离散数学王元元习题解答 (10)

合集下载

离散数学习题解答

离散数学习题解答
离散数学习题解答
数理逻辑习题
1.
(1)要是明天不下雨且我有时间,那么我去步行街购物。
设p:明天下雨q:我有时间r:我去步行街购物
(2)如果小王和小张是一个组,那么这次英语竞赛一定取胜。
设p:小王和小张是一个组q:这次英语竞赛一定取胜
(3)除非天下雨,否则他不乘出租车上班。
设p:天下雨q:他乘出租车上班
设p:马会飞。q:羊吃草。r:母鸡是飞鸟。s:烤熟的鸭子会跑。
前提: , ,
结论:
证明:
① 前提引入
② 前提引入
③ ①②拒取式
④ 前提引入
⑤ ③④拒取式
⑥ ⑤等值演算
⑦ ⑥化简规则
17
(1)有会说话的机器人。
设: :x是机器人。 :x会说话。
符号化为:
(2)尽管有人很聪明,但未必一切人都聪明。
设: :x是人。 :x很聪明。
符号化为:
(3)并不是所有的ቤተ መጻሕፍቲ ባይዱ车都比火车快。
设: :x是汽车。 :y是火车。 :x比y快。
符号化为:
(4)有的人不吃萝卜,但人都要喝水。
设: :x是人。 :x吃萝卜。 :x要喝水。
符号化为:
(5)男人一定比女人高,是不对的。
设: :x是男人。 :y是女人。 :x比y高。
符号化为:
(6)某些汽车慢于所有的火车,但至少有一火车快于每一汽车。
(4)自反
(5)对称
(6)对称
13
14
[a]=[b]={a,b},[c]=[d]={c,d}。
15
(1)证明:
1) , ,所以R自反。
2) ,
,所以R对称。
3) , ,


由 和 可得 。

离散数学和应用数理逻辑部分课后习题答案解析

离散数学和应用数理逻辑部分课后习题答案解析

作业答案:数理逻辑部分P14:习题一1、下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(3 答:简单命题,真命题。

(9)吸烟请到吸烟室去! 答:不是命题。

(12)8是偶数的充分必要条件是8能被3整除。

答:复合命题,假命题。

14、讲下列命题符号化。

(6)王强与刘威都学过法语。

答::p 王强学过法语;:q 刘威学过法语。

符号化为:p q ∧(10)除非天下大雨,他就乘班车上班。

答::p 天下大雨;:q 他乘班车上班。

符号化为:p q →(13)“2或4是素数,这是不对的”是不对的。

答::p 2是素数;:q 4是素数。

符号化为:(())p q ⌝⌝∨15、设:p 2+3=5. :q 大熊猫产在中国。

:r 太阳从西方升起。

求下列复合命题的真值。

(2)(())r p q p →∧↔⌝(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→ 解答: p 真值为1;q 真值为1;r 真值为0.(2)p q ∧真值为1;()r p q →∧真值为1;p ⌝真值为0;所以(())r p q p →∧↔⌝真值为0.(4)p q r ∧∧⌝真值为1,p q ⌝∨⌝真值为0,()p q r ⌝∨⌝→真值为1;所以()(())p q r p q r ∧∧⌝↔⌝∨⌝→真值为1.19、用真值表判断下列公式的类型。

(4)()()p q q p →→⌝→⌝所以为重言式。

所以为可满足式。

P36:习题二3、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出其成真赋值。

(1)()p q q ⌝∧→ 解答:()(())(())()10p q q p q q p q q p q q ⌝∧→⇔⌝⌝∧∨⇔⌝⌝∨⌝∨⇔⌝⌝∨⌝∨⇔⌝⇔所以为永假式。

(2)(())()p p q p r →∨∨→ 解答:(())()(())()()()1()1p p q p r p p q p r p p q p r p r →∨∨→⇔⌝∨∨∨⌝∨⇔⌝∨∨∨⌝∨⇔∨⌝∨⇔ 所以因为永真式。

