(精品)《复变函数》习题及答案

合集下载

完整版)复变函数测试题及答案

完整版)复变函数测试题及答案

完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。

(完整版)复变函数试题及答案

(完整版)复变函数试题及答案

-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一谜底之勘阻及广创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i + (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值: (1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,那时0,1,2,3k =,对应的4), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥. (2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可,首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此,左端=右端,即原式成立.(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根,那么a bi -也是它的一个根.证明:方程两端取共轭,注意到系数皆为实数,而且根据复数的乘法运算规则,()n n z z =,由此获得:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根,则z 也是.结论得证.(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件,有1aa =,因此:11()a b a b a b a ab aa ab a a b a---====---,证毕. (5)若1, 1a b <<,则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<,所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-,即11a b ab-<-,结论得证. 7.设1,z ≤试写出使n z a +到达最年夜的z 的表达式,其中n 为正整数,a 为复数. 解:首先,由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +到达最年夜,为此,需要取n z 与a 同向且1n z =,即n z 应为a 的单元化向量,由此,n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件.解:要使三点共线,那么用向量暗示时,21z z -与31z z -应平行,因而二者应同向或反向,即幅角应相差0或π的整数倍,再由复数的除法运算规则知2131z z Arg z z --应为0或π的整数倍,至此获得:123,,z z z 三个点共线的条件是2131z z z z --为实数. 9.写出过1212, ()z z z z ≠两点的直线的复参数方程.解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而,复参数方程为:其中t 为实参数.10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可.(1),x t y t ==,因而暗示直线y x =(2)cos ,sin x a t y b t ==,因而暗示椭圆22221x y a b+= (3)1,x t y t==,因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=,其中a 为复常数,c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==,并注意到222x y z zz +==,由此 022z z z z zz A B c i+-+++=, 整理,得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=,则2A Bi a -=,由此获得 0zz az az c +++=,结论得证.12.证明:幅角主值函数arg z 在原点及负实轴上不连续. 证明:首先,arg z 在原点无界说,因而不连续.对00x <,由arg z 的界说不难看出,当z 由实轴上方趋于0x 时,arg z π→,而当z 由实轴下方趋于0x 时,arg z π→-,由此说明0lim arg z x z →不存在,因而arg z 在0x 点不连续,即在负实轴上不连续,结论得证.13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对1x =,其方程可暗示为1z yi =+,代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++,消去参数y ,得2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周. 对224x y +=,其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中,得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-,消去参数θ,得2214u v +=,暗示一半径为12的圆周. 14.指出下列各题中点z 的轨迹或所暗示的点集,并做图: 解:(1)0 (0)z z r r -=>,说明动点到0z 的距离为一常数,因而暗示圆心为0z ,半径为r 的圆周.(2)0,z z r -≥是由到0z 的距离年夜于或即是r 的点构成的集合,即圆心为0z 半径为r 的圆周及圆周外部的点集.(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数,因而暗示一个椭圆.代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等,因而是i 和i -连线的垂直平分线,即x 轴.(5)arg()4z i π-=,幅角为一常数,因而暗示以i 为极点的与x 轴正向夹角为4π的射线. 15.做出下列不等式所确定的区域的图形,并指出是有界还是无界,单连通还是多连通.(1)23z <<,以原点为心,内、外圆半径分别为2、3的圆环区域,有界,多连通(2)arg (02)z αβαβπ<<<<<,极点在原点,两条边的倾角分别为,αβ的角形区域,无界,单连通(3)312z z ->-,显然2z ≠,而且原不等式等价于32z z ->-,说明z 到3的距离比到2的距离年夜,因此原不等式暗示2与3 连线的垂直平分线即x =2.5左边部份除失落x =2后的点构成的集合,是一无界,多连通区域.(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=,化为实方程为 2244115x y -=,再注意到z 到2与z 到-2的距离之差年夜于1,因而不等式暗示的应为上述双曲线左边一支的左侧部份,是一无界单连通区域.(5)141z z -<+,代入z x iy =+,化为实不等式,得 所以暗示圆心为17(,0)15-半径为815的圆周外部,是一无界多连通区域.习题二谜底1.指出下列函数的解析区域和奇点,并求出可导点的导数.(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数,商时分母不为0),根据和、差、积、商的导数公式及复合函数导数公式,再注意到区域上可导一定解析,由此获得:(1)5(1)z -处处解析,54[(1)]5(1)z z '-=-(2)32z iz +处处解析,32(2)32z iz z i '+=+(3)211z +的奇点为210z +=,即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导,何处解析,并求出可导点的导数.(1)22()f z xy x yi =+ (2)22()f z x y i =+(3)3223()3(3)f z x xy i x y y =-+- (4)1()f z z= 解:根据柯西—黎曼定理:(1)22, u xy v x y ==,四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程, x y y x u v u v ==-解得:0x y ==,因此,函数在0z =点可导, 0(0)0x x z f u iv ='=+=, 函数处处不解析.