q为负数,∴点Q不可能在OB上,故C、D错误.故选:B.【点评】本题考查利用特殊值和倒数的性质解题.20.(3分)四边形ABCD中,E、F两点在BC上,G点在AD上,各点位置如图所示.连接GE、GF后,根据图中标示的角与角度,判断下列关系何者正确?()A.∠1+∠2<∠3+∠4B.∠1+∠2>∠3+∠4C.∠1+∠4<∠2+∠3D.∠1+∠4>∠2+∠3【分析】通过三角形内角和与四边形内角和,排除错误选项.【解答】解:∵∠1+∠2+∠EGF=180°,∠3+∠4+∠EGF=180°,∴∠1+∠2=∠3+∠4,故A、B选项错误,∵∠1+∠C+∠D+∠EGD=360°,∴∠1+70°+105°+∠4+∠EGF=360°,∴∠1+∠4=185°﹣∠EGF,∵∠2+∠B+∠A+∠AGF=360°,∴∠2+85°+100°+∠3+∠EGF=360°,∴∠2+∠3=175°﹣∠EGF,∴∠1+∠4>∠2+∠3,故选:D.【点评】本题考查了角度之间的大小比较,属于简单题.21.(3分)如图,、皆为半圆,与相交于E点,其中A、B、C、D在同一直在线,且B为AC 的中点.若=58°,则的度数为何?()A.58B.60C.62D.64【分析】连接BE、DE,根据圆心角、弧、弦的关系定理求出∠EBC=58°,根据直角三角形的性质求出∠EDB,进而求出的度数.【解答】解:如图,连接BE、DE,∵B为AC的中点,∴AC为左边半圆的直径,∵的度数为58°,∴∠EBC=58°,∵BD是右边圆的直径,∴∠BED=90°,∴∠EDB=90°﹣58°=32°,∴的度数为:32°×2=64°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系、圆周角定理,熟记直径所对的圆周角为直角是解题的关键.22.(3分)如图,△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3.若△ABC 的重心为G,则下列叙述何者正确?()A.△GBC与△DBC的面积相同,且DG与BC平行B.△GBC与△DBC的面积相同,且DG与BC不平行C.△GCA与△DCA的面积相同,且DG与AC平行D.△GCA与△DCA的面积相同,且DG与AC不平行=5+4+3=12,利用三角形重心性质可得S△GBC=S△ABC=×12=4,进而【分析】由题意可得S△ABC=S△DBC=4,即可判断结论A正确.可得S△GBC【解答】解:∵△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3,=5+4+3=12,∴S△ABC∵△ABC的重心为G,=S△ABC=×12=4,∴S△GBC=S△DBC=4,∴S△GBC∴点D、G到BC的距离相等,且位于BC的同侧,∴DG∥BC,故结论A正确;结论B、C、D错误;故选:A.【点评】本题考查了三角形的中线、重心,三角形面积,熟练掌握三角形的重心的性质是解题关键.23.(3分)如图1,等腰梯形纸片ABCD中,AD∥BC,AB=DC,∠B=∠C,且E点在BC上,DE∥AB.今以DE为折线将C点向左折后,C点恰落在AB上,如图2所示.若CE=2,DE=4,则图2的BC与AC的长度比为何?()A.1:2B.1:3C.2:3D.3:5【分析】先证得△BCE∽△ECD,得出=,即=,求得BC=1,再由AC=AB﹣BC可得AC =3,即可求得答案.【解答】解:如图2,由折叠得:∠DEC′=∠DEC,∠DCE=∠DC′E,DC=DC′,CE=C′E=2,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB=4,∴AB=DC=DE=DC′,∴∠DEC=∠DCE,∵∠B=∠DCE,∴∠B=∠DCE=∠DEC=∠DEC′,∵∠BEC=180°﹣∠DEC﹣∠DEC′,∠CDE=180°﹣∠DCE﹣∠DEC,∴∠BEC=∠CDE,∴△BCE∽△ECD,∴=,即=,∴BC=1,∴AC=AB﹣BC=4﹣1=3,∴=,故选:B.【点评】本题考查了梯形性质,平行四边形的判定和性质,等腰三角形的性质,折叠的性质,相似三角形的判定和性质等,熟练运用相似三角形的判定和性质是解题关键.请阅读下列叙述后,回答24~25题.体重为衡量个人健康的重要指标之一,表(一)为成年人利用身高(公尺)计算理想体重(公斤)的三种方式,由于这些计算方式没有考虑脂肪及肌肉重量占体重的比例,因此结果仅供参考.女性理想体重男性理想体重算法①身高×身高×22身高×身高×22算法②(100×身高﹣70)×0.6(100×身高﹣80)×0.7算法③(100×身高﹣158)×0.5+52(100×身高﹣170)×0.6+6224.(3分)以下为甲、乙两个关于成年女性理想体重的叙述:(甲)有的女性使用算法①与算法②算出的理想体重会相同(乙)有的女性使用算法②与算法③算出的理想体重会相同对于甲、乙两个叙述,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】假设甲叙述正确,设女性的身高为x公尺,根据使用算法①与算法②算出的理想体重会相同,可列出关于x的一元二次方程,由根的判别式Δ=﹣24<0,可得出原方程没有实数根,进而可得出假设不成立,即甲叙述错误;假设乙叙述正确,设女性的身高为y公尺,使用算法②与算法③算出的理想体重会相同,可列出关于y的一元一次方程,解之可得出y的值,进而可得出假设成立,即乙叙述正确.【解答】解:假设甲叙述正确,设女性的身高为x公尺,。
2011台湾第二次中考数学试题-解析版

年台湾省第二次中考数学试卷一、选择题(共小题,每小题分,满分分)、(•台湾)若下列只有一个图形不是右图的展开图,则此图为何?()、、、、考点:几何体的展开图。
专题:几何图形问题。
分析:能将展开图还原成立体图形,即可作出判断.解答:解:选项的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形.故选.点评:考查了生活中的立体图形,由平面图形的折叠及几何体的展开图解题.、(•台湾)计算﹣(﹣)之值为何?()、﹣、﹣、﹣、﹣考点:有理数的加减混合运算。
分析:根据有理数的运算法则,可以首先计算﹣和﹣的和,再进一步根据绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并让较大的绝对值减去较小的绝对值.解答:解:﹣(﹣),﹣(),﹣,﹣.故选.点评:此题考查了有理数的加减运算法则,注意其中的简便计算方法:分别让其中的正数和负数结合计算.、(•台湾)安安班上有九位同学,他们的体重资料如下:,,,,,,,,.(单位:公斤)关于此数据的中位数与众数的叙述,下列何者正确?()、中位数为、中位数为、众数为、众数为考点:众数;中位数。
专题:计算题。
分析:根据定义,对选项一一分析,采用排除法选择正确答案.解答:解题技巧:先将所有的数据值依序排列后才取中位数[解析]将笔资料值由小到大依序排列如下:,,,,,,,,∵()÷,∴中位数取第笔资料值,即中位数,∵公斤的次数最多(次)∴众数,故选()教材对应:统计量点评:本题考查了众数及中位数的定义,解题的关键是掌握统计中的有关概念.、(•台湾)若二元一次联立方程式的解为,,则之值为何?()、、、、考点:解二元一次方程组。
分析:将其中一个方程两边乘以一个数,使其与另一方程中的系数互为相反数,再将两方程相加,消去一个未知数,达到降元的目的,求出另一个未知数,再用代入法求另一个未知数.解答:解:,①﹣×②得,﹣,﹣,代入②中得,,解得,∴(﹣),故选()点评:本题主要考查解二元一次方程组:用加减法解二元一次方程组,用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数,把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得未知数的值,将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.、(•台湾)如图为平面上圆与四条直线、、、的位置关系.若圆的半径为公分,且点到其中一直线的距离为公分,则此直线为何?()、、、、考点:直线与圆的位置关系。
