2016年台湾省中考数学试卷(重考)及答案

合集下载

2019年台湾地区初中教育会考(中考)数学科题本(重考)含答案

2019年台湾地区初中教育会考(中考)数学科题本(重考)含答案

2019年台湾初中教育会考(中考) 数学科题本 (重考)※(2019年5月22日 测验时间15:50~17:10,共80分钟)(※由于原来中考时, 有一考区因停电造成试场无灯光照明, 故该考区进行补考.)第一部分:选择题(第1 ~ 25 题)1. 算式2.5 ÷ [ (1 5 - 1 ) ⨯ (2 + 1 2 ) ]之值为何? (A) - 5 4 (B) - 12516 (C) -25 (D) 112. 若二元一次联立方程式 ⎩⎨⎧2x +y = 14 -3x +2y =21的解为x = a ,y = b ,则a + b 之值为何? (A)19 2 (B)212 (C) 7 (D) 133. 计算 (2x 2 - 4 )(2x - 1 -3 2x )的结果,与下列哪一个式子相同?(A) -x 2 + 2 (B) x 3 + 4 (C) x 3 - 4x + 4 (D) x 3 - 2x 2 - 2x + 44. 若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?5. 若两正整数 a 和 b 的最大公因子为 405,则下列哪一个数不是 a 和 b 的公因子? (A) 45 (B) 75 (C) 81 (D) 1356. 图(一)为 A 、B 、C 三点在坐标平面上的位置图。

若A 、B 、C 的x坐标的数字总和为a ,y 坐标的数字总和为b ,则 a − b之值为何? (A) 5 (B) 3 (C) -3 (D) -57. 如图(二),梯形ABCD 中,AD  ̄ // BC  ̄,E 、F 两点分别在AB  ̄、 AD  ̄上,CE  ̄与BF  ̄相交于G 点。

若∠EBG = 25︒,∠GCB = 20︒,∠AEG = 95︒,则∠A 的度数为何? (A) 95 (B) 100 (C) 105 (D) 1108. 有一个三位数 8□2,□中的数字由小欣投掷的骰子决定,例如,投出点数为1,则8□2 就为812。

2016年中考数学真题试题及答案(word版)

2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )