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。

(2)设A,B都是命题公式,A B,则A B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

" 可符号化为: p q 。

(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。

(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。

”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。

(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。

(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。

(12)设P:你努力.Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。

(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。

()2.命题公式p q r是析取范式。

( √ )3.陈述句“x + y > 5”是命题。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学课后习题答案

离散数学课后习题答案

1-1,1-2(1) 解:a) 是命题,真值为T。

b) 不是命题。

c) 是命题,真值要根据具体情况确定。

d) 不是命题。

e) 是命题,真值为T。

f) 是命题,真值为T。

g) 是命题,真值为F。

h) 不是命题。

i) 不是命题。

(2) 解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a) 设P:王强身体很好。

Q:王强成绩很好。

P∧Qb) 设P:小李看书。

Q:小李听音乐。

P∧Qc) 设P:气候很好。

Q:气候很热。

P∨Qd) 设P: a和b是偶数。

Q:a+b是偶数。

P→Qe) 设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

PQf) 设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a) P:天气炎热。

Q:正在下雨。

P∧Qb) P:天气炎热。

R:湿度较低。

P∧Rc) R:天正在下雨。

S:湿度很高。

R∨Sd) A:刘英上山。

B:李进上山。

A∧Be) M:老王是革新者。

N:小李是革新者。

M∨Nf) L:你看电影。

M:我看电影。

┓L→┓Mg) P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh) P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。

离散数学章练习题及答案

离散数学章练习题及答案

离散数学章练习题及答案离散数学练习题第⼀章⼀.填空1. 公式(p q) ( p q )的成真赋值为01 ;102. 设p, r 为真命题,q, s 为假命题,则复合命题(p q) ( r s) 的真值为03. 公式(p q)与(p q) (p q )共同的成真赋值为01;104. 设A为任意的公式,B为重⾔式,则A B 的类型为重⾔式5.设p, q 均为命题,在不能同时为真条件下,p与q的排斥也可以写成p与q的相容或。

⼆.将下列命题符合化1. 7 不是⽆理数是不对的。

解:( p) ,其中p: 7 是⽆理数;或p,其中p: 7 是⽆理数。

2. ⼩刘既不怕吃苦,⼜很爱钻研。

解:p q, 其中 p: ⼩刘怕吃苦,q:⼩刘很爱钻研3. 只有不怕困难,才能战胜困难。

解:q p ,其中p: 怕困难,q: 战胜困难或p q ,其中p: 怕困难,q: 战胜困难4. 只要别⼈有困难,⽼王就帮助别⼈,除⾮困难解决了。

解:r (p q),其中p: 别⼈有困难,q: ⽼王帮助别⼈,r: 困难解决了或:( r p) q ,其中p: 别⼈有困难,q: ⽼王帮助别⼈,r: 困难解决了5. 整数n是整数当且仅当n 能被2 整除。

解:p q,其中p: 整数n是偶数,q: 整数n能被2整除三、求复合命题的真值P:2能整除5,q :旧⾦⼭是美国的⾸都,r :在中国⼀年分四季1. ((p q) r) (r (p q))2. (( q p) (r p)) (( p q) r解:p, q 为假命题,r 为真命题1. ((p q) r) (r (p q)) 的真值为02. (( q p) (r p)) (( p q) r 的真值为1四、判断推理是否正确设y 2x 为实数,推理如下:若y在x=0可导,则y在x=0连续。

y 在x=0连续,所以y在x=0可导。

解:y 2x,x为实数,令p: y在x=0可导,q: y 在x=0连续。

P为假命题,q为真命题,推理符号化为:(p q) q p,由p,q 得真值可知,推理的真值为0,所以推理不正确。

离散数学王元元习题解答 (5)