(2)22, u x v y ==,四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程, x y y x u v u v ==-解得:x y =,因此,函数在直线y x =上可导,()2x x y x f x ix u iv x ='+=+=,因可导点集为直线,构不成区域,因而函数处处不解析.(3)32233, 3u x xy v x y y =-=-,四个一阶偏导数皆连续,因而 ,u v 处处可微,而且 ,u v 处处满足柯西—黎曼方程 , x y y x u v u v ==-因此,函数处处可导,处处解析,且导数为(4)2211()x iy f z x iy x yz +===-+,2222, x y u v x y x y ==++, 2222222222, ()()x y y x x y u v x y x y --==++, 22222222, ()()y x xy xy u v x y x y --==++, 因函数的界说域为0z ≠,故此,,u v 处处不满足柯西—黎曼方程,因而函数处处不成导,处处不解析.3.当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?解:3232, u my nx y v x lxy =+=+22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+, 由柯西—黎曼方程得:由(1)得 n l =,由(2)得3, 3n m l =-=-,因而,最终有4.证明:若()f z 解析,则有 222(())(())()f z f z f z x y∂∂'+=∂∂ 证明:由柯西—黎曼方程知,左端22=+222222()()x x x x uu vv uu vv uu vv uv vu u v ++++-=+=+ 2()f z '==右端,证毕.5.证明:若()f z u iv =+在区域D 内解析,且满足下列条件之一,则()f z 在D 内一定为常数.(1)()f z 在D 内解析 , (2)u 在D 内为常数,(3)()f z 在D 内为常数, (4)2v u =(5)231u v += 证明:关键证明,u v 的一阶偏导数皆为0!(1)()f z u iv =-,因其解析,故此由柯西—黎曼方程得 , x y y x u v u v =-= ------------------------(1) 而由()f z 的解析性,又有, x y y x u v u v ==- ------------------------(2)由(1)、(2)知,0x y x y u u v v ===≡,因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数(2)设1u c ≡,那么由柯西—黎曼方程得0, 0x y y x v u v u =-≡=≡,说明v 与,x y 无关,因而 2v c ≡,从而12()f z c ic ≡+为常数.(3)由已知,2220()f z u v c =+≡为常数,等式两端分别对,x y 求偏导数,得220220x x y y uu vv uu vv +=+=----------------------------(1) 因()f z 解析,所以又有 , x y y x u v u v ==--------------------------(2)求解方程组(1)、(2),得 0x y x y u u v v ===≡,说明 ,u v 皆与,x y 无关,因而为常数,从而()f z 也为常数.(4)同理,2v u =两端分别对,x y 求偏导数,得再联立柯西—黎曼方程, x y y x u v u v ==-,仍有(5)同前面一样,231u v +=两端分别对,x y 求偏导数,得考虑到柯西—黎曼方程, x y y x u v u v ==-,仍有0x y x y u u v v ===≡,证毕.6.计算下列各值(若是对数还需求出主值)(1)2i e π- (2)()Ln i - (3)(34)Ln i -+(4)sin i (5)(1)i i + (6)2327解:(1)2cos()sin()22i e i i πππ-=-+-=- (2)1()ln arg()2(2)2Ln i i i k i k i ππ-=-+-+=-+, k 为任意整数,主值为:1()2ln i i π-=- (3)(34)ln 34arg(34)2Ln i i i k i π-+=-++-++4ln5(arctan 2)3k i ππ=+-+, k 为任意整数 主值为:4ln(34)ln5(arctan )3i i π-+=+- (4)..1sin 22i i i i e e e e i i i ----== (5)(2)2(1)44(1)i i k i k i iLn i i e e e ππππ++--++===24(cosln sin k e i ππ--=+, k 为任意整数(6)22224427(272)27333333279Ln ln k i ln k i k i e e e e e πππ+====,当k 分别取0,1,2时获得3个值:9, 4399(1)2i e π=-+, 8399(1)2i e π=-+ 7.求2z e 和2z Arge解:2222z x y xyi e e -+=,因此根据指数函数的界说,有2z e 22x y e -=, 222z Arge xy k π=+,(k 为任意整数)8.设i zre θ=,求Re[(1)]Ln z - 解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+,因此9.解下列方程: (1)1z e =+ (2)ln 2z i π=(3)sin cos 0z z += (4)shz i = 解:(1)方程两端取对数得:1(1)ln 2(2)3z Ln k i π=+=++(k 为任意整数)(2)根据对数与指数的关系,应有(3)由三角函数公式(同实三角函数一样),方程可变形为因此,4z k ππ+= 即 4z k ππ=-, k 为任意整数 (4)由双曲函数的界说得 2z ze e shz i --==,解得 2()210z z e ie --=,即z e i =,所以(2)2z Lni k i ππ==+ ,k 为任意整数 10.证明罗比塔法则:若()f z 及()g z 在0z 点解析,且000()()0, ()0f z g z g z '==≠,则000()()lim ()()z z f z f z g z g z →'=',并由此求极限 00sin 1lim ; lim z z z z e z z→→- 证明:由商的极限运算法则及导数界说知000000000000()()()()lim ()lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()f z g z '=', 由此,00sin cos lim lim 11z z z z z →→== 11.用对数计算公式直接验证:(1)22Lnz Lnz ≠ (2)12Lnz = 解:记i z re θ=,则(1)左端22()2ln (22)i Ln r e r k i θθπ==++,右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++,其中的,k m 为任意整数.显然,左端所包括的元素比右真个要多(如左端在1k =时的值为2ln (22)r i θπ++,而右端却取不到这一值),因此两端不相等. (2)左端221]ln (2)22m i Ln re r m k i θπθππ+==+++ 右端11[ln (2)]ln ()222r n i r n i θθππ=++=++ 其中,k n 为任意整数,而 0,1m =不难看出,对左端任意的k ,右端n 取2k 或21k +时与其对应;反之,对右端任意的n ,当2n l =为偶数时,左端可取,0k l m ==于其对应,而当21n l =+为奇数时,左端可取2,1k l m ==于其对应.综上所述,左右两个集合中的元素相互对应,即二者相等.12.证明sin sin , cos cos z z z z ==证明:首先有 (cos sin )(cos sin )z x x x iy z e e y i y e y i y e e -=+=-== ,因此sin 2i z i ze e z i--==,第一式子证毕. 同理可证第二式子也成立.13.证明Im Im sin z z z e ≤≤ (即sin y y z e ≤≤)证明:首先,sin 222iz iziz iz y y y e e e e e e z e i ---+-+=≤=≤, 右端不等式获得证明.