2010年中考数学模拟试卷参考答案

2010年中考数学模拟试卷 参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. -4,2 12.(3,5) 13.12-14.31 15. n )23( 16. 6S 1≤≤ 三. 解答题(8小题共66分) 17. (本题6分)解:(1)上述两同学回答的均不全面,应该是300 , 1500 , 900 (遗漏一个扣1分) ………3分 (2)答案不唯一.如面对不确定的情况就要考虑进行分类讨论;考虑问题要全面呀等等,只要有这样的意思就得3分. …………………………3分 18. (本题6分)解:900,1350,1800 ,2700, 3600,只要举出其中两个角能够进行三等分, ……………………2分尺规作图正确,每个2分 ………………………4分19、(本题6分)解:(1)第一只 肉 香肠 红枣 红枣第二只 红枣 肉 红枣 红枣 肉 香肠 红枣 香肠 红枣∴P =61122= …………………………3分(2)这样模拟不正确 …………………………1分 理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种 …………………………2分 20. (本题8分)解:老板第二次售手链还是赚了. …………………………1分 设第一次批发价为x 元/条,则第二次的批发价为x+0.5元/条 依题意,得: )x1000.5)(10(x ++=150 解之得 5.2x ,2x 21== …………………………3分经检验,5.2x ,2x 21== 都是原方程的根 …………………………1分 由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为2.5元/条第二次共批发手链605.21505.0x 150==+(条) …………………………1分第二次的利润为: 1.2150-5).08.260518.26054(=⨯⨯⨯+⨯⨯ …………………………1分故,老板第二次售手链赚了1.2元 . …………………………1分21.(本题8分)解:(1)如图,由题意得,∠EAD =45°,∠FBD =30°.∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°.又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km . ……………………………………………4分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°. ∴ DO =2×sin60°=2×323=,BO =2×cos60°=1. 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332km . …………………………………………………4分 22. (本题10分)解:(1)这个样本的中位数为120(人),众数为100(人),平均数为150(人) ………3分 信息:①这一周每天参观人数不低于100人; ②周末参观人数逐渐增加;金③一周内参观人数在百人左右的天数最多;④星期日参观人数最多;⑤这一周每天参观人数不超过240人;⑥星期五参观人数最接近这一周的平均值;•⑦一周内多数天参观人数低于本周参观人数的平均值等等.…………………………2分(2)①由(1)知样本数据的中位数为120(人),则甲、乙两团共120人,其中甲团有x人,乙团有(120-x)人.∵0<120-x≤50,∴甲团人数超过50人…………………………1分ⅰ)当50<x•≤100,•0<120-x≤50时,W=60x+80(120-x)即W=9600-20x(70≤x≤100)ⅱ)当x>100,0<120-x•≤50时,W=40x+80(120-x)即W=9600-40x(100<x<120)∴当70≤x≤100时,W关于x的函数关系式为W=9600-20x;当100<x<120时,W关于x的函数关系式为:W=9600-40x.…………………………2分②依题意x≤100,∴W关于x的函数关系式应为:W=9600-20x(70≤x≤100)根据一次函数的性质知:当x=70时,W=9600-2×700=8200(元)而两团合起来购票应付费40×120=4800(元),∴两团合起来购票比分开购票最多可节约8200-4800=3400(元).…………………………2分23.(本题10分)证明:(1)连接AM,∵AB是半圆O的直径,∴∠BMA=90°…………………………1分又∵DE⊥AB,∠ABM=∠NBE,∴Rt△ABM∽Rt△NBE∴BN BEBA BM,即BN·BM=BE·BA …………………………2分(2)连接AD,BD(如图2),∵AB是⊙O的直径,∴∠ADB=90°…………………………1分又因∵DE⊥AB,∴BD2=BE·BA …………………………1分∵BC是⊙O1的切线,∴BC2=BN·BM …………………………1分由(1)知BN·BM=BE·BA,∴BC2=BD2,即BC=BD …………………………1分(3)连接O 1N 和OM (如图3),则OM 过点O 1, ∵OB=OM ,O 1N=O 1M ,∴∠MNO 1=∠NMO 1=∠MBO …………………………1分 ∴O 1N ∥OB …………………………1分而DE ⊥OB ,∴OE ⊥O 1N∵O 1N 是 ⊙O 1的半径,∴DE 是⊙O 1的切线.…………………………1分24.(本题12分)解:(1)①法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠,AOH QCH ∴△≌△.OH CH ∴=,即H 为AQ 的中点. …………………………1分法二:(01)A ,,(01)B -,,OA OB ∴=.又BQ x ∥轴,HA HQ ∴=. …………………………1分 由①可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠, RAH PQH ∴△≌△.AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形.………………………1分②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,2114AP m PQ ===+=.∴平行四边形APQR 为菱形. …………………………2分(2)设直线PR 为y kx b =+,由OH CH =,得,0)2m (H ,214P m m ⎛⎫⎪⎝⎭,代入得: 2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-.………………………1分 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . …………………………2分 (3)AN ∥GH ,AN 21GH =. …………………………2分由(1)知AP=PQ ,同理知AM=MN.M A N M N A ,A Q P PA Q ∠=∠∠=∠∴ BQ PQ ,BQ M N ⊥⊥∴MN ∥PQ ∴180MPQ NMA =∠+∠ ∵⊿AMN 和⊿APQ 的内角和都为180180MAN MNA AQP PAQ =∠+∠+∠+∠∴ 90MAN PAQ =∠+∠∴ AQ AN 90NAQ ⊥∴=∠∴…………………………2分由(1)知四边形APQR 为菱形,HQ AH PR AQ =⊥∴,PR ∴∥AN为GH ∴⊿ANQ 的中位线.∴AN ∥GH ,AN 21GH = …………………………1分。
2010中考数学