第二篇集合论第四章集合及其运算4.1 集合的基本概念内容提要4.1.1集合及其元素集合是一些确定的、作为整体识别的、互相区别的对象的总体。

组成集合的对象称为集合的成员或元素(member)。

通常用一对“{ }”把集合的元素括起来,表示一个集合。

元素对于集合的隶属关系是集合论的另一基本概念。

即当对象a是集合A的元素时,称元素a属于集合A,记为a∈A当对象a不是集合A的元素时,称a不属于A,记为⌝(a∈A)或a∉A对任何对象a和任何集合A,或者a∈A或者a∉A,两者恰居其一。

这正是集合对其元素的“确定性”要求。

定义4.1空集和只含有有限多个元素的集合称为有限集(finite sets),否则称为无限集(infinite sets)。

有限集合中元素的个数称为基数(cardina lit y)(无穷集合的基数概念将在以后重新严格定义)。

集合A的基数表示为|A|。

4.1.2 外延公理、概括公理和正规公理集合论依赖于三大基本原理:外延公理(extensionality axiom)、概括公理(comprehension axiom)和正规公理(regularity axiom)。

它们从根本上规定了集合概念的意义。

外延公理:两个集合A和B相等当且仅当它们具有相同的元素。

即对任意集合A,B,A=B ↔∀x(x∈A↔x∈B)外延公理事实上刻划了集合的下列特性:集合元素的“相异性”、“无序性”,及集合表示形式的不唯一性。

概括公理: 对任意个体域,任一谓词公式都确定一个以该域中的对象为元素的集合。

即对给定个体域U,对任意谓词公式P(x),存在集合S,使得S={x ⎢x∈U∧P(x)}概括公理规定了集合元素的确定性,以及集合的描述法表示的理论依据,它还规定了空集的存在性。

正规公理:不存在集合A1,A2, A3,…,使得…∈A3 ∈ A2 ∈A1正规公理的一个自然推论是:对任何集合A,{A}≠A(否则有…∈A∈A∈A)。

离散数学课后习题答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学练习(附答案)

选择答案在最后1. 11是( )的成假赋值.A.p q ∨B.p q ∨⌝C.p q ⌝∨⌝D.p q ∧2. 10是( )的成真赋值.A.p q ∧B.p q ∧⌝C.p q ⌝∧D.p q ⌝∧⌝3.下列语句中是命题的有( ).A.全体起立!B.我正在说谎.C.81x +>D.9能被2整除.E.月球上有外星人F.小王和小李是同学4.下面四组数能构成无向图的度数列的是( ).A.(1,1,1,1,1)B.(1,3,2,3,3)C.(9,3,3,2,2)D.(3,5,2,1,0)5.下列命题公式中与公式p q ⌝→等值的是( ).A.p q ∧ B.q p →⌝ C.p q ⌝↔ D.p q ∨ 6.设()F x :x 是人,()G x :x 爱吃零食,命题“没有不爱吃零食的人”符号化为( ). A.()()()x F x G x ∀∧ B. ()()()x F x G x ⌝∃→⌝ C. ()()()x F x G x ⌝∃∧ D. ()()()x F x G x ∀→7.下列逻辑联结词中,优先级最高的是( ).A.∨B. ⌝C.↔D.→8.设R 为实数集合,函数R R f →:,2()x f x e =则f 是( ) . A.单射而非满射B.满射而非单射C.双射D.既不是单射也不是满射. 9设R 为实数集合,函数R R f →:,()26f x x =-+则f 是( ) . A.单射而非满射B.满射而非单射C.双射D.既不是单射也不是满射.10.设集合A {,,}a b c =,下列A 上关系中有传递性的是( ).{}A.,b c <>{}B.,,,a c c a <><> {}C.,,,,,a b b a b b <><><> {}.,,,D a c c b <><>11. 设集合A {,}a b =,A 上一共有_16_个不同的二元关系,其中反自反关系有__4__个,等价关系有__2_个.4A A {<,>,<,>,<,>,<,>},A 2a a a b b a b b ⨯=的子集是上关系,子集有=16个 反自反中不能有〈a ,a 〉这种相等有序对等价关系看成划分,可以分成,{}{}{},a b 两种分法。