其次,由复数的三角不等式又有 sin 2222iz izy yy y iz iz e e e e e e e e z i --------=≥==,根据高等数学中的单调性方法可以证明0x ≥时2x xe e x --≥,因此接着上面的证明,有sin 2y y e e z y --≥≥,左端不等式获得证明.14.设z R ≤,证明sin , cos z chR z chR ≤≤证明:由复数的三角不等式,有sin 2222iz iz y y iz iz y y e e e e e e e e z ch y i ----+-++=≤===, 由已知,y z R ≤≤,再主要到0x ≥时chx 单调增加,因此有sin z ch y chR ≤≤,同理,cos 2222iz iz y yiz iz y y e e e e e e e e z ch y chR ----++++=≤===≤ 证毕.15.已知平面流场的复势()f z 为(1)2()z i + (2)2z (3)211z + 试求流动的速度及流线和等势线方程.解:只需注意,若记()(,)(,)f z x y i x y ϕψ=+,则流场的流速为()v f z '=,流线为1(,)x y c ψ≡,等势线为2(,)x y c ϕ≡,因此,有(1)2222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++流速为()2()2()v f z z i z i '==+=-,流线为1(1)x y c +≡,等势线为 222(1)x y c -+≡(2)333223()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '===,流线为2313x y y c -≡,等势线为 3223x xy c -≡(3)22221111()112z x iy x y xyi==+++-++ 流速为222222()(1)(1)z z v f z z z --'===++, 流线为 122222(1)4xy c x y x y≡-++, 等势线为 222222221(1)4x y c x y x y-+≡-++ 习题三谜底1.计算积分2()cx y ix dz -+⎰,其中c 为从原点到1i +的直线段 解:积分曲线的方程为, x t y t ==,即z x iy t ti =+=+,:01t →,代入原积分表达式中,得2.计算积分z ce dz ⎰,其中c 为(1)从0到1再到1i +的折线 (2)从0到1i +的直线解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→, 从1到1i +的线段2c 方程为:1, :01z x iy iy y =+=+→,代入积分表达式中,得11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-;(2)从0到1i +的直线段的方程为z x iy t ti =+=+,:01t →, 代入积分表达式中,得1100()(1)(cos sin )z t ti tc e dz e t ti dt i e t i t dt +'=+=++⎰⎰⎰, 对上述积分应用分步积分法,得3.积分2()cx iy dz +⎰,其中c 为(1)沿y x =从0到1i + (2)沿2y x =从0到1i + 解:(1)积分曲线的方程为z x iy t ti =+=+,:01t →, 代入原积分表达式中,得(2)积分曲线的方程为 2z x iy x x i =+=+, :01t →, 代入积分表达式中,得4.计算积分cz dz ⎰,其中c 为(1)从-1到+1的直线段 (2)从-1到+1的圆心在原点的上半圆周解:(1)c 的方程为z x =,代入,得(2)c 的方程为cos sin , :0z x iy i θθθπ=+=+→,代入,得5.估计积分212cdz z +⎰的模,其中c 为+1到-1的圆心在原点的上半圆周.解:在c 上,z =1,因而由积分估计式得222111222c c c cdz ds ds ds z z z ≤≤=++-⎰⎰⎰⎰c =的弧长π= 6.用积分估计式证明:若()f z 在整个复平面上有界,则正整数1n >时其中R c 为圆心在原点半径为R 的正向圆周. 证明:记()f z M ≤,则由积分估计式得122n n M M R R Rππ-==, 因1n >,因此上式两端令R →+∞取极限,由夹比定理,得()lim 0Rn R c f z dz z →+∞=⎰, 证毕. 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因,其中积分曲线c 皆为1z =.(1)2(2)c dz z +⎰ (2)224cdz z z ++⎰ (3)22cdz z +⎰(4)cos c dz z ⎰ (5)z cze dz ⎰ 解:各积分的被积函数的奇点为:(1)2z =-,(2)2(1)30z ++=即1z =-±,(3)z = (4), 2z k k ππ=+为任意整数,(5)被积函数处处解析,无奇点不难看出,上述奇点的模皆年夜于1,即皆在积分曲线之外,从而在积分曲线内被积函数解析,因此根据柯西基本定理,以上积分值都为0.8.计算下列积分:(1)240i z e dz π⎰ (2)2sin i i zdz ππ-⎰ (3)10sin z zdz ⎰解:以上积分皆与路径无关,因此用求原函数的方法:(1)42202400111()(1)222i i i z z e dz e e e i πππ==-=-⎰ (2)21cos2sin 2sin []224i i i ii i z z z zdz dz ππππππ----==-⎰⎰ (3)11110000sin cos cos cos z zdz zd z z z zdz =-=-+⎰⎰⎰9.计算 22c dz z a-⎰,其中c 为不经过a ±的任一简单正向闭曲线.解:被积函数的奇点为a ±,根据其与c 的位置分四种情况讨论:(1)a ±皆在c 外,则在c 内被积函数解析,因而由柯西基本定理(2)a 在c 内,a -在c 外,则1z a+在c 内解析,因而由柯西积分 公式:22112z a c cdz z a dz i i z a z a a z a ππ=+===-+-⎰⎰(3)同理,当a -在c 内,a 在c 外时,(4)a ±皆在c 内此时,在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得: 注:此题若分解221111()2a z a z a z a=--+-,则更简单! 10. 计算下列各积分解:(1)11()(2)2z dz i z z =-+⎰,由柯西积分公式 (2)23221izz i e dz z -=+⎰, 在积分曲线内被积函数只有一个奇点i ,故此同上题一样:(3)2232(1)(4)z dz z z =++⎰ 在积分曲线内被积函数有两个奇点i ±,围绕,i i -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:(4)4221z z dz z -=-⎰,在积分曲线内被积函数只有一个奇点1,故此(5)221sin 41z zdz z π=-⎰, 在积分曲线内被积函数有两个奇点1±,围绕1,1-分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:(6)22, (1)nn z z dz n z =-⎰为正整数,由高阶导数公式 11. 计算积分312(1)zc e dz i z z π-⎰,其中c 为 (1)12z = (2)112z -= (3)2z = 解:(1)由柯西积分公式(2)同理,由高阶导数公式(3)由复合闭路原理30(1)z z e z ==-11()2!z z e z =''+12e =-, 其中,12,c c 为2z =内分别围绕0,1且相互外离的小闭合曲线. 12. 积分112z dz z =+⎰的值是什么?并由此证明012cos 054cos d πθθθ+=+⎰ 解:首先,由柯西基本定理,1102z dz z ==+⎰,因为被积函数的奇点在积分曲线外.其次,令(cos sin )z r i θθ=+,代入上述积分中,得 考察上述积分的被积函数的虚部,便获得2012cos 054cos d πθθθ+==+⎰,再由cos θ的周期性,得 即012cos 054cos d πθθθ+=+⎰,证毕. 13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析,且在c 上 ()()f z g z =,证明在c 内也有()()f z g z =. 证明:由柯西积分公式,对c 内任意点0z ,00001()1()(), ()22c c f z g z f z dz g z dz i z z i z z ππ==--⎰⎰, 由已知,在积分曲线c 上,()()f z g z =,故此有 再由0z 的任意性知,在c 内恒有()()f z g z =,证毕. 14. 