2010中考数学介绍2010年中考数学试题是中国教育系统中的一项重要考试。
这篇文档将介绍2010年中考数学试题的主要内容和解题方法,并提供一些参考答案和解析。
希望通过本文档的阅读,读者能对2010年中考数学试题有更深入的了解。
题目1:代数式计算题目描述已知a=3,b=4,则a^2 - b^2 = ?解题思路根据题目中的给定信息,我们可以直接利用代数式计算的方法来求解。
根据公式 (a + b)(a - b) = a^2 - b^2 ,将已知的a和b代入,我们可以得到:(3 + 4)(3 - 4) = 7 * -1 = -7所以a^2 - b^2的值为-7。
参考答案和解析答案:-7解析:根据代数式计算的方法,将已知的a和b代入公式(a + b)(a - b) = a^2 - b^2 ,我们可以得到a^2 - b^2 = -7。
题目2:几何图形与计算题目描述如下图所示,ABCD为一个平行四边形,AD=BC,M为AB 的中点。
那么,AM的长度等于?B _______ C|\\ /|| \\ / || \\ / |A|___X___|D解题思路根据题目中的给定信息,我们需要利用几何图形的性质来求解AM的长度。
首先,根据平行四边形的性质,我们知道AD与BC平行且等长,所以△ABM 与△CDM 是全等三角形。
由于M是AB的中点,所以AM与MB的长度是相等的。
根据全等三角形的性质,△ABM和△CDM的对应边长也是相等的,所以AM与MD的长度也是相等的。
所以,AM的长度等于MD的长度。
参考答案和解析答案:MD解析:根据几何图形的性质,我们可以得出结论:AM的长度等于MD的长度。
题目3:函数与方程题目描述若函数 f(x) = 2x + 1,求使得 f(x) = 5 的解 x 的值。
解题思路根据题目中的给定函数,我们需要求出满足f(x) = 5的解x 的值。
将给定函数的表达式 f(x) = 2x + 1 代入方程 f(x) = 5 ,可以得到:2x + 1 = 5解这个一元一次方程,我们可以得到:2x = 4x = 2所以,使得 f(x) = 5 的解 x 的值为2。
2022年台湾省中考数学试卷(解析版)
2022年台湾省中考数学试卷第一部分:选择题(1~25题)1.如图数线上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d|2.计算多项式6x2+4x除以2x2后,得到的余式为何?()A.2B.4C.2x D.4x3.下列何者为156的质因数?()A.11B.12C.13D.144.如图为一个长方体的展开图,且长方体的底面为正方形.根据图中标示的长度,求此长方体的体积为何?()A.144B.224C.264D.3005.算式+﹣(﹣)之值为何?()A.B.C.D.6.的值介于下列哪两个数之间?()A.25,30B.30,35C.35,40D.40,457.已知坐标平面上有一直线L与一点A.若L的方程式为x=﹣2,A点坐标为(6,5),则A点到直线L的距离为何?()A.3B.4C.7D.88.多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.129.箱子内有分别标示号码1~6的球,每个号码各2颗,总共12颗.已知小茹先从箱内抽出5颗球且不将球放回箱内,这5颗球的号码分别是1、2、2、3、5.今阿纯打算从此箱内剩下的球中抽出1颗球,若箱内剩下的每颗球被他抽出的机会相等,则他抽出的球的号码,与小茹已抽出的5颗球中任意一颗球的号码相同的机率是多少?()A.B.C.D.10.已知一元二次方程式(x﹣2)2=3的两根为a、b,且a>b,求2a+b之值为何?()A.9B.﹣3C.6+D.﹣6+11.根据如图中两人的对话纪录,求出哥哥买游戏机的预算为多少元?()A.3800B.4800C.5800D.680012.已知p=7.52×10﹣6,下列关于p值的叙述何者正确?()A.小于0B.介于0与1两数之间,两数中比较接近0C.介于0与1两数之间,两数中比较接近1D.大于113.如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC的长度为何?()A.3B.4C.D.14.某国主计处调查2017年该国所有受雇员工的年薪资料,并公布调查结果如图的直方图所示.已知总调查人数为750万人,根据图中信息计算,该国受雇员工年薪低于平均数的人数占总调查人数的百分率为下列何者?()A.6%B.50%C.68%D.73%15.如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3D.∠1≠∠2,∠1>∠316.缓降机是火灾发生时避难的逃生设备,如图是厂商提供的缓降机安装示意图,图中呈现在三楼安装缓降机时,使用此缓降机直接缓降到一楼地面的所需绳长(不计安全带).若某栋建筑的每个楼层高度皆为3公尺,则根据如图的安装方式在该建筑八楼安装缓降机时,使用此缓降机直接缓降到一楼地面的所需绳长(不计安全带)为多少公尺?()A.21.7B.22.6C.24.7D.25.617.如图为两直线L、M与△ABC相交的情形,其中L、M分别与BC、AB平行.根据图中标示的角度,求∠B的度数为何?()A.55B.60C.65D.7018.某鞋店正举办开学特惠活动,如图为活动说明.小彻打算在该店同时购买一双球鞋及一双皮鞋,且他有一张所有购买的商品定价皆打8折的折价券.若小彻计算后发现使用折价券与参加特惠活动两者的花费相差50元,则下列叙述何者正确?()A.使用折价券的花费较少,且两双鞋的定价相差100元B.使用折价券的花费较少,且两双鞋的定价相差250元C.参加特惠活动的花费较少,且两双鞋的定价相差100元D.参加特惠活动的花费较少,且两双鞋的定价相差250元19.如图,△ABC的重心为G,BC的中点为D,今以G为圆心,GD长为半径画一圆,且作A点到圆G的两切线段AE、AF,其中E、F均为切点.根据图中标示的角与角度,求∠1与∠2的度数和为多少?()A.30B.35C.40D.4520.如图1为一张正三角形纸片ABC,其中D点在AB上,E点在BC上.今以DE为折线将B点往右折后,BD、BE分别与AC相交于F点、G点,如图2所示.若AD=10,AF =16,DF=14,BF=8,则CG的长度为多少?()A.7B.8C.9D.1021.有一直径为AB的圆,且圆上有C、D、E、F四点,其位置如图所示.若AC=6,AD =8,AE=5,AF=9,AB=10,则下列弧长关系何者正确?()A.+=,+=B.+=,+≠C.+≠,+=D.+≠,+≠22.已知坐标平面上有二次函数y=﹣(x+6)2+5的图形,函数图形与x轴相交于(a,0)、(b,0)两点,其中a<b.今将此函数图形往上平移,平移后函数图形与x轴相交于(c,0)、(d,0)两点,其中c<d,判断下列叙述何者正确?()A.(a+b)=(c+d),(b﹣a)<(d﹣c)B.(a+b)=(c+d),(b﹣a)>(d﹣c)C.(a+b)<(c+d),(b﹣a)<(d﹣c)D.(a+b)<(c+d),(b﹣a)>(d﹣c)23.△ABC的边上有D、E、F三点,各点位置如图所示.若∠B=∠F AC,BD=AC,∠BDE =∠C,则根据图中标示的长度,求四边形ADEF与△ABC的面积比为何?()A.1:3B.1:4C.2:5D.3:8请阅读下列叙述后,回答问题.表(一)、表(二)呈现P A、PB两种日光灯管的相关数据,其中光通量用来衡量日光灯管的明亮程度.表(一)P A灯管类别直径(毫米)长度(毫米)功率(瓦)光通量(流明)P A﹣2025.4580201440P A﹣3025.4895302340P A﹣4025.41198403360表(二)PB灯管类别直径(毫米)长度(毫米)功率(瓦)光通量(流明)PB﹣1415.8549141200PB﹣2815.8114928260024.