初中数学台湾中考模拟数学考试卷及答案解析(word版).docx

初中数学台湾中考模拟数学考试卷及答案解析(word版).docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:x=﹣3,y=1为下列哪一个二元一次方程式的解?()A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣6试题2:算式[﹣5﹣(﹣11)]÷(×4)之值为何?()A.1 B.16 C.﹣D.﹣试题3:计算(2x+1)(x﹣1)﹣(x2+x﹣2)的结果,与下列哪一个式子相同?()A.x2﹣2x+1 B.x2﹣2x﹣3 C.x2+x﹣3 D.x2﹣3试题4:如图,已知扇形AOB的半径为10公分,圆心角为54°,则此扇形面积为多少平方公分?()A.100π B.20π C.15π D.5π试题5:评卷人得分如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边 B.介于A、B之间 C.介于B、C之间 D.在C的右边试题6:多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.22试题7:图(一)、图(二)分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b;中位数分别为c、d,则下列关于a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d试题8:如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75试题9:小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加7.若小昱在某页写的数为101,则阿帆在该页写的数为何?()A.350 B.351 C.356 D.358试题10:甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.B.C.D.试题11:坐标平面上有一个二元一次方程式的图形,此图形通过(﹣3,0)、(0,﹣5)两点.判断此图形与下列哪一个方程式的图形的交点在第三象限?()A.x﹣4=0 B.x+4=0 C.y﹣4=0 D.y+4=0试题12:如图,△ABC中,D、E两点分别在AC、BC上,DE为BC的中垂线,BD为∠ADE的角平分线.若∠A=58°,则∠ABD的度数为何?()A.58 B.59 C.61 D.62试题13:若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17 B.17,18 C.18,19 D.19,20试题14:如图,圆O通过五边形OABCD的四个顶点.若=150°,∠A=65°,∠D=60°,则的度数为何?()A.25 B.40 C.50 D.55试题15:如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A.B.C.2﹣D.4﹣2试题16:如图的矩形ABCD中,E点在CD上,且AE<AC.若P、Q两点分别在AD、AE上,AP:PD=4:1,AQ:QE=4:1,直线PQ交AC于R点,且Q、R两点到CD的距离分别为q、r,则下列关系何者正确?()A.q<r,QE=RC B.q<r,QE<RC C.q=r,QE=RC D.q=r,QE<RC试题17:已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子试题18:如图,有一内部装有水的直圆柱形水桶,桶高20公分;另有一直圆柱形的实心铁柱,柱高30公分,直立放置于水桶底面上,水桶内的水面高度为12公分,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为多少公分?()A.4.5 B.6 C.8 D.9试题19:表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400 600MAT手机价格(元)15000 13000注意事项:以上方案两年内不可变更月租费A.500 B.516 C.517 D.600试题20:如图,以矩形ABCD的A为圆心,AD长为半径画弧,交AB于F点;再以C为圆心,CD长为半径画弧,交AB于E点.若AD=5,CD=,则EF的长度为何?()A.2 B.3 C.D.试题21:坐标平面上,某二次函数图形的顶点为(2,﹣1),此函数图形与x轴相交于P、Q两点,且PQ=6.若此函数图形通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,则a、b、c、d之值何者为正?()A.a B.b C.c D.d试题22:如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确试题23:如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.2﹣2 D.4﹣2试题24:如图(一),为一条拉直的细线,A、B两点在上,且:=1:3,:=3:5.若先固定B点,将折向,使得重迭在上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?()A.1:1:1 B.1:1:2 C.1:2:2 D.1:2:5试题25:如图,矩形ABCD中,M、E、F三点在上,N是矩形两对角线的交点.若=24,=32,=16,=8,=7,则下列哪一条直线是A、C两点的对称轴?()A.直线MN B.直线EN C.直线FN D.直线DN试题26:如图,△ABC中,AB=AC,D点在BC上,∠BAD=30°,且∠ADC=60°.请完整说明为何AD=BD与CD=2BD的理由.试题27:如图,正方形ABCD是一张边长为12公分的皮革.皮雕师傅想在此皮革两相邻的角落分别切下△PDQ与△PCR后得到一个五边形PQABR,其中PD=2DQ,PC=RC,且P、Q、R三点分别在CD、AD、BC上,如图所示.(1)当皮雕师傅切下△PDQ时,若DQ长度为x公分,请你以x表示此时△PDQ的面积.(2)承(1),当x的值为多少时,五边形PQABR的面积最大?请完整说明你的理由并求出答案.试题1答案:A【考点】二元一次方程的解.【分析】直接利用二元一次方程的解的定义分别代入求出答案.【解答】解:将x=﹣3,y=1代入各式,A、(﹣3)+2×1=﹣1,正确;B、(﹣3)﹣2×1=﹣5≠1,故此选项错误;C、2×(﹣3)+3‧1=﹣3≠6,故此选项错误;D、2×(﹣3)﹣3‧1=﹣9≠﹣6,故此选项错误;故选:A.【点评】此题主要考查了二元一次方程的解,正确代入方程是解题关键.试题2答案:A【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算括号中的运算,再计算除法运算即可得到结果.【解答】解:原式=(﹣5+11)÷(3×2)=6÷6=1,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.试题3答案:A【考点】整式的混合运算.【专题】计算题;整式.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可作出判断.【解答】解:(2x+1)(x﹣1)﹣(x2+x﹣2)=(2x2﹣2x+x﹣1)﹣(x2+x﹣2)=2x2﹣x﹣1﹣x2﹣x+2=x2﹣2x+1,故选A【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.试题4答案:C【考点】扇形面积的计算.【专题】计算题;圆的有关概念及性质.【分析】利用扇形面积公式计算即可得到结果.【解答】解:∵扇形AOB的半径为10公分,圆心角为54°,∴S扇形AOB==15π(平方公分),故选C.【点评】此题考查了扇形面积的计算,熟练掌握扇形面积公式是解本题的关键.试题5答案:C【考点】数轴;绝对值.【分析】由A、B、C三点表示的数之间的关系,可以找出向量的数值,再结合原点O与A、B的距离分别为4、1,利用向量间的关系验证的正负,由此即可得出结论.【解答】解:∵|a﹣b|=3,|b﹣c|=5,∴=3,=5,∵原点O与A、B的距离分别为4、1,∴=±1,=4.①当=﹣1时,∵=+=4﹣1=3,∴=﹣1合适;②当=1时,∵=+=4+1=5,5≠3,∴=1不合适.∴点O在点B的右侧1个单位长度处,∵点C在点B的右侧5个单位长度处,∴点O介于B、C点之间.故选C.【点评】本题考查了数值、绝对值以及向量,解题的关键是确定的符号.本题属于基础题,难度不大,利用向量来解决问题给我们带来了很大的方便,而历年中考题也时常考到,但很多版本的教材中没有讲到向量,这就需要我们同学和老师在平常的练习中理解向量的含义.试题6答案:C【考点】因式分解-十字相乘法等.【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).试题7答案:A【考点】众数;频数(率)分布直方图;中位数.【分析】根据众数是一组数据中出现次数最多的数据,确定众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;依此即可求解.【解答】解:由图(三)、图(四)可知a=8,b=6⇒a>b,甲班共有5+15+20+15=55(人),乙班共有25+5+15+10=55(人),则甲、乙两班的中位数均为第28人,得c=8,d=7⇒c>d.故选A.【点评】此题考查了众数与中位数的知识.解题的关键是熟记众数与中位数的定义.试题8答案:C【考点】正方形的性质;平行四边形的性质.【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.【点评】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.试题9答案:B【考点】有理数的混合运算.【专题】计算题;规律型.【分析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【解答】解:小昱所写的数为 1,3,5,7,…,101,…;阿帆所写的数为 1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n﹣1)×2,整理得:2(n﹣1)=100,即n﹣1=50,解得:n=51,则阿帆所写的第51个数为1+(51﹣1)×7=1+50×7=1+350=351.故选B【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.试题10答案:B【考点】列表法与树状图法.【分析】画出树状图,得出共有12种等可能的结果,颜色相同的有2种情形,即可得出结果.【解答】解:树状图如图所示:共有12种等可能的结果,颜色相同的有2种情形,故小赖抽出的两颗球颜色相同的机率==;故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.试题11答案:D【考点】坐标与图形性质.【专题】平面直角坐标系.【分析】分别作出各选项中的直线,以及通过(﹣3,0)、(0,﹣5)两点的直线,根据图象即可确定出此图形与下列方程式的图形的交点在第三象限的直线方程.