设()f z 在单连通区域D 内解析,且()11f z -<,证明 (1)在D 内()0f z ≠;(2)对D 内任一简单闭曲线c ,皆有()0()c f z dz f z '=⎰证明:(1)显然,因为若在某点处()0,f z =则由已知 011-<,矛盾! (也可直接证明:()1()11f z f z -<-<,因此1()11f z -<-<,即0()2f z <<,说明()0f z ≠)(3)既然()0f z ≠,再注意到()f z 解析,()f z '也解析,因此由函数的解析性法则知()()f z f z '也在区域D 内解析,这样,根据柯西基本定理,对D 内任一简单闭曲线c ,皆有()0()cf z dz f z '=⎰,证毕. 15.求双曲线22y x c -= (0c ≠为常数)的正交(即垂直)曲线族.解:22u y x =-为调和函数,因此只需求出其共轭调和函数(,)v x y ,则(,)v x y c =即是所要求的曲线族.为此,由柯西—黎曼方程 2x y v u y =-=-,因此(2)2()v y dx xy g y =-=-+⎰,再由 2y x v u x ==-知,()0g y '≡,即0()g y c =为常数,因此02v xy c =-+,从而所求的正交曲线族为xy c ≡(注:实际上,本题的谜底也可观察出,因极易想到222()2f z z y x xyi =-=--解析)16.设sin px v e y =,求p 的值使得v 为调和函数.解:由调和函数的界说2sin (sin )0px px xx yy v v p e y e y +=+-=,因此要使v 为某个区域内的调和函数,即在某区域内上述等式成立,必需210p -=,即1p =±.17.已知22255u v x y xy x y +=-+--,试确定解析函数 解:首先,等式两端分别对,x y 求偏导数,得225x x u v x y +=+-----------------------------------(1)225y y u v y x +=-+- -------------------------------(2) 再联立上柯西—黎曼方程x y u v =------------------------------------------------------(3)y x u v =-----------------------------------------------------(4)从上述方程组中解出,x y u u ,得这样,对x u 积分,得25(),u x x c y =-+再代入y u 中,得 至此获得:2205,u x x y c =--+由二者之和又可解出 025v xy y c =--,因此200()5f z u iv z z c c i =+=-+-,其中0c 为任意实常数. 注:此题还有一种方法:由定理知 由此也可很方便的求出()f z .18.由下列各已知调和函数求解析函数()f z u iv =+ 解:(1)22, ()1u x xy y f i i =+-=-+, 由柯西—黎曼方程,2y x v u x y ==+,对y 积分,得212()2v xy y c x =++,再由x y v u =-得2()2y c x x y '+=-+,因此201(), ()2c x x c x x c '=-=-+,所以22011222v xy y x c =+-+,因()1f i =-,说明0,1x y ==时1v =,由此求出012c =,至此获得:2222111()(2)222f z u iv x xy y y x xy i =+=+-+-++,整理后可得:211()(1)22f z i z i =-+(2)22yv x y=+, (2)0f = 此类问题,除上题采纳的方法外,也可这样:222222222222()1()()()x y xy z i x y x y z zz -=-==++,所以 1()f z c z=-+,其中c 为复常数.代入(2)0f =得,12c =,故此(3)arctan , (0)yv x x=>同上题一样,()x x y x f z u iv v iv '=+=+22221x y z i zx y x y zz -=+==++, 因此0()ln f z z c =+,其中的ln z 为对数主值,0c 为任意实常数. (4)(cos sin )x u e x y y y =-,(0)0f =(sin sin cos )x x y v u e x y y y y =-=++,对x 积分,得再由y x v u =得()0c x '=,所以0()c x c =为常数,由(0)0f =知,0x y ==时0v =,由此确定出00c =,至此获得:()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++, 整理后可得 ()z f z ze =19.设在1z ≤上()f z 解析,且()1f z ≤,证明 (0)1f '≤ 证明:由高阶导数公式及积分估计式,得1112122z ds πππ=≤==⎰,证毕. 20.若()f z 在闭圆盘0z z R -≤上解析,且()f z M ≤,试证明柯西不等式 ()0!()n n n f z M R≤,并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数. 证明:由高阶导数公式及积分估计式,得11111!!!!()2222n n n n z z n n M n M n M f z ds ds R R R R R ππππ+++===≤==⎰⎰, 柯西不等式证毕;下证刘维尔定理:因为函数有界,无妨设()f z M ≤,那么由柯西不等式,对任意0z 都有0()Mf z R'≤,又因()f z 处处解析,因此R 可任意年夜,这样,令R →+∞,得0()0f z '≤,从而0()0f z '=,即 0()0f z '=,再由0z 的任意性知()0f z '≡,因而()f z 为常数,证毕.习题四谜底1. 考察下列数列是否收敛,如果收敛,求出其极限. (1)1n n z i n=+解:因为lim n n i →∞不存在,所以lim n n z →∞不存在,由定理4.1知,数列{}n z 不收敛.(2)(1)2n n iz -=+解:1sin )22i i θθ+=+,其中1arctan 2θ=,则()sin )cos sin nnn z i n i n θθθθ-⎤=+=-⎥⎣⎦.因为lim 0nn →∞=,cos sin 1n i n θθ-=,所以()lim cos sin 0nn n i n θθ→∞-= 由界说4.1知,数列{}n z 收敛,极限为0.(3)21n i n z e nπ-=解:因为21n i eπ-=,1lim 0n n →∞=,所以21lim 0n i n enπ-→∞= 由界说4.1知,数列{}n z 收敛,极限为0. (4)()n n zz z=解:设(cos sin )z r i θθ=+,则()cos 2sin 2n n z z n i n zθθ==+,因为lim cos 2n n θ→∞,lim sin 2n n θ→∞都不存在,所以lim n n z →∞不存在,由定理4.1知,数列{}n z 不收敛.2. 下列级数是否收敛?是否绝对收敛?(1)1!nn i n ∞=∑解:1!!n i n n =,由正项级数的比值判别法知该级数收敛,故级数1!nn i n ∞=∑收敛,且为绝对收敛. (2)2ln nn i n∞=∑解:222cos sin 22ln ln ln n n n n n n i i n n nππ∞∞∞====+∑∑∑,因为2cos11112ln ln 2ln 4ln 6ln 8n n n π∞==-+-++∑是交错级数,根据交错级数的莱布尼兹审敛法知该级数收敛,同样可知,2sin111121ln ln 3ln 5ln 7ln 9n n n π∞==-+-++∑也收敛,故级数2ln nn i n ∞=∑是收敛的. 又22111,ln ln ln 1n n n i n n n n ∞∞===>-∑∑,因为211n n ∞=-∑发散,故级数21ln n n∞=∑发散,从而级数2ln nn i n ∞=∑条件收敛.(3)0cos 2n n in∞=∑解:1110000cos 2222n n n nn n n n n n n n in e e e e --∞∞∞∞+++====+==+∑∑∑∑,因级数102nn n e ∞+=∑发散,故cos 2nn in∞=∑发散. (4)()35!nn i n ∞=+∑解:()35!nn n i n ∞∞==+=∑由正项正项级数比值判别法知该级数收敛,故级数()035!nn i n ∞=+∑收敛,且为绝对收敛.3. 试确定下列幂级数的收敛半径.