已知日光灯管的发光效率为光通量与功率的比值,甲、乙两人根据表(一)、表(二)的信息提出以下看法:(甲)P A﹣20日光灯管的发光效率比PB﹣14日光灯管高(乙)P A日光灯管中,功率较大的灯管其发光效率较高关于甲、乙两人的看法,下列叙述何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确25.有一间公司请水电工程厂商安装日光灯管,厂商提供两种方案如表(三)所示.表(三)方案施工内容施工费用(含材料费)45000元基本方案安装90支P A﹣40日光灯管60000元省电方案安装120支PB﹣28日光灯管已知n支功率皆为w瓦的灯管都使用t 小时后消耗的电能(度)=×w×t,若每支灯管使用时间皆相同,且只考虑灯管消耗的电能并以每度5元计算电费,则两种方案相比,灯管使用时间至少要超过多少小时,采用省电方案所节省的电费才会高于两者相差的施工费用?()A.12200B.12300C.12400D.12500第二部分:非选择题(26~27题)26.健康生技公司培养绿藻以制作「绿藻粉」,再经过后续的加工步骤,制成绿藻相关的保健食品.已知该公司制作每1公克的「绿藻粉」需要60亿个绿藻细胞.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)假设在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞亦可继续分裂.今从1个绿藻细胞开始培养,若培养期间绿藻细胞皆未死亡且培养环境的光照充沛,经过15天后,共分裂成4k个绿藻细胞,则k之值为何?(2)承(1),已知60亿介于232与233之间,请判断4k个绿藻细胞是否足够制作8公克的「绿藻粉」?27.一副完整的扑克牌有4种花色,且每种花色皆有13种点数,分别为2、3、4、5、6、7、8、9、10、J、Q、K、A,共52张.某扑克牌游戏中,玩家可以利用「牌值」来评估尚未发出的牌之点数大小.「牌值」的计算方式为:未发牌时先设「牌值」为0;若发出的牌点数为2至9时,表示发出点数小的牌,则「牌值」加1;若发出的牌点数为10、J、Q、K、A时,表示发出点数大的牌,则「牌值」减1.例如:从一副完整的扑克牌发出了6张牌,点数依序为3、A、8、9、Q、5,则此时的「牌值」为0+1﹣1+1+1﹣1+1=2.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)若一副完整的扑克牌发出了11张点数小的牌及4张点数大的牌,则此时的「牌值」为何?(2)已知一副完整的扑克牌已发出28张牌,且此时的「牌值」为10.若剩下的牌中每一张牌被发出的机会皆相等,则下一张发出的牌是点数大的牌的机率是多少?2022年台湾省中考数学试卷参考答案与试题解析第一部分:选择题(1~25题)1.如图数线上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d|【分析】根据绝对值的定义:数轴上一个数表示的点到原点的距离是这个数的绝对值即可得出答案.【解答】解:∵a表示的点A到原点的距离最近,∴|a|最小,故选:A.【点评】本题考查了绝对值,数轴,掌握绝对值的定义:数轴上一个数表示的点到原点的距离是这个数的绝对值是解题的关键.2.计算多项式6x2+4x除以2x2后,得到的余式为何?()A.2B.4C.2x D.4x【分析】利用多项式除以单项式的法则进行计算,即可得出答案.【解答】解:(6x2+4x)÷2x2=3...4x,∴余式为4x,故选:D.【点评】本题考查了整式的除法,掌握多项式除以单项式的法则是解决问题的关键.3.下列何者为156的质因数?()A.11B.12C.13D.14【分析】将156进行质因数分解,可得156=2×2×3×13,即可求解.【解答】解:∵156=2×2×3×13,∴156的质因数有2,3,13,故选:C.【点评】本题考查有理数的乘法,一个数的质因数,解题的关键是掌握分解一个数的质因数的方法.4.如图为一个长方体的展开图,且长方体的底面为正方形.根据图中标示的长度,求此长方体的体积为何?()A.144B.224C.264D.300【分析】根据展开图,可以求得原来长方体的底面的边长和高,然后根据长方体的面积公式计算即可.【解答】解:设展开图的长方形的长为a,宽为b,12=3b,2b+a=22,解得a=14,b=4,∴长方体的体积为:4×4×14=224,故选:B.【点评】本题考查几何体的展开图,解答本题的关键是明确题意,利用数形结合的思想解答.5.算式+﹣(﹣)之值为何?()A.B.C.D.【分析】根据有理数的加减运算法则计算即可.【解答】解:+﹣(﹣)==()+()=﹣+1=.故选:A.【点评】本题考查有理数的加减混合运算,熟练掌握有理数的加减运算法则是解答本题的关键.6.的值介于下列哪两个数之间?()A.25,30B.30,35C.35,40D.40,45【分析】估算2022介于哪两个平方数之间便可.【解答】解:∵442=1936,452=2025,1936<2022<2025,∴44<<45,故选:D.【点评】本题考查估算无理数的大小,掌握算术平方根的意义是得出正确答案的前提.7.已知坐标平面上有一直线L与一点A.若L的方程式为x=﹣2,A点坐标为(6,5),则A点到直线L的距离为何?()A.3B.4C.7D.8【分析】根据L的方程式为x=﹣2,A点坐标为(6,5),可知A点到直线L的距离为:6﹣(﹣2),然后计算即可.【解答】解:∵L的方程式为x=﹣2,A点坐标为(6,5),∴A点到直线L的距离为:6﹣(﹣2)=6+2=8,故选:D.【点评】本题考查坐标与图形性质,解答本题的关键是明确题意,求出点A到直线L的距离.8.多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.12【分析】根据十字相乘法可以将多项式39x2+5x﹣14分解因式,然后再根据多项式39x2+5x ﹣14可因式分解成(3x+a)(bx+c),即可得到a、b、c的值,然后计算出a+2c的值即可.【解答】解:∵39x2+5x﹣14=(3x+2)(13x﹣7),多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),∴a=2,b=13,c=﹣7,∴a+2c=2+2×(﹣7)=2+(﹣14)=﹣12,故选:A.【点评】本题考查因式分解—十字相乘法,解答本题的关键是明确题意,会用十字相乘法分解因式.9.箱子内有分别标示号码1~6的球,每个号码各2颗,总共12颗.已知小茹先从箱内抽出5颗球且不将球放回箱内,这5颗球的号码分别是1、2、2、3、5.今阿纯打算从此箱内剩下的球中抽出1颗球,若箱内剩下的每颗球被他抽出的机会相等,则他抽出的球的号码,与小茹已抽出的5颗球中任意一颗球的号码相同的机率是多少?()A.B.C.D.【分析】根据箱内剩下的球中的号码为1,3,4,4,5,6,6和小茹已抽出的5颗球中任意一颗球的号码相同的号码是1,3,5,根据概率公式即可得到结论.【解答】解:∵箱内剩下的球中的号码为1,3,4,4,5,6,6,∴阿纯打算从此箱内剩下的球中抽出1颗球与小茹已抽出的5颗球中任意一颗球的号码相同的号码是1,3,5,∴与小茹已抽出的5颗球中任意一颗球的号码相同的机率是,故选:C.【点评】本题考查概率公式,熟练掌握概率公式是解题的关键.10.已知一元二次方程式(x﹣2)2=3的两根为a、b,且a>b,求2a+b之值为何?()A.9B.﹣3C.6+D.﹣6+【分析】先利用直接开平方法解方程得到a=2+,b=2﹣,然后计算代数式2a+b 的值.【解答】解:(x﹣2)2=3,x﹣2=或x﹣2=﹣,所以x1=2+,x2=2﹣,即a=2+,b=2﹣,所以2a+b=4+2+2﹣=6+.故选:C.【点评】此题主要考查了直接开平方法解方程,正确掌握解题方法是解题关键.11.根据如图中两人的对话纪录,求出哥哥买游戏机的预算为多少元?()A.3800B.4800C.5800D.6800【分析】设哥哥买游戏机的预算为x元,根据题意列出一元一次方程,解方程,即可得出答案.