【解答】解:作出选项中x﹣4=0,x+4=0,y﹣4=0,y+4=0的图象,以及通过(﹣3,0)、(0,﹣5)两点直线方程,根据图象得:通过(﹣3,0)、(0,﹣5)两点直线与y+4=0的交点在第三象限,故选D【点评】此题考查了坐标与图形性质,作出相应的图象是解本题的关键.试题12答案:D【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质、角平分线的定义得到∠1=∠2=∠3,求出∠4和∠C,根据三角形内角和定理计算即可.【解答】解:∵BD是∠ADE的角平分线,∴∠1=∠2,∵DE是BC的中垂线,∴∠2=∠3,∴∠1=∠2=∠3,又∠1+∠2+∠3=180°,∴∠1=∠2=∠3=60°,∴∠4=∠C=90°﹣60°=30°,∴∠ABD=180°﹣∠A﹣∠4﹣∠C=180°﹣58°﹣30°﹣30°=62°.故选:D.【点评】本题考查的是线段垂直平分线的性质、角平分线的定义以及三角形内角和定理的应用,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.试题13答案:B【考点】估算无理数的大小.【分析】由一正方形的面积为20平方公分,周长为x公分,可求得x2=320,又由172=289,182=324,即可求得答案.【解答】解:∵周长为x公分,∴边长为公分,∴()2=20,∴=20,∴x2=320,又∵172=289,182=324,∴172<320<182,即172<x2<182,又∵x为正整数,∴x介于17和18之间,故选B.【点评】此题考查了无理数大小的估计.注意利用数的平方大小比较是解此题的方法.试题14答案:B【考点】圆心角、弧、弦的关系.【专题】计算题;圆的有关概念及性质.【分析】连接OB,OC,由半径相等得到三角形OAB,三角形OBC,三角形OCD都为等腰三角形,根据∠A=65°,∠D=60°,求出∠1与∠2的度数,根据的度数确定出∠AOD度数,进而求出∠3的度数,即可确定出的度数.【解答】解:连接OB、OC,∵OA=OB=OC=OD,∴△OAB、△OBC、△OCD,皆为等腰三角形,∵∠A=65°,∠D=60°,∴∠1=180°﹣2∠A=180°﹣2×65°=50°,∠2=180°﹣2∠D=180°﹣2×60°=60°,∵=150°,∴∠AOD=150°,∴∠3=∠AOD﹣∠1﹣∠2=150°﹣50°﹣60°=40°,则=40°.故选B【点评】此题考查了圆心角、弧、弦的关系,弄清圆心角、弧、弦的关系是解本题的关键.试题15答案:D【考点】一元二次方程的应用.【分析】设出丁的一股为a,表示出其它,再用面积建立方程即可.【解答】解:设丁的一股长为a,且a<2,∵甲面积+乙面积=丙面积+丁面积,∴2a+2a=×22+×a2,∴4a=2+a2,∴a2﹣8a+4=0,∴a===4±2,∵4+2>2,不合题意舍,4﹣2<2,合题意,∴a=4﹣2.故选D.【点评】此题是一元二次方程的应用题,主要考查了一元二次方程的解,解本题的关键是列出一元二次方程.试题16答案:D【考点】平行线分线段成比例;矩形的性质.【分析】根据矩形的性质得到AB∥CD,根据已知条件得到,根据平行线分线段成比例定理得到PQ∥CD,=4,根据平行线间的距离相等,得到q=r,证得=,于是得到结论.【解答】解:∵在矩形ABCD中,AB∥CD,∵AP:PD=4:1,AQ:QE=4:1,∴,∴PQ∥CD,∴=4,∵平行线间的距离相等,∴q=r,∵=4,∴=,∵AE<AC,∴QE<CR.故选D.【点评】本题考查了平行线分线段成比例定理,矩形的性质,熟练掌握平行线分线段成比例定理是解题的关键.试题17答案:B【考点】公因式.【专题】计算题;整式.【分析】根据a、b的最大公因子为12,a、c的最大公因子为18,得到a为12与18的公倍数,再由a的范围确定出a 的值,进而表示出b,即可作出判断.【解答】解:∵(a,b)=12,(a,c)=18,∴a为12与18的公倍数,又[12,18]=36,且a介于50与100之间,∴a=36×2=72,即8是a的因子,∵(a,b)=12,∴设b=12×m,其中m为正整数,又a=72=12×6,∴m和6互质,即8不是b的因子.故选B【点评】此题考查了公因式,弄清公因式与公倍数的定义是解本题的关键.试题18答案:D【考点】圆柱的计算.【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,于是得到水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,根据原有的水量为3a×12=36a,即可得到结论.【解答】解:∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,则水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,∵原有的水量为3a×12=36a,∴水桶内的水面高度变为=9(公分).故选D.【点评】本题考查了圆柱的计算,正确的理解题意是解题的关键.试题19答案:C【考点】一元一次不等式的应用;一次函数的应用.【分析】由x的取值范围,结合题意找出甲、乙两种方案下两年的总花费各是多少,再由乙方案比甲方案便宜得出关于x 的一元一次不等式,解不等式即可得出结论.【解答】解:∵x为400到600之间的整数,∴若小洁选择甲方案,需以通话费计算,若小洁选择乙方案,需以月租费计算,甲方案使用两年总花费=24x+15000;乙方案使用两年总花费=24×600+13000=27400.由已知得:24x+15000>27400,解得:x>516,即x至少为517.故选C.【点评】本题考查了一元一次不等式的应用以及一次函数的应用,解题的关键是结合题意找出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.试题20答案:A【考点】矩形的性质;勾股定理.【专题】计算题;矩形菱形正方形.【分析】连接CE,可得出CE=CD,由矩形的性质得到BC=AD,在直角三角形BCE中,利用勾股定理求出BE的长,由AB﹣AF求出BF的长,由BE﹣BF求出EF的长即可.【解答】解:连接CE,则CE=CD=,BC=AD=5,∵△BCE为直角三角形,∴BE==,又∵BF=AB﹣AF=﹣5=,∴EF=BE﹣BF=﹣=2.故选A【点评】此题考查了矩形的性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.试题21答案:D【考点】抛物线与x轴的交点.【分析】根据抛物线顶点及对称轴可得抛物线与x轴的交点,从而根据交点及顶点画出抛物线草图,根据图形易知a、b、c、d的大小.【解答】解:∵二次函数图形的顶点为(2,﹣1),∴对称轴为x=2,∵×PQ=×6=3,∴图形与x轴的交点为(2﹣3,0)=(﹣1,0),和(2+3,0)=(5,0),已知图形通过(2,﹣1)、(﹣1,0)、(5,0)三点,如图,由图形可知:a=b<0,c=0,d>0.故选:D.【点评】本题主要考查抛物线与x轴的交点,根据抛物线的对称性由对称轴及交点距离得出两交点坐标是解题的关键.试题22答案:A【考点】确定圆的条件.【分析】根据线段垂直平分线的性质判断甲,根据90°的圆周角所对的弦是直径判断乙.【解答】解:甲,∵=,∴△DEC为等腰三角形,∴L为之中垂线,∴O为两中垂线之交点,即O为△CDE的外心,∴O为此圆圆心.乙,∵∠ADC=90°,∠DCB=90°,∴、为此圆直径,∴与的交点O为此圆圆心,因此甲、乙两人皆正确.故选:A.【点评】本题考查的是确定圆的条件,掌握线段垂直平分线的性质、圆周角定理是解题的关键.试题23答案:C【考点】三角形的内切圆与内心.【分析】先判断出四边形FPCQ是筝形,再求出AC=,AF=2,CF=2AF=4,然后计算出PQ即可.【解答】解:如图,连接PF,QF,PC,QC,∵P、Q两点分别为△ACF、△CEF的内心∴四边形FPCQ是筝形,∴PQ⊥CF,∵△ACF≌△ECF,且内角是30°,60°,90°的三角形,∴AC=,AF=2,CF=2AF=4,∴PQ=2×=2+2﹣4=2﹣2.故选C.【点评】此题是三角形的内切圆与内心题,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.试题24答案:B【考点】比较线段的长短.【专题】探究型.【分析】根据题意可以设出线段OP的长度,从而根据比值可以得到图一中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决.【解答】解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选B.【点评】本题考查比较线段的长短,解题的关键是理解题意,求出各线段的长度.试题25答案:C【考点】轴对称的性质;矩形的性质.【专题】探究型.【分析】根据题意可知A、C两点的对称轴是线段AC的垂直平分线,画出合适的辅助线,然后根据题意可以求得AC和AN 的长,然后根据三角形相似的知识可以求得AP的长,从而可以得到P与哪一个点重合,本题得以解决.【解答】解:∵A、C两点的对称轴是线段AC的垂直平分线,∴连接AC,过点N作AC的垂直平分线PN交AD于点P,∵AB=24,AD=32,∴,∴AN=20,∵∠PAN=∠CAD,∠ANP=∠ADC,∴△ANP∽△ADC,∴,即,解得,AP=25,∵M、E、F三点在AD上,AD=32,MD=16,ED=8,FD=7,∴AF=AD﹣FD=32﹣7=25,∴点P与点F重合.故选C.【点评】本题考查轴对称的性质、矩形的性质,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.试题26答案:【考点】含30度角的直角三角形.【分析】求出∠B、∠C、∠DAC的度数,根据等腰三角形的判定方法以及30度直角三角形的性质即可解决问题.【解答】解:∵∠4=60°,∠1=30°,根据三角形外角定理可得:∠ABD=∠4﹣∠1=60°﹣30°=30°=∠1.∴BD=AD.∵∠ABD=30°,又∵AB=AC,∴∠C=∠ABD=30°,∴∠2=180°﹣∠4﹣∠C=180°﹣60°﹣30°=90°,∵∠C=30°,∴CD=2AD=2BD.【点评】本题考查等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是灵活应用这些知识解决问题,属于基础题,中考常考题型.试题27答案:【考点】四边形综合题.【分析】(1)根据条件表示出PD,从而得到△PDQ的面积;(2)分别求出正方形ABCD的面积,△PDQ,△PCR的面积,再作差求出五边形的面积,最后确定出取极值时的x值.【解答】解:(1)设DQ=x公分,∴PD=2DQ=2x公分,∴S△PDQ=x×2x=x2(平方公分),(2)∵PD=2x公分,CD=12公分,∴PC=CR=12﹣2x(公分),∴S五边形PQABR=S正方形ABCD﹣S△PDQ﹣S△PCR=122﹣x2﹣(12﹣2x)2=144﹣x2﹣(144﹣48x+4x2)=144﹣x2﹣72+24x﹣2x2=﹣3x2+24x+72=﹣3(x2﹣8x+42)+72+3×16=﹣3(x﹣4)2+120,故当x=4时,五边形PQABR有最大面积为120平方公分.【点评】此题是四边形综合题,主要考查了三角形面积的计算,五边形面积的计算方法,解本题的关键是三角形的面积的计算.。