(1)()01n n n i z ∞=+∑解:1lim 1n n n c i c +→∞=+=故此幂级数的收敛半径R =. (2)0!n n n n z n ∞=∑解:11(1)!11lim lim lim 1(1)!(1)n n n n n n n n c n n c n n en++→∞→∞→∞+=⋅==++,故此幂级数的收敛半径R e =.(3)1in n n e z π∞=∑解:11lim lim 1in n n n innc e c e ππ++→∞→∞==,故此幂级数的收敛半径1R =.(4)221212n nn n z ∞-=-∑解:令2z Z =,则22111212122n n n n n n n n z Z ∞∞--==--=∑∑112112lim lim 2122n n n n nn n c n c ++→∞→∞+==-,故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <,即22z <,从而幂级数221212n n n n z ∞-=-∑的收敛域为z <收敛半径为R .4. 设级数0n n α∞=∑收敛,而0nn α∞=∑发散,证明0n n n z α∞=∑的收敛半径为1.证明:在点1z =处,0nn n n n z αα∞∞===∑∑,因为0n n α∞=∑收敛,所以0n n n z α∞=∑收敛,故由阿贝尔定理知,1z <时,0n n n z α∞=∑收敛,且为绝对收敛,即nnn z α∞=∑收敛.1z >时,0nn n n n z αα∞∞==>∑∑,因为0n n α∞=∑发散,根据正项级数的比力准则可知,0nn n z α∞=∑发散,从而0n n n z α∞=∑的收敛半径为1,由定理4.6,0n n n z α∞=∑的收敛半径也为1.5. 如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛,证明它在收敛圆所围的闭区域上绝对收敛. 证明:0z z <时,由阿贝尔定理,0n n n c z ∞=∑绝对收敛.0z z =时,00nnn n n n c z c z ∞∞===∑∑,由已知条件知,00n n n c z ∞=∑收敛,即nnn cz ∞=∑收敛,亦即0n n n c z ∞=∑绝对收敛.6. 将下列函数展开为z 的幂级数,并指出其收敛区域.(1)221(1)z +解:由于函数221(1)z +的奇点为z i =±,因此它在1z <内处处解析,可以在此圆内展开成z 的幂级数.根据例4.2的结果,可以获得24211(1),11n n z z z z z=-+-+-+<+.将上式两边逐项求导,即得所要求的展开式221(1)z +='24122211123(1),112n n z z nz z z z +-⋅-=-+++-+<+()(). (2)1(0,0)()()a b z a z b ≠≠--解:①a b =时,由于函数1(0,0)()()a b z a z b ≠≠--的奇点为z a =,因此它在z a <内处处解析,可以在此圆内展开成z 的幂级数.='1(1)nn z z a a a⋅++++=111()n n n z a a a -⋅+++=1211,n n n z z a a a-++++<. ②a b ≠时,由于函数1(0,0)()()a b z a z b ≠≠--的奇点为12,z a z b ==,因此它在min{,}z a b <内处处解析,可以在此圆内展开成z 的幂级数.=2121111()nnn n z z z z a b a aa b bb++-----++++-=22111111111[()()],min{,}nn n z z z a b a b b a b a b a ++-+-++-+<-.(3)2cos z解:由于函数2cos z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.4822cos 1(1),2!4!(2)!nnz z z z z n =-+-+-+<+∞.(4)shz解:由于函数shz 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.321321()()()()sin ((1)),3!(21)!3!(21)!n n niz iz z z shz i iz i iz z z n n ++=-=--++-+=++++<+∞++(5)2sin z解:由于函数2sin z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.=221(2)(2)(1),22!2(2)!nn z z z n +++-+<+∞⨯⨯.(6)sin z e z 解:由于函数sin z e z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.(1)(1)sin 22iz iz i z i zzze e e e e z e i i-+---=⋅==22221(1)(1)(1)(1)(1(1)1(1))22!!2!!n n n n i z i z i z i z i z i z i n n ++--++++++-------=2122(1)(1)(2)22!!n n n i i i iz z z i n ⋅+--++++=32,3z z z z +++<+∞. 7. 求下列函数展开在指定点0z 处的泰勒展式,并写出展式成立的区域.(1)0,2(1)(2)zz z z =++解: 21(1)(2)21z z z z z =-++++,022111(2)222422414nnn z z z z ∞=-==⋅=-+-++∑, 011111(2)212333313nnn z z z z ∞=-==⋅=-+-++∑. 由于函数(1)(2)zz z ++的奇点为121,2z z =-=-,所以这两个展开式在23z -<内处处成立.所以有:210001(2)1(2)11()(2),23(1)(2)243323n n nn n n nn n n z z z z z z z ∞∞∞+===--=-=---<++∑∑∑.(2)021,1z z = 解:由于2111(1)(1)(1)(1),1111n n z z z z z z ==--+-++--+-<-+ 所以'11211()12(1)(1)(1),11n n z n z z z z --=-=--++--+-<.(3)01,143z i z=+- 解:1111134343(1)33133(1)131(1)13z z i i i z i i z i i===⋅---------------=100133(1)(1)13(13)(13)n n n n n n n n z i z i i i i ∞∞+==⋅--=-----∑∑. 展开式成立的区域:3(1)113z i i--<-,即13z i --< (4)0tan ,4z z π=解:'2tan sec z z =,''2tan 2sec tan z z z =,'''22tan 2sec (2tan 1)z z z =+,……,'24tan sec 24z z ππ===,''244tan 2sec tan 2z z zz zππ====,'''22448tan 2sec (2tan 1)3z z zz z ππ===+=……,故有 因为tan z 的奇点为,2z k k Z ππ=+∈,所以这个等式在44z ππ-<的范围内处处成立.8. 将下列函数在指定的圆域内展开成洛朗级数.(1)21,12(1)(2)z z z <<+-解:2221112()(1)(2)5211z z z z z z =--+--++, 222222002221212(1)(1)111n nn n n n z z z z z z∞∞+====-=-++∑∑, 故有2121220001112((1)(1))(1)(2)52n nn n n n n n n z z z z z ∞∞∞+++====-+-+-+-∑∑∑(2)21,01,1(1)z z z z z +<<<<+∞- 解:222112(1)(1)z z z z z z +=+--①在01z <<内 ②在1z <<+∞内 (3)1,011,12(1)(2)z z z z <-<<-<+∞--解:①在011z <-<内, ②在12z <-<+∞内20111111111(1)(1)1(1)(2)22122(2)(2)(2)12nnn n n n z z z z z z z z z z ∞∞+===⋅=⋅=-=-----+-----+-∑∑(4)1sin ,011z z<-<+∞-解:在01z <-<+∞内(5)cos,011zz z <-<+∞- 解:111cos cos(1)cos1cos sin1sin 1111z z z z z =+=----- 在01z <-<+∞内故有9. 将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数.