第2章系统零输入响应

合集下载

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

控制工程基础第二章参考答案

控制工程基础第二章参考答案

第二章 参考答案2-1 (1) 不是 (2) 是 (3) 不是 (4) 不是 2-2 (a))()()(3)(2222t u t u dtt du RC dt t u d C R i o o o =++ (b) )()()()()()()()(2211222121222111222121t u dtt du C R C R dt t u d C C R R t u dt t du C R C R C R dt t u d C C R R i i i o o o +++=++++ (c ) )()()()()()(33221312221t u R dtt du C R R t u R R dt t du C R R R R R i i o o +=++++(d))()()()()()()()(1211222121211211222121t u dtt du C R C R dt t u d C C R R t u dt t du C R C R C R dt t u d C C R R i i i o o o +++=++++ (e))()()()()()()()(221222121211222222121t u dtt du R C C dt t u d C C R R t u dt t du C R C R C R dt t u d C C R R i i i o o o +++=++++ (f) )()()()()()()(22121221t u R dtt du L t u R R dt t du L C R R dt t u d CL R i i oo o +=++++ 2-3 (a) )]()([)()()(23213121t u R dtt du C R R t u R dt t du C R R R R i i o o +=++-(b) )()()()(4141232022213210t u R R t u R R dt t du C R R R dt t u d C C R R R R i o o o -=++ (c))]()()([)(32321t u R R dtt du C R R t u R i i o ++=-(d) )()()()()(221122212121t u dt t du C R C R dt t u d C C R R dt t du C R i i i o +++=- (e) )()()()(2412222142t u dtt du C R C R dt t u d C C R R o o o +++ )}()(])([)({21213224223221432132t u dtt du R R C C R R C R dt t u d R R C C R R R R R R i i i +++++++=- 2-4 (a) dt t dx f dt t dx f f dt t x d m i o o )()()()(12122=++ (b) dt t dx f k t x k k dt t dx f k k i o o )()()()(12121=++ (c) )()()()()(121t x k dt t dx f t x k k dt t dx f i i o o +=++ (d) )()()()()()(112121t x k dtt dx f t x k k dt t dx f f i i o o +=+++2-5 (a))(1)()()()(1)()()(2112212221211*********t u C C dt t du C R C R dt t u d R R t u C C dt t du C R C R C R dt t u d R R i i i o o o +++=++++ (b))()()()()()()()(2112212221211211212221t x k k dtt dx k f k f dt t x d f f t x k k dt t dx k f k f k f dt t x d f f i i i o o o +++=++++ 由(a)(b)两式可以看出两系统具有相同形式的微分方程,所以(a)和(b)是相似系统。

信号与系统-第2章

信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.

初始值的计算,零输入响应,零状态响应,全响应及三要素公式的推导(2)

初始值的计算,零输入响应,零状态响应,全响应及三要素公式的推导(2)

法:先用三要素求出iL(t)的全响应,iL(t) = iL(0+)e-t/τ+ iL(∞)(1- e-t/τ), 其中iLzi(t) = iL(0+)e-t/τ,iLzs(t) = iL(∞)(1- e-t/τ),
即若所求响应为iL(t)或uC(t)时,可直接从全响应的三要
素公式中把其零输入响应和零状态响应分离出。 利用
应用阶跃函数表示其他信号
电路分析基础
3.15 阶跃函数
2
1. 单位阶跃函数定义
单位阶跃函数用ε(t)表示,其定义为:
(t
def
)
1
0
,t 0 ,t 0
该函数在t = 0处发生单位跃变,波形如图(a)。
f
(t )
def
K (t)
K
0
,t 0 ,t 0
电路分析基础
3.15 阶跃函数
τC=RCC=2×1=2s,τL=L/RL =2/(2//2+1) =1s
电路分析基础
3.14 一阶电路三要素计算
7
iL(0+) =iL(0-)=4(A) uC (0+)= uC(0-)=4(V) τC==2s, τL=1s 画出换路后的0+等效电路如图 (d)所示。 i1(0+) =2A,i2(0+) =1A。
τ2= (R2//R3)C =1s
uC(t) = 4 - 2.53e-(t-2) (V) ,t ≥2s
电路分析基础
3.13 一阶电路三要素计算
7
例3 如图 (a)所示电路,在t < 0时开关S位于b点,
电路已处于稳态。t = 0时开关S由b点切换至a点。
求t≥0时的电压uC(t)和电流i(t)。

信号与系统讲义-2

信号与系统讲义-2


f (t) u 3 10
p
u pf (t) 2p 10
u(t) (Ae5t B)U(t)
2 du(t) 10u(t) df (t)
dt
dt
u(t) 5Ae5t U(t) (A B)(t)
2(A B) 1 B0
u(t) 1 e5tU(t)V 2
H
(
p)

2p2 8p 3 ( p 1)( p 3)2
求系统的响应 y(t)。
解: D(p) (p 1)(p 3)2 0 p1 1 p2 p3 3
y0 (t) K1e t K 2e3t K 3te3t
y0 (0 ) K1 K2 =2 y0 (0 ) K1 3K 2 K3=1
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us