2016年台湾地区初中教育会考中考数学科题本与详解

2016年台湾地区初中教育会考中考数学科题本与详解

A
B
图(九)
[解] ∵ AP : PD = AQ : QE =4:1,∴ PQ // DE ,
得 PR // DC ,且 AR : RC =4:1,∵两并行线的
距离皆相等,∴q=r,又 AE < AC ,
∴ QE = 1 AE < 1 AC = RC 。故选(D)。
5
5
17. 已知 a、b、c 为三正整数,且 a、b 的最大公因子为 12,a、c 的最大公因子为 18。若
4
16
182=324,∴172<320<182,即 172<x2<182,又 x 为正整数,∴x 介于 17 和 18 之间,
故选(B)。
14.
︵ 如图(七),圆 O 通过五边形 OABCD 的四个顶点。若ABD
= 150,
A
=
65,D
=
︵ 60°,则 BC 的度数为何?
O
(A) 25 (B) 40 (C) 50 (D) 55
且 a 介于 50 与 100 之间,得 a=36×2=72,因此 8 是 a 的因子, ○2 ∵(a , b)=12,设 b=12×m,其中 m 为正整数,又 a=72=12×6,
∴m 和 6 互质,因此 8 不是 b 的因子。故选(B)。
18. 如图(十),有一内部装有水的直圆柱形水桶,桶高 20 公分;另有一
A
D
[解] 连接 OB 、OC ,则△OAB、△OBC、△OCD,皆为等腰三角形, 得∠1=180-2∠A=180-2×65=50,
B
C
图(七)
︵ ∠2=180-2∠D=180-2×60=60,∵ ABD =150。 ∴∠AOD=150,可得∠3=∠AOD-∠1-∠2,

2016年中考数学试题分类解析汇编(第一辑)(29份)_3

2016年中考数学试题分类解析汇编(第一辑)(29份)_3

2016年全国各地中考数学试题分类解析汇编(第一辑)第13章轴对称一.选择题(共20小题)1.(2016•台湾)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.2.(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.(2016•巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.4.(2016•深圳)下列图形中,是轴对称图形的是()A.B.C.D.5.(2016•西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.6.(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.7.(2016•桂林)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形8.(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.9.(2016•菏泽)以下微信图标不是轴对称图形的是()A .B .C .D .10.(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .11.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条12.(2016•重庆)下列图形中是轴对称图形的是( )A .B .C .D .13.(2016•邵阳)下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .14.(2016•漳州)下列图案属于轴对称图形的是( )A .B .C .D .15.(2016•舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是( )A .B .C .D .16.(2016•南充)如图,直线MN 是四边形AMBN 的对称轴,点P 时直线MN 上的点,下列判断错误的是( )A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM17.(2016•河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上18.(2016•内江)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定19.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.320.(2016•邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC2016年全国各地中考数学试题分类解析汇编(第一辑)第13章轴对称参考答案与试题解析一.选择题(共20小题)1.(2016•台湾)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.【分析】直接利用轴对称图形的性质分析得出符合题意的答案.【解答】解:A、正三角形有3条对称轴,故此选项错误;B、正方形有4条对称轴,故此选项正确;C、正六边形有6条对称轴,故此选项错误;D、正八边形有8条对称轴,故此选项错误.故选:B.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.2.(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.(2016•巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是,故选D.【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.4.(2016•深圳)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(2016•西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:四个汉字中只有“善”字可以看作轴对称图形,故选D.【点评】考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.6.(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.(2016•桂林)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形【分析】根据轴对称图形的概念,结合选项求解即可.【解答】解:A、直角三角形中只有等腰直角三角形为轴对称图形,本选项错误;B、平行四边形不是轴对称图形,本选项错误;C、直角梯形不是轴对称图形,本选项错误;D、正方形是轴对称图形,本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.(2016•菏泽)以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10.(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.12.(2016•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,对称轴有两条,符合题意.故选:D.【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.14.(2016•漳州)下列图案属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故B不是轴对称图形;D、不能找出对称轴,故B不是轴对称图形.故选A.【点评】本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.15.(2016•舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.16.(2016•南充)如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.【点评】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.17.(2016•河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上【分析】如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON 即可推出△PMN是等边三角形,由此即可对称结论.【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MP N=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△POM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.18.(2016•内江)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定【分析】作出图形,根据等边三角形的性质求出高AH的长,再根据三角形的面积公式求出点P到三边的距离之和等于高线的长度,从而得解.【解答】解:如图,∵等边三角形的边长为3,∴高线AH=3×=,S△AB C=B C•AH=AB•PD+BC•PE+AC•PF,∴×3•AH=×3•PD+×3•PE+×3•PF,∴PD+PE+PF=AH=,即点P到三角形三边距离之和为.故选:B.【点评】本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.19.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.【点评】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.20.(2016•邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC >∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.【点评】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.。

台湾第二次中考数学科真题及答案(word)

台湾第二次中考数学科真题及答案(word)

2010年 台湾 第二次国民中学学生基本学力测验 数学科题本1. 将图(一)数在线-2和-1之间的长度以小隔线分成八等分,A 点在 其中一隔在线,则数在线A 点表示的数为何? (A) -141(B) -143 (C) -241 (D) -243 。

2. 下列选项中表示的数,哪一个是质数? (A) 2⨯13 (B) 1⨯12 (C) 1⨯79 (D) 7⨯13 。

3. 计算483÷241÷2之值为何? (A) 25 (B) 47 (C) 935 (D) 3635。

4. 图(二)是D 、E 、F 、G 四点在△ABC 边上的位置图。

根据图中的符号和数据,求x +y 之值为何? (A) 110 (B) 120 (C) 160 (D) 165 。

5. 解一元一次不等式-(x +4)+15≥3x -9,得其解的范围为何? (A) x ≥5 (B) x ≤5 (C) x ≥7 (D) x ≤7 。

6. 若a :b =5:3,则下列a 与b 关系的叙述,哪一个是正确的? (A) a 为b 的35倍 (B) a 为b 的53倍 (C) a 为b 的85倍 (D) a 为b 的58倍 。

7. 化简31-x -213+x +1,可得下列哪一个结果? (A) -7x +7 (B) -7x +11 (C) 677+-x(D) 617+-x 。

8. 计算(-1)3⨯(-2)4÷(-3)3之值为何? (A) -38 (B) -2716 (C) 8116 (D) 2716。

9. 因式分解(6x 2-3x )-2(7x -5),可得下列哪一个结果? (A) (6x -5)(x -2) (B) (6x +5)(x +2)(C) (3x +1)(2x +5) (D) (3x -1)(2x -5) 。

10. 图(三)数在线的A 、B 、C 、D 四点所表示的数分别a 、b 、20、 d 。

若a 、b 、20、d 为等差数列,且 | a -d |=12,则a 值为何? (A) 11 (B) 12 (C) 13 (D) 14 。

2016年华侨、港澳台联考数学真题 (含答案与详细解析)

2016年华侨、港澳台联考数学真题 (含答案与详细解析)