【解答】解:设哥哥买游戏机的预算为x元,由题意得:(x+1200)×0.8=x﹣200,解得:x=5800,故选:C.【点评】本题考查了一元一次方程的应用,根据题意正确列出一元一次方程是解决问题的关键.12.已知p=7.52×10﹣6,下列关于p值的叙述何者正确?()A.小于0B.介于0与1两数之间,两数中比较接近0C.介于0与1两数之间,两数中比较接近1D.大于1【分析】由0<7.52×10﹣6<1,且比较接近0,可得出答案.【解答】解:0<7.52×10﹣6<1,且比较接近0.故选:B.【点评】本题考查科学记数法﹣表示较小的数、有理数的大小比较,熟练掌握科学记数法表示较小的数的概念是解答本题的关键.13.如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC的长度为何?()A.3B.4C.D.【分析】根据垂径定理可以得到CD的长,根据题意可知OD=3,然后根据勾股定理可以求得OC的长.【解答】解:作OD⊥AB于点D,如图所示,由题意可知:AC=6,BC=2,OD=3,∴AB=8,∴AD=BD=4,∴CD=2,∴OC===,故选:D.【点评】本题考查垂径定理、勾股定理,解答本题的关键是求出CD的长.14.某国主计处调查2017年该国所有受雇员工的年薪资料,并公布调查结果如图的直方图所示.已知总调查人数为750万人,根据图中信息计算,该国受雇员工年薪低于平均数的人数占总调查人数的百分率为下列何者?()A.6%B.50%C.68%D.73%【分析】由受雇员工年薪低于平均数的人数除以总人数.再乘以100%,即可求得.【解答】解:该国受雇员工年薪低于平均数的人数占总调查人数的百分率为:×100%=68%,故选:C.【点评】本题考查的是频数分布直方图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.15.如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解答】解:∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.【点评】本题主要考查了线段垂直平分线的性质和等腰三角形的性质,熟练掌握相关的性质定理是解答本题的关键.16.缓降机是火灾发生时避难的逃生设备,如图是厂商提供的缓降机安装示意图,图中呈现在三楼安装缓降机时,使用此缓降机直接缓降到一楼地面的所需绳长(不计安全带).若某栋建筑的每个楼层高度皆为3公尺,则根据如图的安装方式在该建筑八楼安装缓降机时,使用此缓降机直接缓降到一楼地面的所需绳长(不计安全带)为多少公尺?()A.21.7B.22.6C.24.7D.25.6【分析】根据线段的和差定义求解.【解答】解:该建筑八楼安装缓降机时,使用此缓降机直接缓降到一楼地面的所需绳长=3×7﹣(1,6﹣0.4﹣0,5)=21.7(公尺),故选:A.【点评】本题考查线段的和差定义,解题的关键是理解题意,灵活运用所学知识解决问题.17.如图为两直线L、M与△ABC相交的情形,其中L、M分别与BC、AB平行.根据图中标示的角度,求∠B的度数为何?()A.55B.60C.65D.70【分析】由两直线平行,同旁内角互补可得出∠A和∠C的度数,再根据三角形内角和可得出∠B的度数.【解答】解:因为L、M分别与BC、AB平行,所以∠C+120°=180°,∠A+115°=180°,所以∠C=60°,∠A=65°,所以∠B=180°﹣∠C=∠A=55°.故选:A.【点评】本题主要考查平行线的性质,三角形内角和定理等知识,根据两直线平行,同旁内角互补得出∠A和∠C的度数是解题的关键.18.某鞋店正举办开学特惠活动,如图为活动说明.小彻打算在该店同时购买一双球鞋及一双皮鞋,且他有一张所有购买的商品定价皆打8折的折价券.若小彻计算后发现使用折价券与参加特惠活动两者的花费相差50元,则下列叙述何者正确?()A.使用折价券的花费较少,且两双鞋的定价相差100元B.使用折价券的花费较少,且两双鞋的定价相差250元C.参加特惠活动的花费较少,且两双鞋的定价相差100元D.参加特惠活动的花费较少,且两双鞋的定价相差250元【分析】设两双鞋子的价格分别为x,y(x<y),则特惠活动花费0.6x+y,使用折价券花费0.8(x+y),由0.6x+y﹣0.8(x+y)=﹣0.2x+0.2y=0.2(y﹣x)>0可得使用折价券的花费较少,由0.2(y﹣x)=50可得y﹣x=250,即两双鞋定价相差250元,即可求解.【解答】解:设两双鞋子的价格分别为x,y(x<y),∴特惠活动花费:0.6x+y,使用折价券花费:0.8(x+y),∵0.6x+y﹣0.8(x+y)=﹣0.2x+0.2y=0.2(y﹣x)>0,∴使用折价券的花费较少,∵0.2(y﹣x)=50,∴y﹣x=250,∴两双鞋定价相差250元,故选:B.【点评】本题考查列代数式,解题的关键是正确列出代数式.19.如图,△ABC的重心为G,BC的中点为D,今以G为圆心,GD长为半径画一圆,且作A点到圆G的两切线段AE、AF,其中E、F均为切点.根据图中标示的角与角度,求∠1与∠2的度数和为多少?()A.30B.35C.40D.45【分析】连接AD、EG、FG,根据G为△ABC的重心,可得EG=DG=FG=AG,又AE、AF是⊙G的切线,可得∠EAG=∠F AG=30°,而∠B=40°,∠C=45°,即可得∠1+∠2=∠BAC﹣∠EAF=35°.【解答】解:连接AD、EG、FG,如图:∵G为△ABC的重心,∴DG=AG,∵以G为圆心,GD长为半径画一圆,∴EG=DG=FG=AG,∵AE、AF是⊙G的切线,∴∠AEG=∠AFG=90°,∴∠EAG=∠F AG=30°,∴∠EAF=60°,∵∠B=40°,∠C=45°,∴∠BAC=95°,∴∠1+∠2=∠BAC﹣∠EAF=95°﹣60°=35°,故选:B.【点评】本题考查是三角形的重心,涉及直角三角形性质、圆的切线等知识,解题的关键是掌握三角形重心定理,得到∠EAG=∠F AG=30°.20.如图1为一张正三角形纸片ABC,其中D点在AB上,E点在BC上.今以DE为折线将B点往右折后,BD、BE分别与AC相交于F点、G点,如图2所示.若AD=10,AF =16,DF=14,BF=8,则CG的长度为多少?()A.7B.8C.9D.10【分析】根据三角形ABC是正三角形,可得∠A=∠B=60°,△AFD∽△BFG,即可求出FG=7,而AD=10,DF=14,BF=8,可得AB=32=AC,故CG=AC﹣AF﹣FG=9.【解答】解:∵三角形ABC是正三角形,∴∠A=∠B=60°,∵∠AFD=∠BFG,∴△AFD∽△BFG,∴=,即=,∴FG=7,∵AD=10,DF=14,BF=8,∴AB=32,∴AC=32,∴CG=AC﹣AF﹣FG=32﹣16﹣7=9;故选:C.【点评】本题考查等边三角形中的翻折问题,解题的关键是掌握翻折的性质,证明△AFD ∽△BFG,从而求出FG的长度.21.有一直径为AB的圆,且圆上有C、D、E、F四点,其位置如图所示.若AC=6,AD =8,AE=5,AF=9,AB=10,则下列弧长关系何者正确?()A.+=,+=B.+=,+≠C.+≠,+=D.+≠,+≠【分析】根据圆中弧、弦的关系,圆周角定理解答即可.【解答】解:连接BD,BF,∵AB直径,AB=10,AD=8,∴BD=6,∵AC=6,∴AC=BD,∴,∴,∵AB直径,AB=10,AF=9,∴BF=,∵AE=5,∴,∴+≠,∴B符合题意,故选:B.【点评】本题主要考查了圆中弧、弦的关系和圆周角定理,熟练掌握相关定理是解答本题的关键.22.已知坐标平面上有二次函数y=﹣(x+6)2+5的图形,函数图形与x轴相交于(a,0)、(b,0)两点,其中a<b.今将此函数图形往上平移,平移后函数图形与x轴相交于(c,0)、(d,0)两点,其中c<d,判断下列叙述何者正确?()A.(a+b)=(c+d),(b﹣a)<(d﹣c)B.