R 2L
,
d

02 2 , 0
1 LC
4
三、 RLC串联电路全响应
d 2uc dt 2

R L
duc dt

1 LC
uc

1 LC Us
(二阶常系数线性非齐次微分方程)
t<0 , K在2,有 uc (0 ) U0
C
uc Aep1t Be p2t Us
2、重根:(临界阻尼) 即
R2
L C
(自然频率、固有频率)
uc (A Bt)ept Us
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
d 02 2

《信号与系统》第二章总结

《信号与系统》第二章总结
其中零状态响应rzs (t )由初始态为零时的方程求解而定 即rzs (t ) = rzsh (t ) + rzsp (t )
其中rzsh (t )和rzsp (t )分别为如下方程的齐次解和特解 zsp d n rzs (t ) d n −1rzs (t ) dr (t ) C0 + C1 + L + Cn −1 zs + Cn rzs (t ) dt n dt n −1 dt d m e(t ) d m −1e(t ) de(t ) = E + E1 + L + Em −1 + Em e(t ), m −1 0 dt m dt dt (k ) rzs (0− ) = 0
则h(t )为t ≥ 0+时满足起始态为零的微分齐次方程的解
n α t 当n > m时,h(t ) = ∑ Ak e k u (t ) k =1 (设特征方程的根为n个单根α k)
当n ≤ m时,h(t )还须含δ ( m − n ) (t )、δ ( m − n −1) (t )、 、δ (t ), L 而各项系数由Em决定
•连续时间系统的时域分析法:不通过任何变换,直接求解 求解系 求解 统的微分 微分、积分方程 方程。 微分 方程 •连续时间系统的时域分析方法:经典法,卷积法,算子法。
设n阶复杂系统激励信号为e(t ),响应信号为r (t )
其n阶微分方程为 d n r (t ) d n −1r (t ) dr (t ) C0 + C1 + L + Cn −1 + Cn r (t ) n n −1 dt dt dt d m e (t ) d m −1e(t ) de(t ) = E0 + E1 + L + Em −1 + Em e(t ) m m −1 dt dt dt

信号与系统教案第2章

第2-10页 10页

南昌大学测控系
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
(2)零状态响应 f(t) 满足 )零状态响应y yf”(t) + 3yf’(t) + 2yf(t) = 2δ(t) + 6u(t) 并有 yf(0-) = yf’(0-) = 0 含有δ(t),从而 f’(t) 由于上式等号右端含有δ(t),故yf”(t)含有 含有 ,从而y 由于上式等号右端含有 , 跃变, 连续, 跃变,即yf’(0+)≠yf’(0-),而yf(t)在t = 0连续,即yf(0+) = , 在 连续 yf(0-) = 0,积分得 , 0+ 0+ [yf’(0+)- yf’(0-)]+ 3[yf(0+)- yf(0-)]+2∫0− y f (t ) d t = 2 + 6∫0− ε (t ) d t 因此, 因此,yf’(0+)= 2 – yf ’(0-)=2 对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6 时 不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3, 不难求得其齐次解为 其特解为常数 , yf(t)=Cf1e-t + Cf2e-2t + 3 于是有 yf(t)= – 4e-t + e-2t + 3 ,t≥0 代入初始值求得
第2-8页

南昌大学测控系
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
三、零输入响应和零状态响应
y(t) = yx(t) + yf(t) ,也可以分别用经典法求解。 也可以分别用经典法求解。 也可以分别用经典法求解 注意: 时接入激励f(t)的系统 注意:对t=0时接入激励 的系统, 时接入激励 的系统, 的计算。 初始值 yx(j)(0+), yf(j)(0+) (j = 0,1,2,…,n-1)的计算。 , , , , 的计算 y(j)(0-)= yx(j)(0-)+ yf(j)(0-) y(j)(0+)= yx(j)(0+)+ yf(j)(0+) 对于零输入响应 由于激励为零, 零输入响应, 对于零输入响应,由于激励为零,故有 yx(j)(0+)= yx(j)(0-) = y (j)(0-) 对于零状态响应 零状态响应, 时刻激励尚未接入, 对于零状态响应,在t=0-时刻激励尚未接入,故应有 时刻激励尚未接入 yf(j)(0-)=0 yf(j)(0+)的求法下面举例说明。 的求法下面举例说明。 的求法下面举例说明

零输入响应与零状态响应

信号与系统课程设计报告书课题名称 零输入响应与零状态响应姓 名梁何磊学 号 20086354 院、系、部 电气系 专 业 电子信息工程 指导教师秀婷 康朝红2011年1月11日※※※※※※※※※ ※ ※※ ※※ ※※※※※※※※※2008级信号与系统课程设计连续时间系统的LTI 系统的时域仿真 -------零输入响应与零状态响应20086354 梁何磊一、设计目的掌握信号经过LTI 系统的时域分析方法。