绝密★启用前2016年中华人民共和国普通高等学校 联合招收华侨、港澳地区、台湾省学生入学考试数 学一、选择题:本大题共12小题;每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{|11}A x x =-<,{|22}x B x =<,则AB =( )(A ){|01}x x << (B ){|02}x x << (C ){|2}x x < (D )∅(2)若02απ≤<,且2sin 1α≤,则α的取值范围是( )(A )[0,2)π(B )5[0,)[,2)33πππ (C )5[,]66ππ(D )5[0,)[,2)66πππ (3)平面向量(,3)a x =与(2,)b y =平行的充分必要条件是( )(A )0x =,0y= (B )3x =-,2y =- (C )6xy =(D )6xy =-(4)复数22(12)(2)i i -+的模为( )(A )1 (B )2(C (D )5(5)等比数列{}n a 的各项都为正数,记{}n a 的前n 项和为n S ,若31S =,524S S -=,则1a =( )(A )19 (B )17(C )15 (D )13(6)函数21log ((1,))1yx x =∈+∞-的反函数是( )(A )21()x y x R -=+∈ (B )12((1,))x y x -=-∈+∞(C )12()xyx R -=∈ (D )112(,1)x yx R x -=∈≠(7)设直线24y x =-与双曲线C :2221y x b-=的一条渐近线平行,则C 的离心率为( )(A (B (C )3 (D )5(8)若函数([1,1])x y a x =∈-的最大值与最小值之和为3,则22a a -+=( )(A )9 (B )7(C )6 (D )5(9)从1,2,3,4,5,6中任取3个不同的数相加,则不同的结果共有( )(A )6种(B )9种 (C )10种(D )15种(10)正四棱锥的各棱长均为1,则它的体积是( )(A )3(B )6(C )6 (D )16(11)抛物线21(1)4yx =-的准线方程为( )(A )0x = (B )1516x =(C )1x = (D )1716x=(12)曲线111y x=+-的对称轴的方程是( )(A )y x =-与2y x =+ (B )y x =与2y x =-- (C )y x =-与2yx =-(D )y x =与2yx =-+二、填空题:本大题共6小题;每题5分。

台湾中考数学试卷(含答案)

台湾中考数学试卷(含答案)

年台湾省中考数学试卷解析一、选择题(共小题,每小题分,满分分).(•台湾)三年甲班男、女生各有人,如图为三年甲班男、女生身高的盒状图.若班上每位同学的身高均不相等,则全班身高的中位数在下列哪一个范围?().~.~.~.~考点:中位数。

分析:根据所给的图形和中位数的定义即可得到答案.解答:解:由图可知:男生身高的中位数约(),女生身高的中位数约(),所以全班身高的中位数在~(),故选点评:此题考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数..(•台湾)小明原有元,如图记录了他今天所有支出,其中饼干支出的金额被涂黑.若每包饼干的售价为元,则小明可能剩下多少元?()....考点:一元一次不等式的应用。

分析:根据设小明买了包饼干,则剩下的钱为﹣()元,再分别分析得出可能剩下的钱数.解答:解:设小明买了包饼干,则剩下的钱为﹣()元,整理后为(﹣)元,当,﹣,当,﹣,当,﹣;故选;.点评:此题主要考查了实际生活问题应用,利用已知表示出剩下的钱是解题关键..(•台湾)解二元一次联立方程式,得()...﹣.﹣考点:解二元一次方程组。

专题:计算题。

分析:原方程组即:,两式相减即可消去,得到关于的方程,即可求得的值.解答:解:原方程组即:,①﹣②得:﹣,解得:﹣.故选.点评:本题考查了加减法解方程组,解方程组的基本思路是消元..(•台湾)已知甲、乙、丙三数,甲,乙,丙,则甲、乙、丙的大小关系,下列何者正确?().丙<乙<甲.乙<甲<丙.甲<乙<丙.甲乙丙考点:实数大小比较。