解:因为函数221()(1)f z z =+的奇点为z i =±,所以它以点z i =为心的去心邻域是圆环域02z i <-<.在02z i <-<内又11001111()()(1)(1)()222(2)(2)12n n n n n n n n z i z i z i z i i i i i i i∞∞++==---=-⋅=--=---++∑∑ 故有222222001111()(1)()(1)()(1)()(2)(2)n n n n n n n n n n f z z i z i z z i i i ∞∞-++==++==⋅--=--+-∑∑ 10.函数()ln f z z =能否在圆环域0(0)z R R <<<<+∞内展开为洛朗级数?为什么?答:不能.函数()ln f z z =的奇点为,0,z z R ≤∈,所以对,0R R ∀<<+∞,0z R <<内都有()f z 的奇点,即()f z 以0z =为环心的处处解析的圆环域不存在,所以函数()ln f z z =不能在圆环域0(0)z R R <<<<+∞内展开为洛朗级数.习题五谜底1. 求下列各函数的孤立奇点,说明其类型,如果是极点,指出它的级. (1)221(1)z z z -+ 解:函数的孤立奇点是0,z z i ==±, 因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i ----=⋅=⋅=⋅++-++-由性质5.2知,0z =是函数的1级极点,z i =±均是函数的2级极点. (2)3sin zz解:函数的孤立奇点是0z =,因32133sin 1((1))3!(21)!n nz z z z z z n +=-++-+,由极点界说知,0z =是函数的2级极点.(3)ln(1)z z+ 解:函数的孤立奇点是0z =,因0ln(1)lim1z z z→+=,由性质 5.1知,0z =是函数可去奇点. (4)21(1)z z e -解:函数的孤立奇点是2z k i π=,①0k =,即0z =时,因4223(1)2!!n zz z z e z n +-=++++ 所以0z =是2(1)z z e -的3级零点,由性质5.5知,它是21(1)z z e -的3级极点②2z k i π=,0k ≠时,令2()(1)z g z z e =-,'2()2(1)z z g z z e z e =-+,因(2)0g k i π=,'2(2)(2)0g k i k i ππ=≠,由界说5.2知,2(0)z k i k π=≠是()g z 的1级零点,由性质5.5知,它是21(1)z z e -的1级极点(5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)z g z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++,''22()2(1)4(1)z z z g z e ze e z πππππ=++++ ①0z i =±时, 0()0g z =,'0()0g z =,''0()0g z ≠,由界说5.2知,0z i =±是()g z 的2级零点,由性质5.5知,它是21(1)(1)zz e π++的2级极点,故0z i =±是2(1)(1)zzz e π++的2级极点.②1(21),1,2,z k i k =+=±时,1()0g z =,'1()0g z ≠,由界说 5.2知,1(21),1,2,z k i k =+=±是()g z 的1级零点,由性质5.5知,它是21(1)(1)zz e π++的1级极点,故是2(1)(1)zzz e π++的1级极点. (6)21sin z解:函数的孤立奇点是0z =,1,2,z z k ==±= 令2()sin g z z =,'2()2cos g z z z =,①0z =时,因64222()sin (1)3!(21)!n nz z g z z z n +==-++-++,所以0z =是()g z 的2级零点,从而它是21sin z的2级极点. ②1,2,z z k ==±=时,()0g z =,'()0g z ≠,由界说 5.2知,1,2,z z k ==±=是()g z 的1级零点,由性质5.5知,它是21sin z 的1级极点. 2. 指出下列各函数的所有零点,并说明其级数.(1)sin z z解:函数的零点是,z k k Z π=∈,记()sin f z z z =,'()sin cos f z z z z =+①0z =时,因4222sin (1)3!(21)!n nz z z z z n +=-++-++,故0z =是sin z z 的2级零点.②,0z k k π=≠时,()0z k f z π==,'()0z k f z π=≠,由界说5.2知, ,0z k k π=≠是sin z z 的1级零点. (2)22z z e解:函数的零点是0z =,因242222(1)2!!n z z z z e z z n =+++++,所以由性质5.4知,0z =是22z z e 的2级零点.(3)2sin (1)z z e z -解:函数的零点是00z =,1z k π=,22z k i π=,0k ≠,记2()sin (1)z f z z e z =-,'22()cos (1)sin [2(1)]z z z f z z e z z e z z e =-++-①0z =时,0z =是sin z 的1级零点,,1z e -的1级零点,2z 的2级零点,所以0z =是2sin (1)z z e z -的4级零点.②1z k π=,0k ≠时,1()0f z =,'1()0f z ≠,由界说5.2知,1z k π=,0k ≠是()f z 的1级零点.③22z k i π=,0k ≠时,1()0f z =,'1()0f z ≠,由界说 5.2知,22z k i π=,0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z -+-的几级极点?答:记()sin 2f z z shz z =+-,则'()cos 2f z z chz =+-,''()sin f z z shz =-+,'''()cos f z z chz =-+,(4)()sin f z z shz =+,(5)()cos f z z chz =+,将0z =代入,得:''''''(4)(0)(0)(0)(0)(0)0f f f f f =====,(5)()0f z ≠,由界说5.2知, 0z =是函数()sin 2f z z shz z =+-的5级零点,故是2(sin 2)z shz z -+-的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点,那么0z 是'()f z 的1m -级零点.证明:因为0z 是()f z 的m 级零点,所以'''10000()()()()0m f z f z f z f z -=====,0()0m f z ≠,即''''2000()(())(())0m f z f z f z -====,'10(())0m f z -≠,由界说5.2知,0z 是'()f z 的1m -级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+- 解:函数的有限孤立奇点是0,2z z ==,且0,2z z ==均是其1级极点.由定理5.2知,0011Re [(),0]lim ()lim22z z z s f z zf z z →→+===-+,0013Re [(),2]lim(2)()lim 2z z z s f z z f z z →→+=-==.(2)4231(1)z z ++解:函数的有限孤立奇点是z i =±,且z i =±是函数的3级极点,由定理5.2,423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →→→+-=-===-++, 423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →-→-→-++-=+===--.(3)241ze z-解:函数的有限孤立奇点是0z =,因22234443211(2)(2)2222(2)2!!2!3!!z n n n e z z z z z z n z z z n --=-----=-----所以由界说5.5知,2414Re [,0]3z e s z -=-.(4)21sin z z解:函数的有限孤立奇点是0z =, 因2232121111(1)1(1)sin ()3!(21)!3!(21)!nnn n z z z z z z n z zn z +---=-+++=-+++++所以由界说5.5知,211Re [sin ,0]6s z z=-. (5)1cos1z- 解:函数的有限孤立奇点是1z =,因。