离散数学习题及答案

离散数学习题及答案一、选择题:1、下列命题正确的是( A )。

A .φ⋂{φ}=φB .φ⋃{φ}=φC .{a}∈{a ,b ,c}D .φ∈{a ,b ,c}2、设集合},{y x X =,则=)(x ρ( C )。

}}.,{},{},{{.}};,{},{},{,{.}};{},{,{.}};{},{{.y x y x D y x y x C y x B y x A φφ3、下列式子中正确的有( B )。

..};,{.};{.;0.φφφφφφ∈∈∈=D b a C B A4、某个集合的元数为10,可以构成( D )个子集。

A 、10B 、20C 、210D 、1025、下列命题正确的有( A )A 、}},{,,{},{b a b a b a ⊆B 、}},,{,,{},{c b a b a b a ∈C 、}}},{{,{},{b a a b a ⊆D 、}}},{{,,{},{b a b a b a ∈6、集合A={a ,b ,c},A 上的关系R={(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(c ,c )},则R 具有关系的( B )性质。

A 、自反性B 、对称性C 、反对称性D 、传递性7、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。

A .单射而非满射B .满射而非单射C .双射D .既不是单射,也不是满射8、下列语句中,( C )是命题。

A .下午有会吗?B .这朵花多好看呀!C .2是常数。

D .请把门关上。

9、一个公式在等价意义下,下面哪个写法是唯一的( C )。

A .析取范式B .合取范式C .主析取范式D .以上答案都不对10、通过约束变元的换名规则,可以将 ∀x(P(x)→R(x, y))∧Q(x, y) 改写为( C )A 、∀x(P(x)→R(u, y)∧Q(x, y)B 、∀x(P(y)→R(y, y)∧Q(x, y)C 、∀z(P(z)→R(z, y))∧Q(x, y)D 、∀z(P(z)→R(z, y))∧Q(z, y)11、∃x(P(x)∨(∀y)R(y))→Q(x)中∃x 的辖域是( C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第九章 特 殊 图 9.1 二分图 内容提要 9.1.1 二分图的基本概念 定义9.1 无向图G = 称为二分图(bipartite graph),如果有非空集合X,Y使X∪Y = V,X∩Y = ,且对每一eE,(e) = (x, y),xX,yY。此时常用表示二分图G。若对X中任一x及Y中任一y恰有一边eE,使(e) = (x, y), 则称G为完全二分图(complete bipartite graph)。当X = m,Y = n时,完全二分图G记为Km,n。 定理9.1 无向图G为二分图的充分必要条件是,G至少有两个顶点,且其所有回路的长度均为偶数。

9.1.2 匹配 定义9.2 设G = 为二分图,ME。称M为G的一个匹配(matching),如果M中任何两条边都没有公共端点。G的所有匹配中边数最多的匹配称为最大匹配(maximal matching)。如果X(Y)中任一顶点均为匹配M中边的端点,那么称M为X(Y)-完全匹配(perfect matching)。若M既是X-完全匹配又是Y-完全匹配,则称M为G的完全匹配。 定义9.3 设G = ,M为G的一个匹配。 (1)M中边的端点称为M-顶点,其它顶点称为非M-顶点。 (2)G中vk到vl的通路P称为交替链,如果P的起点vk和终点vl为非M-顶点,而其边的序列中非匹配边与匹配边交替出现(从而首尾两边必为非匹配边,除顶点vk,vl以外各顶点均为M-顶点)。特别地,当一边(v, v')两端点均为非M-顶点,通路(v, v')亦称为交替链。 以下算法可把G中任一匹配M扩充为最大匹配,此算法是Edmonds于1965年提出的,被称为匈牙利算法,其步骤如下: (1)首先用(*)标记X中所有的非M-顶点,然后交替进行步骤(2),(3)。 (2)选取一个刚标记(用(*)或在步骤(3)中用(yi)标记)过的X中顶点,例如顶点xi,然后用(xi)去标记Y中顶点y,如果xi与y为同一非匹配边的两端点,且在本步骤中y尚未被标记过。重复步骤(2),直至对刚标记过的X中顶点全部完成一遍上述过程。 (3)选取一个刚标记(在步骤(2)中用(xi)标记)过的Y中结点,例如yi,用(yi)去标记X中结点x,如果yi与x为同一匹配边的两端点,且在本步骤中x尚未被标记过。重复步骤(3),直至对刚标记过的Y中结点全部完成一遍上述过程。 (2),(3)交替执行,直到下述情况之一出现为止: (Ⅰ)标记到一个Y中顶点y,它不是M-顶点。这时从y出发循标记回溯,直到(*)标记的X中顶点x,我们求得一条交替链。设其长度为2k+1,显然其中k条是匹配边,k+1条是非匹配边。 (Ⅱ)步骤(2)或(3)找不到可标记结点,而又不是情况(Ⅰ)。 (4) 当 (2),(3)步骤中断于情况(Ⅰ),则将交替链中非匹配边改为匹配边,原匹配边改为非匹配边(从而得到一个比原匹配多一条边的新匹配),回到步骤(1),同时消除一切现有标记。 (5)对一切可能,(2)和(3)步骤均中断于情况(Ⅱ),或步骤(1)无可标记结点,算法终止(算法找不到交替链)。 2