分析:本题可先估算无理数,,的整数部分的最大值和最小值,再求出甲,乙,丙的取值范围,进而可以比较其大小.解答:解:∵<<,∴<<,∴<甲<;∵<<,∴<<,∴<乙<,∵<<,∴<<,∴丙<乙<甲故选().点评:本题考查了实数的比较大小:()任意两个实数都可以比较大小.正实数都大于,负实数都小于,正实数大于一切负实数,两个负实数绝对值大的反而小.()利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小..(•台湾)小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为元,并列出关系式为(﹣)<,则下列何者可能是小美告诉小明的内容?().买两件等值的商品可减元,再打折,最后不到元耶!.买两件等值的商品可减元,再打折,最后不到元耶!.买两件等值的商品可打折,再减元,最后不到元耶!.买两件等值的商品可打折,再减元,最后不到元耶!考点:一元一次不等式的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年台湾省中考数学试卷(重考)一、选择题(第1~25题)1.算式2.5÷[(﹣1)×(2+)]之值为何?()A.﹣B.﹣C.﹣25 D.112.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.B.C.7 D.133.计算(2x2﹣4)(2x﹣1﹣x)的结果,与下列哪一个式子相同?()A.﹣x2+2 B.x3+4 C.x3﹣4x+4 D.x3﹣2x2﹣2x+44.若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.5.若两正整数a和b的最大公因子为405,则下列哪一个数不是a和b的公因子?()A.45 B.75 C.81 D.1356.如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣57.如图,梯形ABCD中,AD∥BC,E、F两点分别在AB、AD上,CE与BF相交于G点.若∠EBG=25°,∠GCB=20°,∠AEG=95°,则∠A的度数为何?()A.95 B.100 C.105 D.1108.有一个三位数8□2,□中的数字由小欣投掷的骰子决定,例如,投出点数为1,则8□2就为812.小欣打算投掷一颗骰子,骰子上标有1~6的点数,若骰子上的每个点数出现的机会相等,则三位数8□2是3的倍数的机率为何?()A.B.C.D.9.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8C.16 D.1610.若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣1811.坐标平面上,某个一次函数的图形通过(5,0)、(10,﹣10)两点,判断此函数的图形会通过下列哪一点?()A.(,9)B.(,9)C.(,9)D.(,9)12.如图的七边形ABCDEFG中,AB、DE的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40 B.45 C.50 D.6013.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1514.判断2﹣1之值介于下列哪两个整数之间?()A.3,4 B.4,5 C.5,6 D.6,715.某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?()A.2:1 B.7:5 C.17:12 D.24:1716.表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数17.如图,△ABC中,∠A=60°,∠B=58°.甲、乙两人想在△ABC外部取一点D,使得△ABC与△DCB全等,其作法如下:(甲)1.作∠A的角平分线L.2.以B为圆心,BC长为半径画弧,交L于D点,则D即为所求.(乙)1.过B作平行AC的直线L.2.过C作平行AB的直线M,交L于D点,则D即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确18.桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?()A.80 B.110 C.140 D.22019.如图,菱形ABCD的边长为10,圆O分别与AB、AD相切于E、F两点,且与BG相切于G点.若AO=5,且圆O的半径为3,则BG的长度为何?()A.4 B.5 C.6 D.720.已知a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,且皆有31项.若a2+b30=29,a30+b2=﹣9,则此两等差级数的和相加的结果为多少?()A.300 B.310 C.600 D.62021.如图,四边形ABCD中,AB=AD,BC=DC,∠A=90°,∠ABC=105°.若AB=5,则△ABD外心与△BCD 外心的距离为何?()A.5 B.5C.D.22.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.23.已知a=(﹣)67,b=(﹣)68,c=(﹣)69,判断a、b、c三数的大小关系为下列何者?()A.a>b>c B.b>a>c C.b>c>a D.c>b>a24.如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A.B.C.D.25.有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?()A.36 B.42 C.45 D.48二、非选择题(第1~2题)26.(2016•台湾)图1为长方形纸片ABCD,AD=26,AB=22,直线L、M皆为长方形的对称轴.今将长方形纸片沿着L对折后,再沿着M对折,并将对折后的纸片左上角剪下直角三角形,形成一个五边形EFGHI,如图2.最后将图2的五边形展开后形成一个八边形,如图2,且八边形的每一边长恰好均相等.(1)若图2中HI长度为x,请以x分别表示剪下的直角三角形的勾长和股长.(2)请求出图3中八边形的一边长的数值,并写出完整的解题过程.27.(2016•台湾)如图,△ABC中,D为AB上一点.已知△ADC与△DBC的面积比为1:3,且AD=3,AC=6,请求出BD的长度,并完整说明为何∠ACD=∠B的理由.2016年台湾省中考数学试卷(重考)参考答案与试题解析一、选择题(第1~25题)1.算式2.5÷[(﹣1)×(2+)]之值为何?()A.﹣B.﹣C.﹣25 D.11【分析】先算小括号内的加减法运算,再算中括号内的乘法运算,最后进行除法运算.【解答】解:2.5÷[(﹣1)×(2+)]=2.5÷[(﹣)×]=2.5÷(﹣2)=﹣.故选:A.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.2.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.B.C.7 D.13【分析】将其中一个方程两边乘以一个数,使其与另一方程中x的系数互为相反数,再将两方程相加,消去一个未知数,达到降元的目的,求出另一个未知数,再用代入法求另一个未知数.【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,则a+b=1+12=13,故选D.【点评】本题主要考查解二元一次方程组,熟练运用加减消元是解答此题的关键.3.计算(2x2﹣4)(2x﹣1﹣x)的结果,与下列哪一个式子相同?()A.﹣x2+2 B.x3+4 C.x3﹣4x+4 D.x3﹣2x2﹣2x+4【分析】根据多项式乘多项式的法则进行计算即可.【解答】解:(2x2﹣4)(2x﹣1﹣x),=(2x2﹣4)(x﹣1),=x3﹣2x2﹣2x+4.故选:D.【点评】本题主要考查了多项式乘多项式的运算,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.4.若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.【分析】直接利用轴对称图形的性质分析得出符合题意的答案.【解答】解:A、正三角形有3条对称轴,故此选项错误;B、正方形有4条对称轴,故此选项正确;C、正六边形有6条对称轴,故此选项错误;D、正八边形有8条对称轴,故此选项错误.故选:B.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.5.若两正整数a和b的最大公因子为405,则下列哪一个数不是a和b的公因子?()A.45 B.75 C.81 D.135【分析】根据分解因数即可.【解答】解:∵405=3×3×3×3×5=3×135=9×45=27×15=81×5∴a和b的公因子有3,5,9,15,27,45,81,135.∴75不是a和b的公因子.故选B【点评】此题是有理数的乘法,主要考查分解因数的方法,掌握分解因数的方法是解本题的关键.6.如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣5【分析】先求出A、B、C三点的横坐标的和为﹣1+0+5=4,纵坐标的和为﹣4﹣1+4=﹣1,再把它们相减即可求得a﹣b之值.【解答】解:由图形可知:a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,a﹣b=4+1=5.故选:A.【点评】考查了点的坐标,解题的关键是求得a和b的值.7.