复变函数经典习题及答案

复变函数经典习题及答案

于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C

O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6

复变函数课后习题答案

复变函数课后习题答案

习题一 P311题 (2)i ii i -+-11 = 1)1(2)1(--++i i i i =223i --)R e (z 23-= ; 21)(-=z I m ; z = 23-2i + ; z =210;arg(z) = arctan-31π (4) 8i i i +-214 i i +-=41 i 31-= ;;1)Re(=z ;3)Im(-=z ;31i z += ;10=z 3a r c t a na r g -=z ; 5题(2) πππi e i 2)sin (cos 22=+=-;(4)⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+=-)43sin(arctan )43cos(arctan 5)43sin(arctan )43cos(arctan 91634i i i;5θi e = );43arctan(-=θ (6) θθθθθθθθϑθθ7sin 7cos )()()2sin 2(cos )sin (cos )7(4322323i e e e e e i i i i i i i -====+---- ; 8题(2) 16)2()1(848==+πie i (4));3432sin 3432(cos2163ππππ-+-=--k i k i ;431arctan ππθ-=-= ;2,1,0=K);1(24)2222(2360i i K -=-= );125sin 125(cos261ππi K += );1213sin 1213(cos 262ππi K +=12题(2) ;3)2(=-z R e 即 ;3])2[(e =+-iy x R ;32=-x 5=x 直线(6) ;4)arg(π=-i z ;4))1(arg(π=-+y i x arctan;41π=-x y ;11=-xy 1+=x y 以i 为起点的射线(x>0). 13题(1) 0)(<z I m ; 即y<0, 不含实轴的下半平面,开区域,无界,单连通。

复变函数考试题和答案

复变函数考试题和答案

复变函数考试题和答案****一、选择题(每题5分,共30分)1. 复数 \( z = a + bi \) 的共轭复数为()。

A. \( a - bi \)B. \( a + bi \)C. \( -a + bi \)D. \( -a - bi \)**答案:A**2. 复数 \( z = a + bi \) 的模长为()。

A. \( \sqrt{a^2 + b^2} \)B. \( \sqrt{a^2 - b^2} \)C. \( \sqrt{a^2 + b} \)D. \( \sqrt{a + b^2} \)**答案:A**3. 函数 \( f(z) = \frac{1}{z} \) 在 \( z = 0 \) 处的性质是()。

A. 可导B. 连续C. 可微D. 奇点**答案:D**4. 函数 \( f(z) = z^2 \) 在复平面上是()。

A. 单叶函数B. 多叶函数C. 常数函数D. 线性函数**答案:A**5. 函数 \( f(z) = \sin(z) \) 是()。

A. 整函数B. 亚纯函数C. 非解析函数D. 多项式函数**答案:A**6. 函数 \( f(z) = e^z \) 在复平面上是()。

A. 整函数B. 亚纯函数C. 非解析函数D. 多项式函数**答案:A**二、填空题(每题5分,共20分)1. 复数 \( z = 3 + 4i \) 的共轭复数是 \( \_\_\_\_\_\_\_ \)。

**答案:3 - 4i**2. 复数 \( z = 1 + i \) 的模长是 \( \_\_\_\_\_\_\_ \)。

**答案:\( \sqrt{2} \)**3. 函数 \( f(z) = z^3 \) 在 \( z = 1 \) 处的导数是 \( \_\_\_\_\_\_\_ \)。

**答案:3**4. 函数 \( f(z) = \frac{1}{z-1} \) 的奇点是 \( \_\_\_\_\_\_\_ \)。

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、假设Z 1=〔a, b 〕,Z 2=(c, d),那么Z 1·Z 2=〔C 〕 A 〔ac+bd, a 〕 B (ac-bd, b) C 〔ac-bd, ac+bd 〕 D (ac+bd, bc-ad)2、假设R>0,那么N 〔∞,R 〕={ z :〔D 〕} A |z|<R B 0<|z|<R C R<|z|<+∞ D |z|>R3、假设z=x+iy, 那么y=(D)A B C D4、假设A= ,那么|A|=〔C 〕A 3B 0C 1D 2二、填空题1、假设z=x+iy, w=z 2=u+iv, 那么v=〔 2xy 〕2、复平面上满足Rez=4的点集为〔 {z=x+iy|x=4} 〕3、〔 设E 为点集,假设它是开集,且是连通的,那么E 〕称为区域。

2zz +2z z -iz z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),那么{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。

三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。

解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。

解:3、写出复数 的代数式。

解:4、求根式 的值。

+∞→n lim +∞→n limππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明假设 ,那么a 2+b 2=1。