定理9.2 设图G = 。G有X-完全匹配的充分必要条件是:对每一SX有 N(S)≥ S 

习题解答 练习9.1 1、判别下列各图(图9.8)是否为二分图,是否为完全二分图。

图9.8 解 (1)是二分图,但不是完全二分图。

(2)是完全二分图。 (3)不是二分图。 2、假定G是二分图。如何安排G中顶点的次序可使G的邻接矩阵呈(C00B)形,其中B,C为矩阵,0为零矩阵。 解 因为 G是二分图,故可把G中所有顶点分为X、Y两个集合,使得 e(eE→(e)=(x, y)∧xX∧yY)

只要按顺序先排X中的顶点,再排Y中的顶点,就可形成(C00B)形的邻接矩阵 3、六名间谍a,b,c,d,e,f被我捕获,他们分别懂得的语言是{汉语,法语,日语},{德语,日语,俄语},{英语,法语},{汉语,西班牙语},{英语,德语},{俄语,西班牙语},问至少用几个房间监禁他们,才能使同一房间的人不能互相直接对话。 解 如下图所示,顶点表示间谍,边表示间谍间能够直接对话

由于此图是二分图,因此只需要两个房间,分别监禁{a, e, f}和{b, c, d},就可包证同一房间的人不能互相直接对话。

4、设(n, m)图G为二分图,证明m≤42n。 证 由于(n, m)图G是简单二分图,因此可将G中顶点分为X、Y两个集合,G中任一边均关联X、Y的各一个顶点,且 |X| ≥ 1, |Y| ≥ 1,|X| + |Y| = n

aef

bcd 3

设 |X| = n1,则 |Y| = n-n1,那么边数m满足 m ≤ |X|•|Y| = 22)21(4)1(1nnnnnn≤ 42n

故 m≤42n 5、作一个二分图G = ,使它恰有4!个X-完全匹配 。 解 如下图所示,完全二分图K4, 4共有4!个X-完全匹配(Y-完全匹配)

6、用匈牙利算法求图9.9中二分图的最大匹配。 图9.9 解 (1)置M=,对x1~x6标记(*) (2)找到交替链(x1, y3),置M={(x1, y3)} (3)找到交替链(x2, y1),置M={(x1, y3),(x2, y1)} (4)找到交替链(x3, y2),置M={(x1, y3),(x2, y1),(x3, y2)} (5)找到交替链(x5, y4),置M={(x1, y3),(x2, y1),(x3, y2),(x5, y4)} (6)找不到新的交替链,算法终止。匹配 M={(x1, y3),(x2, y1),(x3, y2),(x5, y4)} 即为最大匹配,如下图所示