如图,梯形ABCD中,AD∥BC,E、F两点分别在AB、AD上,CE与BF相交于G点.若∠EBG=25°,∠GCB=20°,∠AEG=95°,则∠A的度数为何?()A.95 B.100 C.105 D.110【分析】先由三角形的外角性质求出∠ABC=75°,再由梯形的性质得出∠A+∠ABC=180°,即可求出∠A的度数.【解答】解:∵∠AEG=∠ABC+∠GCB,∴∠ABC=∠AEG﹣∠GCB=95°﹣20°=75°,∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=180°﹣75°=105°;故选:C.【点评】本题考查了梯形的性质、平行线的性质、三角形的外角性质;熟练掌握梯形的性质,由三角形的外角性质求出∠ABC的度数是解决问题的关键.8.有一个三位数8□2,□中的数字由小欣投掷的骰子决定,例如,投出点数为1,则8□2就为812.小欣打算投掷一颗骰子,骰子上标有1~6的点数,若骰子上的每个点数出现的机会相等,则三位数8□2是3的倍数的机率为何?()A.B.C.D.【分析】根据3的倍数的特征,可得出所有的可能性,再用概率公式计算即可.【解答】解:投掷一颗骰子,共有6种可能的结果,当点数为2或4时,三位数8□2是3的倍数,则三位数8□2是3的倍数的机率为=,故选B.【点评】本题考查了概率公式,解题的关键是列出所有可能的结果,以及概率公式P(A)=.9.如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8C.16 D.16【分析】由三角形的内角和公式求出∠A,即可求得圆心角∠BOC=90°,由弧长公式求得半径,再由勾股定理求得结论.【解答】解:连接OB,OC,∵∠B=75°,∠C=60°,∴∠A=45°,∴∠BOC=90°,∵的长度为4π,∴=4π,∴OB=8,∴BC===8,故选B.【点评】本题主要考查了三角形内角和定理,弧长公式,圆周角定理,勾股定理,熟记弧长公式是解决问题的关键.10.若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18【分析】根据不等式20<5﹣2(2+2x)<50可以求得x的取值范围,从而可以得到a、b的值,进而求得a+b 的值.【解答】解:∵20<5﹣2(2+2x)<50,解得,,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17,故选C.【点评】本题考查一元一次不等式组的整数解,解题的关键是明确解一元一次不等式组的方法.11.坐标平面上,某个一次函数的图形通过(5,0)、(10,﹣10)两点,判断此函数的图形会通过下列哪一点?()A.(,9)B.(,9)C.(,9)D.(,9)【分析】设该一次函数的解析式为y=kx+b,由函数图象上两点的坐标利用待定系数法即可求出该一次函数的解析式,再分别代入4个选项中点坐标的横坐标去验证点是否在直线上,由此即可得出结论.【解答】解:设该一次函数的解析式为y=kx+b,将点(5,0)、(10,﹣10)代入到y=kx+b中得:,解得:.∴该一次函数的解析式为y=﹣2x+10.A、y=﹣2×+10=9≠9,A中点不在直线上;B、y=﹣2×+10=9≠9,B中点不在直线上;C、y=﹣2×+10=9,C中点在直线上;D、y=﹣2×+10=9≠9,D中点不在直线上.故选C.【点评】本题考查了一次函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是求出该一次函数的解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.12.如图的七边形ABCDEFG中,AB、DE的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40 B.45 C.50 D.60【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的内角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.故选A.【点评】本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.13.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣15【分析】根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙, 再把甲与丙相加即可求解. 【解答】解:∵x ﹣4=(x+2) (x﹣2) , 2 x +15x﹣34=(x+17) (x﹣2) , ∴乙为 x﹣2, ∴甲为 x+2,丙为 x+17, ∴甲与丙相加的结果 x+2+x+17=2x+19. 故选:A. 【点评】本题考查了平方差公式,十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并 体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底. 14.判断 2 ﹣1 之值介于下列哪两个整数之间?( ) A.3,4 B.4,5 C.5,6 D.6,7 【分析】由 <2 < 即 6<2 <7,由不等式性质可得 2 ﹣1 的范围可得答案. 【解答】解:∵2 = ,且 < < ,即 6<2 <7, ∴5<2 ﹣1<6, 故选:C. 【点评】本题考查了估算无理数大小的知识,注意夹逼法的运用是解题关键. 15.某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为 4:3,二楼售出与 未售出的座位数比为 3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位 数比为何?( ) A.2:1 B.7:5 C.17:12 D.24:17 【分析】设一楼座位总数为 7x,二楼座位总数为 5y,分别表示出一、二楼售出、未售出的座位数,由一、二 楼未售出的座位数相等得到 y 关于 x 的表达式,再列式表示此场音乐会售出与未售出的座位数比,将 y 代 入 化简即可得. 【解答】解:设一楼座位总数为 7x,则一楼售出座位 4x 个,未售出座位 3x 个, 二楼座位总数为 5y,则二楼售出座位 3y 个,未售出座位 2y 个, 根据题意,知:3x=2y,即 y= x,2则===,故选:C. 【点评】本题主要考查方程思想及分式的运算,根据一、二楼未售出的座位数相等得到关于 y 关于 x 的表达式 是解题的关键. 16.表为甲班 55 人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩 的统计量,下列叙述何者 正确?( ) 成绩(分) 50 70 90 男生(人) 10 10 10 15 5 女生(人) 5 合计(人) 15 25 15 A.男生成绩的四分位距大于女生成绩的四分位距 B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数 D.男生成绩的平均数小于女生成绩的平均数 【分析】根据四分位距的概念和计算方法计算出男生、女生成绩的四分位距可判断 A、B,根据加权平均数的 计算公式计算出男生、女生成绩的平均数即可判断 C、D. 【解答】解:由表可知,男生成绩共 30 个数据, ∴Q1 的位置是 =7 ,Q3= =23 ,则男生成绩 Q1 是第 8 个数 50 分,Q3 是第 23 个数 90 分, ∴男生成绩的四分位距是 女生成绩共 25 个数据, ∴Q1 的位置是 =6 ,Q3 的位置是 =19 , =20 分;则女生成绩 Q1 是第 6、7 个数的平均数 70,Q3 是第 19、20 个数的平均数 70, ∴女生成绩的四分位距是 0 分, ∵20>0, ∴男生成绩的四分位距大于女生成绩的四分位距,故 A 正确,B 错误; ∵ = =70(分) , = =70(分) ,∴男生成绩的平均数等于女生成绩的平均数,故 C、D 均错误; 故选:A. 【点评】本题主要考查统计量的计算,熟练掌握四分位距与加权平均数的定义与计算方法是解题的关键. 17.如图,△ ABC 中,∠A=60°,∠B=58°.甲、乙两人想在△ ABC 外部取一点 D,使得△ ABC 与△ DCB 全 等,其作法如下: (甲) 1.作∠A 的角平分线 L. 2.以 B 为圆心,BC 长为半径画弧,交 L 于 D 点,则 D 即为所求. (乙) 1.过 B 作平行 AC 的直线 L. 2.过 C 作平行 AB 的直线 M,交 L 于 D 点,则 D 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A.两人皆正确 B.两人皆错误 C.甲正确,乙错误 D.甲错误,乙正确 【分析】根据题意先画出相应的图形,然后根据题意进行推理即可得到哪个正确哪个错误,本题得以解决. 【解答】解: (甲)如图一所示,∵∠A=60°,∠B=58°, ∴∠ACB=62°, ∴AB≠BC≠CA, 由甲的作法可知,BC=BD, 故△ ABC 和△ DCB 不可能全等, 故甲的作法错误; (乙)如图二所示,∵BD∥AC,CD∥AB, ∴∠ABC=DCB,∠ACB=∠DBC, 在△ ABC 和△ DCB 中,∴△ABC≌△DCB(ASA) , ∴乙的作法是正确的. 故选 D. 【点评】本题考查作图﹣复杂作图,全等三角形的判定,解题的关键是明确题意,作出相应的图形,进行合理 的推理证明.18.桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量 为原本甲杯内水量的 2 倍多 40 毫 升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的 3 倍 少 180 毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?