(a+b)=(c+d),(b﹣a)>(d﹣c)C.(a+b)<(c+d),(b﹣a)<(d﹣c)D.(a+b)<(c+d),(b﹣a)>(d﹣c)【分析】画出图形,利用抛物线的对称性判断出a+b=c+d=﹣12,可得结论.【解答】解:如图,∵y=﹣(x+6)2+5的对称轴是直线x=﹣6,平移后的抛物线对称轴不变,∴=﹣6,=﹣6,∴a+b=﹣12,c+d=﹣12,∴a+b=c+d,且b﹣a<d﹣c,故选:A.【点评】本题考查二次函数的性质,抛物线与x轴的交点,二次函数的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.△ABC的边上有D、E、F三点,各点位置如图所示.若∠B=∠F AC,BD=AC,∠BDE =∠C,则根据图中标示的长度,求四边形ADEF与△ABC的面积比为何?()A.1:3B.1:4C.2:5D.3:8【分析】证明△CAF∽△CBA,推出CA2=CF•CB,推出AC=4,可得==,推出S△ACF:S△ACB=5:16,同法S△BDE:S△ABC=5:16,由此可得结论.【解答】解:∵∠C=∠C,∠CAF=∠B,∴△CAF∽△CBA,∴=,∴CA2=CF•CB,∴CA2=5×16=80,∵AC>0,∴AC=4,∴==,∴S△ACF:S△ACB=5:16,同法可证△BDE∽△BCA,∵BA=AC,∴=,∴S△BDE:S△ABC=5:16,∴S四边形ADEF:S△ABC=(16﹣5﹣5):16=3:8,故选:D.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.请阅读下列叙述后,回答问题.表(一)、表(二)呈现P A、PB两种日光灯管的相关数据,其中光通量用来衡量日光灯管的明亮程度.表(一)P A灯管类别直径(毫米)长度(毫米)功率(瓦)光通量(流明)P A﹣2025.4580201440P A﹣3025.4895302340P A﹣4025.41198403360表(二)PB灯管类别直径(毫米)长度(毫米)功率(瓦)光通量(流明)PB﹣1415.8549141200PB﹣2815.8114928260024.已知日光灯管的发光效率为光通量与功率的比值,甲、乙两人根据表(一)、表(二)的信息提出以下看法:(甲)P A﹣20日光灯管的发光效率比PB﹣14日光灯管高(乙)P A日光灯管中,功率较大的灯管其发光效率较高关于甲、乙两人的看法,下列叙述何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】根据“日光灯管的发光效率为光通量与功率的比值”表示出各日光灯管的发光效率然后进行比较即可.【解答】解:根据题意,P A﹣20日光灯管的发光效率为=72,PB﹣14日光灯管的发光效率为,∵72<,∴PB﹣14日光灯管发光效率高,故甲错误;P A﹣20日光灯管的发光效率为=72,P A﹣30日光灯管的发光效率为=78,P A﹣40日光灯管的发光效率为=84,∵20<30<40时,72<78<84,∴P A日光灯管中,功率较大的灯管其发光效率较高,故乙正确,故选:D.【点评】本题考查了统计表,表示出各日光灯管的发光效率是解题的关键.25.有一间公司请水电工程厂商安装日光灯管,厂商提供两种方案如表(三)所示.表(三)方案施工内容施工费用(含材料费)基本方案安装90支45000元P A﹣40日光灯管60000元省电方案安装120支PB﹣28日光灯管已知n支功率皆为w瓦的灯管都使用t 小时后消耗的电能(度)=×w×t,若每支灯管使用时间皆相同,且只考虑灯管消耗的电能并以每度5元计算电费,则两种方案相比,灯管使用时间至少要超过多少小时,采用省电方案所节省的电费才会高于两者相差的施工费用?()A.12200B.12300C.12400D.12500【分析】根据“采用省电方案所节省的电费才会高于两者相差的施工费用”列一元一次不等式,求解即可.【解答】解:根据题意,得,解得t>12500,∴灯管使用时间超过12500小时,采用省电方案所节省的电费才会高于两者相差的施工费用,故选:D.【点评】本题考查了一元一次不等式的应用,理解题意并根据题意建立一元一次不等式是解题的关键.第二部分:非选择题(26~27题)26.健康生技公司培养绿藻以制作「绿藻粉」,再经过后续的加工步骤,制成绿藻相关的保健食品.已知该公司制作每1公克的「绿藻粉」需要60亿个绿藻细胞.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)假设在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞亦可继续分裂.今从1个绿藻细胞开始培养,若培养期间绿藻细胞皆未死亡且培养环境的光照充沛,经过15天后,共分裂成4k个绿藻细胞,则k之值为何?(2)承(1),已知60亿介于232与233之间,请判断4k个绿藻细胞是否足够制作8公克的「绿藻粉」?【分析】(1)由1个绿藻细胞每20小时可分裂成4个绿藻细胞,可知经过15天,即360小时,分裂成418个绿藻细胞,故k之值为18;(2)根据每1公克的「绿藻粉」需要60亿个绿藻细胞,60亿介于232与233之间,可得制作8公克的「绿藻粉」需要60×8亿个绿藻细胞,且235<60×8亿<236,又418=(22)18=236,即得418个绿藻细胞足够制作8公克的「绿藻粉」.【解答】解:(1)15天=15×24小时=360小时,∵1个绿藻细胞每20小时可分裂成4个绿藻细胞,∴从1个绿藻细胞开始培养,经过20小时分裂成4个绿藻细胞,经过20×2=40(小时),分裂成42个绿藻细胞,经过20×3=60(小时),分裂成43个绿藻细胞,......经过20×18=360(小时),分裂成418个绿藻细胞,∴k之值为18;(2)∵每1公克的「绿藻粉」需要60亿个绿藻细胞,∴制作8公克的「绿藻粉」需要60×8亿个绿藻细胞,∵60亿介于232与233之间,∴232×8<60×8亿<233×8,即235<60×8亿<236,而418=(22)18=236,∴60×8亿<418,∴418个绿藻细胞足够制作8公克的「绿藻粉」.【点评】本题考查有理数的乘方,解题的关键是读懂题意,根据已知找到规律求出k的值.27.一副完整的扑克牌有4种花色,且每种花色皆有13种点数,分别为2、3、4、5、6、7、8、9、10、J、Q、K、A,共52张.某扑克牌游戏中,玩家可以利用「牌值」来评估尚未发出的牌之点数大小.「牌值」的计算方式为:未发牌时先设「牌值」为0;若发出的牌点数为2至9时,表示发出点数小的牌,则「牌值」加1;若发出的牌点数为10、J、Q、K、A时,表示发出点数大的牌,则「牌值」减1.例如:从一副完整的扑克牌发出了6张牌,点数依序为3、A、8、9、Q、5,则此时的「牌值」为0+1﹣1+1+1﹣1+1=2.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)若一副完整的扑克牌发出了11张点数小的牌及4张点数大的牌,则此时的「牌值」为何?(2)已知一副完整的扑克牌已发出28张牌,且此时的「牌值」为10.若剩下的牌中每一张牌被发出的机会皆相等,则下一张发出的牌是点数大的牌的机率是多少?【分析】(1)利用「牌值」的计算方式解答即可;(2)利用方程组的思想求得已发出的28张牌中的点数大的张数与点数小的张数,从而得到剩余的牌中点数大的张数与点数小的张数,再利用计算概率的方法解答即可.【解答】解:(1)11×1+4×(﹣1)=7,∴若一副完整的扑克牌发出了11张点数小的牌及4张点数大的牌,则此时的「牌值」为7;(2)设一副完整的扑克牌已发出的28张牌中点数小的张数为x张,点数大的张数为y 张,∴.解得:,∴已发出的28张牌中点数小的张数为19张,点数大的张数为9张,∴剩余的24张牌中点数大的张数为17张,点数小的张数为7张,∵剩下的牌中每一张牌被发出的机会皆相等,∴下一张发出的牌是点数大的牌的机率是.【点评】本题主要考查了有理数的混合运算,用样本估计总体的思想方法,事件概率的计算方法,本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.。