《复变函数》习题及答案

第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。

( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。

( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。

( )4、cos z 与sin z 在复平面内有界。

( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。

( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。

( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。

( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。

( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。

( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。

( ) 12、有界整函数必为常数。

( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。

( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。

( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。

( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。

( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。

( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。

( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。

大学复变函数试题及答案

大学复变函数试题及答案一、单项选择题(每题3分,共15分)1. 复数z=1+i的共轭复数是()。

A. 1-iB. 1+iC. -1+iD. -1-i答案:A2. 对于复数z=a+bi,其模长|z|等于()。

A. √(a²+b²)B. a²+b²C. a+biD. a²-b²答案:A3. 以下哪个函数是解析函数()。

A. f(z)=|z|B. f(z)=z²C. f(z)=√zD. f(z)=z/|z|答案:B4. 函数f(z)=sin(z)的导数是()。

A. cos(z)B. -sin(z)C. cos(z)D. -cos(z)答案:A5. 复变函数f(z)=1/z的极点是()。

A. z=0B. z=1C. z=-1D. z=i答案:A二、填空题(每题4分,共20分)6. 复数z=3+4i的模长|z|等于_________。

答案:57. 函数f(z)=z³+1的导数f'(z)等于_________。

答案:3z²8. 函数f(z)=e^z的导数f'(z)等于_________。

答案:e^z9. 函数f(z)=1/(z-1)的极点是_________。

答案:z=110. 函数f(z)=z²的零点是_________。

答案:z=0三、计算题(每题10分,共30分)11. 计算复数z=2+3i的共轭复数,并求其模长。

解:z的共轭复数为2-3i,模长|z|=√(2²+3²)=√13。

12. 计算函数f(z)=z³-3z²+2z-1在z=1处的导数值。

解:f'(z)=3z²-6z+2,代入z=1,得到f'(1)=3(1)²-6(1)+2=-1。

13. 计算函数f(z)=1/(z²+1)的极点,并判断极点的性质。

复变函数试题答案

复变函数试题答案题1:计算复数 $z=\frac{(1+i)^{20}}{(1-i)^{20}}$ 的模和论证总结过程。

解答:首先,化简复数 $z$ 的形式:$$z = \frac{(1+i)^{20}}{(1-i)^{20}}.$$通过观察可以发现,这是一个幂次相等的形式,我们可以再做进一步的化简:$$z = \left(\frac{1+i}{1-i}\right)^{20}.$$接下来,我们将分母有关复数的形式进行变换:$$z = \left(\frac{(1+i)(1+i)}{(1-i)(1+i)}\right)^{20}.$$继续化简,我们得到:$$z = \left(\frac{2i}{2}\right)^{20} = \left(\frac{i}{1}\right)^{20} = i^{20}.$$由于 $i$ 的周期性,我们知道 $i^{20} = (i^4)^5 = 1^5 = 1$。

因此,我们得出结论:$z=1$。

题2:给定复变函数 $f(z)=\frac{1}{z^2+1}$,计算函数在复平面上的奇点位置并进行论证。

解答:我们的目标是找到函数 $f(z)=\frac{1}{z^2+1}$ 的奇点位置,也就是对于哪些复数 $z$,$f(z)$ 无定义或者不满足解析性。

为了找到这些奇点位置,我们需要解方程 $z^2+1=0$。

通过求解方程,我们可以得到:$$z^2=-1.$$由于 $z$ 是复数,我们知道不存在实数的平方能够等于 $-1$,因此我们引入虚数单位 $i$,将方程化简为:$$z^2=i^2.$$进一步,我们得到两个解:$$z_1 = i, \quad z_2 = -i.$$所以,函数 $f(z)=\frac{1}{z^2+1}$ 的奇点位置为 $z=i$ 和 $z=-i$。

接下来,我们进行奇点位置的论证。

对于奇点 $z=i$,我们观察到在 $z=i$ 附近,分母 $z^2+1$ 接近于 $0$,所以 $f(z)$ 发散,不具备解析性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 10 页
在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!

《复变函数》习题及答案
一、 判断题
1、若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导。( )

2、如果z0是f(z)的本性奇点,则)(lim0zfzz一定不存在。( )

3、若函数),(),()(yxivyxuzf在D内连续,则u(x,y)与v(x,y)都在D内连续。( )
4、cos z与sin z在复平面内有界。( )
5、若z0是)(zf的m阶零点,则z0是1/)(zf的m阶极点。( )
6、若f(z)在z0处满足柯西-黎曼条件,则f(z)在z0解析。( )
7、若)(lim0zfzz存在且有限,则z0是函数的可去奇点。( )

8、若f(z)在单连通区域D内解析,则对D内任一简单闭曲线C都有0)(Cdzzf。( )
9、若函数f(z)是单连通区域D内的解析函数,则它在D内有任意阶导数。( )
10、若函数f(z)在区域D内的解析,且在D内某个圆内恒为常数,则在区域D内恒等于常
数。( )
11、若函数f(z)在z0解析,则f(z)在z0连续。( )
12、有界整函数必为常数。( )

13、若}{nz收敛,则} {Renz与} {Imnz都收敛。( )

14、若f(z)在区域D内解析,且0)('zf,则Czf)((常数)。( )
15、若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数。( )
16、若f(z)在z0解析,则f(z)在z0处满足柯西-黎曼条件。( )
17、若函数f(z)在z0可导,则f(z)在z0解析。( )
18、若f(z)在区域D内解析,则|f(z)|也在D内解析。( )
19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。( )
20、cos z与sin z的周期均为k2。( )
第 2 页 共 10 页
在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!

21、若函数f(z)在z0解析,则f(z)在z0处满足Cauchy-Riemann条件。( )
22、若函数f(z)在z0处解析,则f(z)在z0连续。( )
23、函数zsin与zcos在整个复平面内有界。( )

24、存在整函数)(zf将复平面映照为单位圆内部。( )
1、若函数f(z)在z0处满足Cauchy-Riemann条件,则f(z)在z0解析。( )
4、若函数f(z)在是区域D内的单叶函数,则)(0)('Dzzf。( )
7、函数zsin与zcos在整个复平面内有界。( )
8、存在一个在零点解析的函数f(z)使0)11(nf且,...2,1,21)21(nnnf。( )

9、如果函数f(z)在}1|:|{zzD上解析,且)1|(|1|)(|zzf,则)1|(|1|)(|zzf。
( )

二、填空题
1、函数ez的周期为__________。

2、幂级数0nnnz的和函数为__________。

3、设11)(2zzf,则f(z)的定义域为___________。
4、0nnnz的收敛半径为_________。

5、)0,(Resnzze_____________。
6、

1||00)(zznzz

dz
__________。

7、设11)(2zzf,则f(z)的孤立奇点有__________。
8、若函数f(z)在复平面上处处解析,则称它是___________。
第 3 页 共 10 页
在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!

9、zz22cossin _________。
10、若函数f(z)在区域D内除去有限个极点之外处处解析,则称它是D内的_____________。
11、设Ciyxyxixyxzf),sin(1()2()(222,则)(lim0zfzz__________。

13、幂级数0nnnx的收敛半径为__________
14、若z0是f(z)的m阶零点且m>0,则z0是)('zf的_____零点。
15、函数||)(zzf的不解析点之集为________。

16、)0,(Resnzze____________,其中n为自然数。
17、公式xixeixsincos称为_____________.
18、若nnninnz)11(12,则nznlim__________。

19、若C是单位圆周,n是自然数,则Cndzzz)(10__________。
20、函数zsin的周期为___________。
21、若nnzlim,则nzzznn...lim21______________。

22、方程083235zzz在单位圆内的零点个数为________。
23、函数211)(zzf的幂级数展开式为_________。

三、计算题
1、.))(9(2||2zdzizzz

相关文档
最新文档