( ) A.80 B.110 C.140 D.220 【分析】根据题意可以分别设出甲乙丙原有水的体积,然后根据题意可以列出方程组,然后作差即可得到原本 甲、乙两杯内的水量相差多少毫升,本题得以解决. 【解答】解:设甲杯中原有水 a 毫升,乙杯中原有水 b 毫升,丙杯中原有水 c 毫升,②﹣①,得 b﹣a=110, 故选 B. 【点评】本题考查三元一次方程组的应用,解题的关键是明确题目中的等量关系,列出相应的方程组,巧妙变 形,求出所求文题的答案. 19. 如图, 菱形 ABCD 的边长为 10, 圆 O 分别与 AB、 AD 相切于 E、 F 两点, 且与 BG 相切于 G 点. 若 AO=5, 且圆 O 的半径为 3,则 BG 的长度为何?( )A.4 B.5 C.6 D.7 【分析】连接 OE,由⊙O 与 AB 相切于 E,得到∠AEO=90°,根据勾股定理得到 AE= 切线长定理即可得到结论. 【解答】解:连接 OE, ∵⊙O 与 AB 相切于 E, ∴∠AEO=90°, ∵AO=5,OE=3, ∴AE= =4, =4,根据∵AB=10, ∴BE=6, ∵BG 与⊙O 相切于 G, ∴BG=BE=6, 故选 C.【点评】本题考查了切线的性质,勾股定理,熟练掌握切线的性质是解题的关键. 20.已知 a1+a2+…+a30+a31 与 b1+b2+… +b30+b31 均为等差级数,且皆有 31 项.若 a2+b30=29,a30+b2=﹣9,则此 两等差级数的和相加的结果为多少?( ) A.300 B.310 C.600 D.620 【分析】根据已知条件得到 a1+b31+b1+a31=29﹣9,a3+b29+a29+b3=29﹣9,…,于是得到 a1+a2+…+a30+a31+b1+b2+…+b30+b31= (a2+b30+a30+b2) + ( a1+b31+b1+a31) +…+ (a16+b16) =15× (29﹣9) + =310.【解答】解:∵a1+a2+…+a30+a31 与 b1+b2+…+b30+b31 均为等差级数, ∵a2+b30=29,a30+b2=﹣9, ∴a1+b31+b1+a31=29﹣9,a3+b29+a29+b3=29﹣9,…, ∴a1+a2+…+a30+a31+b1+b2+…+b30+b31=(a2+b30+a30+b2)+(a1+b31+b1+a31)+…+(a16+b16)=15×(29﹣9) + =310.故选 B. 【点评】本题考查了数字的变化类,找出规律是解题的关键. 21. 如图, 四边形 ABCD 中, AB=AD, BC=DC, ∠A=90°, ∠ABC=105°. 若 AB=5 外心的距离为何?( ) , 则△ ABD 外心与△ BCDA.5 B.5C.D.【分析】 如图, 连接 AC, 作 DF⊥BC 于 F, AC 与 BD、 DF 交于点 E、 G, 先证明 E 是△ ABD 外心, G 是△ BCD 外心,在 RT△ EGD 中,根据 tan∠EDG= 即可解决问题.【解答】解:如图,连接 AC,作 DF⊥BC 于 F,AC 与 BD、DF 交于点 E、G. ∵AB=AD,CB=CD, ∴AC 垂直平分 BD, ∵∠BAD=90°, ∴∠ABD=∠ADB=45°, ∵∠ABC=105°, ∴∠CBD=60°,∵CB=CD, ∴△BCD 是等边三角形,△ ABD 是等腰直角三角形, ∴点 E 是△ BAD 的外心,点 G 是△ BCD 的外心, 在 RT△ ABD 中,∵AB=AD=5 , ∴BD=10 , ∴BE=DE=5 , 在 RT△ EDG 中,∵∠DEG=90°,∠EDG=30°,ED=5 , ∴tan30°= ,∴EG=5. ∴△ABD 外心与△ BCD 外心的距离为 5. 故选 A.【点评】本题考查三角形的外接圆、外心、等腰直角三角形的性质、等边三角形的判定和性质,三角函数等知 识,解题的关键是掌握特殊三角形的外心的位置,属于中考常考题型. 22.如图,坐标平面上,二次函数 y=﹣x +4x﹣k 的图形与 x 轴交于 A、B 两点,与 y 轴交于 C 点,其顶点为 D,且 k>0.若△ ABC 与△ ABD 的面积比为 1:4,则 k 值为何?( )2A.1 B.C.D.【分析】求出顶点和 C 的坐标,由三角形的面积关系得出关于 k 的方程,解方程即可. 2 2 【解答】解:∵y=﹣x +4x﹣k=﹣(x﹣2) +4﹣k, ∴顶点 D(2,4﹣k) ,C(0,﹣k) , ∴OC=k, ∵△ABC 的面积= AB•OC= AB•k,△ ABD 的面积= AB(4﹣k ) ,△ ABC 与△ ABD 的面积比为 1:4, ∴k= (4﹣k) , 解得:k= . 故选:D. 【点评】本题考查了抛物线与 x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关 键.67 68 6923.已知 a=(﹣) ,b=(﹣) ,c=(﹣) ,判断 a、b、c 三数的大小关系为下列何者?( ) A.a>b>c B.b>a>c C.b>c>a D.c>b>a 【分析】根据乘方的定义与性质判断的大小即可. 【解答】解:因为 a=(﹣ 所以 b>c>a, 故选 C. ) ,b=(﹣67) ,c=(﹣68) ,69【点评】本题主要考查了有理数的大小比较,关键是根据乘方的定义、性质及幂的乘方的性质解答. 24.如图的△ ABC 中有一正方形 DEFG,其中 D 在 AC 上,E、F 在 AB 上,直线 AG 分别交 DE、BC 于 M、 N 两点.若∠B=90°,AB=4,BC=3,EF=1,则 BN 的长度为何?( )A.B.C.D. 求出 AE 的长,由 GF∥BN 可得 ,将 AE 的长代入可求得 BN.【分析】由 DE∥BC 可得【解答】解:∵四边形 DEFG 是正方形, ∴DE∥BC,GF∥BN,且 DE=GF=EF=1, ∴△ADE∽△ACB,△ AGF∽△ANB, ∴ ①, ②, ,解得:AE= ,由①可得,将 AE= 代入②,得: 解得:BN= ,,故选:D. 【点评】本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出 AE 的长是解题 的关键. 25.有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为 27、15,则此正角锥所有边的长度 和为多少?( ) A.36 B.42 C.45 D.48 【分析】根据题意画出图形,得出 2y+x=27,3x=15,求出 x 和 y,即可得出结果. 【解答】解:如图所示:根据题意得: 2y+x=27,3x=15, 其他都不符合三角形条件,解得:x=5,y=11, ∴正角锥所有边的长度和=3x+3y=15+33=48; 故选:D.【点评】本题考查了立体图形;根据题意画出图形,得出关系式是解决问题的关键. 二、非选择题(第 1~2 题) 26. (2016•台湾)图 1 为长方形纸片 ABCD,AD=26,AB=22,直线 L、M 皆为长方形的对称轴.今将长方形 纸片沿着 L 对折后,再沿着 M 对折,并将对折后的纸片左上角剪下直角三角形,形成一个五边形 EFGHI,如 图 2.最后将图 2 的五边形展开后形成一个八边形,如图 2,且八边形的每一边长恰好均相等. (1)若图 2 中 HI 长度为 x,请以 x 分别表示剪下的直角三角形的勾长和股长. (2)请求出图 3 中八边形的一边长的数值,并写出完整的解题过程.【分析】 (1)延长 HI 与 FE 相交于点 N,根据折叠的性质找出 HN、NF 的长,再根据边与边之间的关系即可 求出 NI、NE 的长度,由此即可得出剪下的直角三角形的勾长与股长; (2)结合(1)的结论利用勾股定理得出线段 EI 的长,再根据正八边形的性质即可列出关于 x 的方程,解方 程即可得出结论. 【解答】解: (1)延长 HI 与 FE 相交于点 N,如图所示.∵HN= AD=13, NF= AB=11,HI=EF=x, ∴NI=HN﹣HI=13﹣x,NE=NF﹣EF=11﹣x, ∴剪下的直角三角形的勾长为 11﹣x,股长为 13﹣x. (2)在 Rt△ ENI 中,NI=13﹣x,NE=11﹣x, ∴EI= = .∵八边形的每一边长恰好均相等, ∴EI=2HI=2x= ,解得:x=5,或 x=﹣29(舍去) . ∴EI=2×5=10. 故八边形的边长为 10. 【点评】本题考查了翻折变换中的折叠问题、勾股定理以及解无理方程,解题的关键是: (1)根据边与边之间 的关系计算出线段 NI、NE 的长; (2)列出关于 x 的无理方程.本题属于基础题,难度不大,解决该题型题目 时,巧妙的利用勾股定理列出关于 x 的方程是关键. 27. (2016•台湾) 如图, △ ABC 中, D 为 AB 上一点. 已知△ ADC 与△ DBC 的面积比为 1: 3, 且 AD=3, AC=6, 请求出 BD 的长度,并完整说明为何∠ACD=∠B 的理由.【分析】解:由于△ ADC 与△ DBC 同高,且△ ADC 与△ DBC 的面积比为 1:3,AD=3,可求出 BD=9,推得 AB=12,有相似三角形的判定证得△ ADC∽△ACB,再由相似三角形的判定可推得结论. 【解答】解:∵△ADC 与△ DBC 同高,且△ ADC 与△ DBC 的面积比为 1:3,AD=3, ∴BD=9, ∴AB=12, ∵AC=6, ∴ ∵∠A=∠A, ∴△ADC∽△ACB, ∴∠ACD=∠B. 【点评】本题主要考查了三角形的面积,相似三角形的判定和性质,灵活应用相似三角形的判定和性质是解决 问题的关键.。

相关文档
最新文档