巩固已经学过的知识,加深对知识的理解和应用,加强学科间的横向联系,学会应用MATLAB 对实际问题进行仿真。

学会对带有非零起始状态的LTI 系统进行仿真。

二、设计要求(1)根据实际问题建立系统的数学模型,对给定的如下电路,课本第二章例2-8,参数如图所示;建立系统的数学模型,并计算其完全响应;(2)用MATLAB 描述此系统;(3)仿真实现并绘制输出信号的波形。

要求用两种方法仿真实现完全响应。

对仿真结果进行比较,并与理论值比较。

三、设计方法与步骤:一般的连续时间系统分析有以下几个步骤: ①求解系统的零输入响应; ②求解系统的零状态响应; ③求解系统的全响应; ④分析系统的卷积;⑤画出它们的图形. 下面以具体的微分方程为例说明利用MATLAB 软件分析系统的具体方法.1.连续时间系统的零输入响应描述n 阶线性时不变(LTI )连续系统的微分方程为:已知y 及各阶导数的初始值为y(0),y (1)(0),… y (n-1)(0), 求系统的零输入响应。

建模当LIT 系统的输入为零时,其零输入响应为微分方程的其次解(即令微分方程的等号右端为零),其形式为(设特征根均为单根)1121111n n m n n m m n n m d y d y dy d u du a a a a y b b b u dtdt dt dt dt -++-++⋅⋅⋅⋅⋅++=+⋅⋅⋅⋅++()4=t e ()t L H 41=L Ω=232其中p1,p2,…,p n是特征方程a1λn+a2λn-1+…+a nλ+a n=0的根,它们可以用root(a)语句求得。

[信号与系统作业解答]第二章

rzi(t) 3rzi(t) 2rzi(t) 0 rzi(0 ) rzi(0 ) 2 rzi(0 ) rzi(0 ) 1
特征方程为 2 3 2 0 ,特征根为 1
1和 2
2。
所以rzi(t) C1e t C2e 2t, t 0
将 rzi(0 ) r (0 ) 2 和rzi(0 ) r(0 ) 1代入可求得
g(t) 1 e 12t cos 3 t 2
1 e 12t sin 3 t u(t)
3
2
由于系统的冲激响应h(t) h(t) e 12t cos 3 t
2
d g(t) ,所以系统的冲激响应为 dt
1 e 12t sin 3 t u(t)
3
2
3)系统的冲激响应满足方程
d dt
h(t)
2h(t)
(t) 3 (t)
电容两端电压不会发生跳变,vc(0 ) vc(0 ) 10V ,所以i(0 ) 0 ;
因此,电阻两端无电压,电感两端电压变成 10V,所以i (0 ) 10 。
(2)换路后系统的微分方程为
i (t) i (t) i(t) e (t) e(t) 20u(t)
t 0 时间内描述系统的微分方程为
i (t) i (t) i(t) 20 (t)
e(t) (1) 0 (2)
整理得:
2vo(t) 5vo(t) 5vo(t) 3vo(t) 2e (t)
2-4 已知系统相应的齐次方程及其对应的 0+状态条件,求系统的零输入响应。
1)
d2 dt 2
r(t)
2
d dt
r(t
)
2r(t)
0 ,给定r(0 )
1 ,r (0 )
2

第二章连续系统的时域分析


解得系数为 代入得
A1 2 A2 4
rzi (t) 2e2t 4et ,t 0
(3)零状态响应rzs(t) 满足 r”(t) + 3r’(t) + 2r(t) = 2δ(t) + 6u(t) 利用系数匹配法解得:
r'zs (0) r'zs (0) 2 2 rzs (0) rzs (0) 0 0
利用初始值解得: A1 1 A2 0
全响应为:
r(t)

e2t
3
t0
(2)零输入响应rzi(t), 激励为0 , rzi (0+)= rzi (0-)= rzi (0-)=2 rzi’(0+)= rzi’(0-)= rzi’(0-)=0
根据特征根求得通解为:
rzi (t) A1e2t A2et
四.系统响应划分
自由响应+强迫响应 (Natural+forced)
暂态响应+稳态响应 (Transient+Steady-state)
零输入响应+零状态响应 (Zero-input+Zero-state)
①自由响应:也称固有响应,由系统本身特性决定,与外加激励 形式无关。对应于齐次解。 强迫响应:形式取决于外加激励。对应于特解。
解得 A1 + B0 = 2 A2= –1
最后得微分方程的全解为
r(t) 2e2t e3t te2t
上式第一项的系数A1+B0= 2,不能区分A1和B0,因而也不能 区分自由响应和强迫响应。
二、关于 0- 和 0+ 初始值 1、0- 状态和 0+ 状态 0- 状态称为零输入时的初始状态。即初始值是由系统的储 能产生的; 0+ 状态称为加入输入后的初始状态。即初始值不仅有系统 的储能,还受激励的影响。 从 0- 状态到 0+ 状态的跃变 当系统已经用微分方程表示时,系统的初始值从0- 状态到 0+ 状态有没有跳变决定于微分方程右端自由项是否包含(t)及 其各阶导数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档