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一、细心选一选 (本题有10个小题, 每小题3分, 共30分)件和要填写的内容, 尽量完整地填写答案。
11、-6 12、1.5 13、-12 14、0或8 15、5或9 16、),)或(,)或(,)或(,(236023-603000+ 三、全面答一答(本题有9个小题, 共40分)解答应写出文字说明, 证明过程或推演步骤 .如果觉得有的题目有点困难, 那么把自己能写出的解答写出来。
17、(本小题满分6分)cP b N a M 11,11,11--=--=--=∵a >0>b >c, ∴N >P >M …………………………6分 18、(本小题满分6分) (1)y 轴、(h,k ) 直线x=ab2-………………………3分 (2)22x y -=先向右平移1个单位,再向上平移1个单位得到1422-+-=x x y ………3分19、(本小题满分6分) (1)图形正确得3分(2)连AO 并延长,交⊙O 于点E ,则△AC D ∽△ABEAB AD AE AC = 202416AD = 解得AD=34020、(本小题满分8分)(1)丙同学提出的方案最 为合理 ---------------2分 (2)如图 ---------------4分 (每图各2分,涂”基本不参加” 阴影只要是两个扇形均可) (3) 900人 -------------2分 21、(本小题满分8分)(1)连OF ,设正方形的边长为a在R t △OEF 中,222)5()2(=+a a 得1=a 。
答:正方形的边长为1…………4分(2)23-85π=阴影S …………………4分 22、(本小题满分10分)(1)∵弧AD=弧CD∴∠ABD=∠DAC 又∵∠ADE=∠BDA ∴△AD E ∽△BDA ∴BDAD AD DE = BD DE AD ⨯=2………………5分 (2)∵BC 是直径,∴∠BDC=90° ∴BD=525()25(2222=-=-)CD BC∵AD=CD =BD DE AD ⨯=2∴DE=45……………………………………………5分 23、(本小题满分10分)(1)∵ABEF 是正方形,∴AE=220……………2分 (2)∵AP=AG AB 2121= ∴∠GAP=60° ∵∠GAE=∠BAE ∴∠EAB=30°∴AE=3340232030==Cos AB ……………………………4分 (3)最大的菱形如图3所示:设QE=x 则PE=25-x 22210)25(+-=x x解得229=x 菱形的周长为58cm. 此时菱形的面积S=14510229=⨯…………4分 24、(本小题满分12分)(1)当点A 在x 轴正半轴、点B 在y 轴负半轴上时,正方形ABCD 的边长为2……1分 当点A 在x 轴负半轴、点B 在y 轴正半轴上时,设正方形ABCD 的边长为a ,得3a=2∴231=a ……………………1分 所以正方形边长为231………1分(2)作DE 、CF 分别垂直于x 、y 轴,知△ADE ≌△BAO ≌△CBF ………1分 此时,m <2,DE=OA=BF=m OB=CF=AE=2-m∴OF=BF+OB=2 ∴C 点坐标为(2-m,2)…………1分 ∴2m=2(2-m) 解得m=1………………1分 反比例函数的解析式为y=x2………………1分 (3)(-1,3);(7,-3);(-4,7);(4,1)……………3分 对应的抛物线分别为;40223407;8238122+-=+=x y x y 71732+=x y ;755732+-=x y ……………………1分所求的任何抛物线的伴侣正方形个数为偶数……………1分。
2010义乌中考数学试题及答案
2010义乌中考数学试题及答案2010年义乌市初中毕业生学业考试数学试题一、选择题(本题有10小题,每小题3分,共30分。
请将正确答案填入题后的括号内)1. 根据题目所给的选项,下列哪个数是正数?A. -2B. 0C. 1D. -1答案:C2. 根据题目所给的选项,下列哪个数是负数?A. 2B. 0C. -1D. 1答案:C3. 根据题目所给的选项,下列哪个数是整数?A. 3.5B. 0.5C. 0D. 1答案:D4. 根据题目所给的选项,下列哪个数是分数?A. 2B. 0.5C. 0D. 1答案:B5. 根据题目所给的选项,下列哪个数是无理数?A. 2B. 0.5C. 0D. π答案:D6. 根据题目所给的选项,下列哪个数是实数?A. 2B. 0.5C. 0D. i答案:A7. 根据题目所给的选项,下列哪个数是偶数?A. 2B. 3C. 0D. 1答案:A8. 根据题目所给的选项,下列哪个数是奇数?A. 2B. 3C. 0D. 19. 根据题目所给的选项,下列哪个数是质数?A. 2B. 4C. 6D. 8答案:A10. 根据题目所给的选项,下列哪个数是合数?A. 2B. 4C. 6D. 8答案:B二、填空题(本题有6小题,每小题3分,共18分)11. 根据题目所给的选项,计算2+3的结果是______。
答案:512. 根据题目所给的选项,计算2×3的结果是______。
答案:613. 根据题目所给的选项,计算2^3的结果是______。
14. 根据题目所给的选项,计算√9的结果是______。
答案:315. 根据题目所给的选项,计算(-2)^2的结果是______。
答案:416. 根据题目所给的选项,计算1/2 + 1/3的结果是______。
答案:5/6三、解答题(本题有6小题,共52分)17. 根据题目所给的选项,解方程2x-3=7。
解:2x-3=72x=7+32x=10x=5答案:x=518. 根据题目所给的选项,解方程3x+4=11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年 台湾 第一次国民中学学生基本学力测验(台湾中考)数学科题本 1. 下列何者是0.000815的科学记号? (A) 8.15103 (B) 8.15104 (C) 815103 (D) 815106 。 2. 小芬买15份礼物,共花了900元,已知每份礼物内鄱有1包饼干及每支售价20元的棒棒糖 2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程式? (A) 15(2x20)=900 (B) 15x202=900 (C) 15(x202)=900 (D) 15x220=900 。 3. 下列选项中,哪一段时间最长?
(A) 15分 (B) 114小时 (C) 0.3小时 (D) 1020秒。 4. 图(一)表示D、E、F、G四点在△ABC三边上的位置,其中DG与EF 交于H点。若ABC=EFC=70,ACB=60,DGB=40,则下列哪 一组三角形相似? (A) △BDG,△CEF (B) △ABC,△CEF (C) △ABC,△BDG (D) △FGH,△ABC 。
5. 计算 | 1(35) || 61167 | 之值为何?
(A) 37 (B) 31 (C) 34 (D) 311。 6. 下列何者为5x217x12的因式? (A) x1 (B) x1 (C) x4 (D) x4 。 7. 计算106(102)3104之值为何? (A) 108 (B) 109 (C) 1010 (D) 1012。 8. 如图(二),AB为圆O的直径,C、D两点均在圆上,其中OD与AC交于 E点,且ODAC。若OE=4,ED=2,则BC长度为何? (A) 6 (B) 7 (C) 8 (D) 9 。
9. 有数颗等重的糖果和数个大、小砝 码,其中大砝码皆为5克、大砝码 皆为1克,且图(三)是将糖果与砝码 放在等臂天平上的两种情形。判断 下列哪一种情形是正确的?
A B C D E
F G H
图(一)
A B C D
E
O
图(二) 5 5 5 5 1
圖(三) 10. 下列四个选项中的数列,哪一个不是等差数列? (A) 5,5,5,5,5 (B) 1,4,9,16,25 (C) 5,25,35,45,55 (D) 1,22,33,44,55 。 11. 坐标平面上有一函数y=24x248的图形,其顶点坐标为何? (A) (0,2) (B) (1,24) (C) (0,48) (D) (2,48) 。
12. 解二元一次联立方程式546368yxyx,得y=?
(A) 211 (B) 172 (C) 342 (D) 3411。 13. 图(四)为△ABC和一圆的重迭情形,此圆与直线BC相切于C点, 且与AC交于另一点D。若A=70,B=60,则 CD 的度数为何? (A) 50 (B) 60 (C) 100 (D) 120 。 14. 以下有甲、乙、丙、丁四组资料 甲:13,15,11,12,15,11,15 乙:6,9,8,7,9,9,8,5,4 丙:5,4,5,7,1,7,8,7,4 丁:17,11,10,9,5,4,4,3 判断哪一组资料的全距最小? (A) 甲 (B) 乙 (C) 丙 (D) 丁 。 15. 坐标半面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P 点坐标为何? (A) (5,4) (B) (4,5) (C) (4,5) (D) (5,4) 。
16. 计算169136254之值为何?
(A) 2125 (B) 3125 (C) 4127 (D) 5127。 17. 已知有一多项式与(2x25x2)的和为(2x25x4),求此多项式为何? (A) 2 (B) 6 (C) 10x6 (D) 4x210x2 。 18. 图(五)数在线的A、B、C三点所表示的数分别为 a、b、c。根据图中各点位置,判断下列各式何者
5 5 5 5 1
1 5 5 5 5 1
(A) 5 1 5 1 1 (B) (C) (D)
A C B D
图(四)
A B C O
a b c 0 1 1
图(五) 正确? (A) (a1)(b1)>0 (B) (b1)(c1)>0 (C) (a1)(b1)<0 (D) (b1)(c1)<0 。 19. 自连续正整数10~99中选出一个数,其中每个数被选出的机会相等。求选出的数其十位数 字与个位数字的和为9的机率为何?
(A) 908 (B) 909 (C) 898 (D) 899 。 20. 将图(六)的正方形色纸沿其中一条 对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。 最后将图(七)的色纸剪下一纸片, 如图(八)所示。若下列有一图形 为图(八)的展开图,则此图为何?
21. 已知456456=23a71113b,其中a、b均为质数。若b>a,则ba之值为何? (A) 12 (B) 14 (C) 16 (D) 18 。 22. 图(九)为甲、乙两班某次数学成绩的盒状图。若甲、乙 两班数学成绩的四分位距分别为a、b;最大数(值)分别 为c、d,则a、b、c、d的大小关系,下列何者正确? (A) a (B) ad (C) a>b且c (D) a>b且c>d 。 23. 图(十)为一个平行四边形ABCD,其中H、G两点分别在BC、 CD上,AHBC,AGCD,且AH、AC、AG将BAD分成 1、2、3、4四个角。若AH=5,AG=6,则下列关系何者 正确? (A) 1=2 (B) 3=4 (C) BH=GD (D) HC=CG 。
图(六) 图(七) 图(八) (A) (B) (C) (D)
0 20 40 60 80 100 甲班 乙班
成绩班 图(九)
A B C D G
H 1
2 3 4
图(十) 24. 已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯 的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶 内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满几个大纸杯? (A) 64 (B) 100 (C) 144 (D) 225 。 25. 如图(十一),△ABC中,有一点P在AC上移动。若AB=AC=5, BC=6,则APBPCP的最小值为何? (A) 8 (B) 8.8 (C) 9.8(D) 10 。 26. 若a为方程式(x17)2=100的一根,b为方程式(y4)2=17的一根, 且a、b都是正数,则ab之值为何? (A) 5 (B) 6 (C) 83 (D) 1017 。 27. 坐标平面上,若移动二次函数y=2(x175)(x176)6的图形,使其与x轴交于两点,且此两 点的距离为1单位,则移动方式可为下列哪一种? (A) 向上移动3单位 (B) 向下移动3单位 (C) 向上移勤6单位 (D) 向下移动6单位 。 28. 如图(十二),直线CP是AB的中垂线且交AB于P,其中AP =2CP。甲、乙两人想在AB上取两点D、E,使得AD=DC =CE=EB,其作法如下: (甲) 作ACP、BCP之角平分线,分别交AB于D、E, 则D、E即为所求 (乙) 作AC、BC之中垂线,分别交AB于D、E,则D、 E即为所求对于甲、乙两人的作法,下列判断何者正确? (A) 两人都正确 (B) 两人都错误 (C) 甲正确,乙错误 (D) 甲错误,乙正确。 29. 如图(十三),扇形AOB中,OA=10, AOB=36。若固定B点,将此扇形依 顺时针方向旋转,得一新扇形A’O’B, 其中A点在BO'上,如图(十四)所示, 则O点旋转至O’点所经过的轨迹长度 为何? (A) (B) 2 (C) 3 (D) 4 。 30. 甲、乙两种机器分利以固定速率生产一 批货物,若4台甲机器和2台乙机器同时运转3小时的总产量,与2台甲机器和5台乙机器 同时运转2小时的总产量相同,则1台甲机器运转1小时的产量,与1台乙机器运转几小时 的产量相同?
A B O A B O
A’
O’ 图(十三) 图(十四)
A B C P
图(十一)
A B C P 图(十二) (A) 21 (B) 32 (C) 23 (D) 2 。 31. 如图(十五)梯形ABCD的两底长为AD=6,BC=10,中线为EF, 且B=90,若P为AB上的一点,且PE将梯形ABCD分成面积相 同的两区域,则△EFP与梯形ABCD的面积比为何? (A) 1:6 (B) 1:10 (C) 1:12 (D) 1:16 。
32. 如图(十六),有一圆内接正八边形ABCDEFGH,若△ADE的面积为 10,则正八边形ABCDEFGH的面积为何? (A) 40 (B) 50 (C) 60 (D) 80 。 33. 如图(十七),在同一直在线,甲自A点开始追赶等速度前进的乙, 且图(十八)长示两人距离与所经时间的线型关系。若乙的速率为每秒 1.5公尺,则经过40秒,甲自A点移动多少公尺? (A) 60 (B) 61.8 (C) 67.2 (D) 69 。
34. 如图(十九),用四个螺丝将四条不可弯曲的木条围成一个木框,不计 螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条 的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝的 距离之最大值为何? (A) 5 (B) 6 (C) 7 (D) 10 。
参考答案 1. B , 2. C , 3. B , 4. B , 5. A , 6. C , 7. A , 8. C , 9. D , 10. D , 11. C , 12. D , 13. C ,
3 2 4 6
图(十九)
甲 乙 A 9公尺甲 图(十七)
時間(秒) 0 10 20 30 40 50
图(十八)
3 6 9 甲 與 乙 距 離 公尺 (
) 0
B A C D E F
G H
图(十六)
D C B A E F P
图(十五)