7、某单位有7个岗位空缺,它们是p1,p2,…,p7 。应聘的10人m1,m2,…,m10所适合的岗位分别是{p1,p5,p6},{p2,p6,p7},{p3,p4},{p1,p5},{p6,p7},{p3},{p2, p3},

x1x2x3x4y1y2y3y4x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

x1 x2 y1 y2 y3 y4 y5 y6 x3 x4 x5 x6 4

{p1,p3},{p1},{p5}。如何聘用可使落聘者最少。 解 求落聘者最少的聘用方案,即为求下图的最大匹配。

由于 M={(p1, m9), (p2, m2), (p3, m6), (p4, m3), (p5, m4), (p6, m1), (p7,m5)} 为P-完全匹配,因此M即为最大匹配,取M作聘用方案可使落聘者最少(4人)。

8、有六位未婚女子L1,L2,L3,L4,L5,L6和六位未婚男子G1,G2,G3,G4,G5,G6相互结识。六位女子L1—L6分别对下列集合中的男子中意: L1:{G1,G2,G4},L2:{G3,G5},L3:{G1,G2,G4}, L4:{G2,G5,G6}, L5:{G3,G6},L6:{G2,G5,G6} 而六位男子G1—G6则分别对下列集合中的女子钟情; G1:{L1,L3,L6},G2:{L2,L4,L6},G3:{L2,L5}, G4:{L1,L3}, G5:{L2,L6}, G6: {L3,L4,L5} 问,如何配偶能使双方满意的夫妻最多。 解 分别用顶点和边表示未婚男女和互相满意关系,如下图所示

图中存在完全匹配 M={(L1, G1), (L2, G3), (L3, G4), (L4, G2), (L5, G6), (L6, G5)}。 所以,按照M配偶,可以使得所有的夫妻都互相满意。

9、简单无向图G为二分图当且仅当G是可2-着色的。 证 先证充分性(当G可2-着色时G是二分图)。 不妨设G的顶点分别着了红白二色,用X表示红色顶点集合,Y表示白色顶点集合,则X∪Y=V,X∩Y=,且G中任一条边的两个端点必分属X、Y两个集合(分别着不同颜色)。所以,G满足二分图的定义,即G是一二分图。 再证必要性(当G是二分图时G可二着色)。 因为G是二分图,所以可将G中的顶点分成两个集合X和Y,使得X∪Y=V,X∩Y=,且G中任一条边的两个端点分属X、Y两个集合。现将X中所有顶点着一色,Y中所有顶点着另一色,则所有边的两个端点都着上了不同颜色,即G是可二着色的。 命题得证。

p1p2p3p4p5p6p7m1m2m3m4m5m6m7m8

m9

m10

L1L2L3L4L5L6G1G2G3G4G5G6 5

9.2 平面图 内容提要 9.2.1 平面图的基本概念 定义9.4 无向图G称为平面图(planar graph),如果G可以在一个平面上图示出来,而使各边仅在顶点处相交。否则称G为非平面图。 定义9.5 平面连通图中各边所界定的区域称为平面图的面(regions)。有界的区域称为有界面,无界的区域称为无界面。界定各面的闭的拟路径称为面的边界(boundary),它的长度称为面的度(degree)。 定义9.6 称平面简单图G是极大平面图(maximal planar graph),如果在G中添加任一边(它不是环,也不是其他边的平行边)后所得的图均非平面图。 定理9.3 极大平面图所有有界面都是三度的面,无界面也是三度的。即所有面的边界均为K3 。 定理9.4 顶点个数n≥4的极大平面图中,顶点的最小度数不少于3 。

9.2.2 欧拉公式和库拉托夫斯基定理 定理9.5 设G为一平面连通图,n为其顶点数,m为其边数,r为其面数,那么 n – m + r = 2 定理9.6 如果平面连通图G的每个面的边界都具有长度l(l≥3),那么

m = 2)2(lnl 其中m为G的边数,n为G的顶点数。 定理9.7 设G为一平面连通简单图,其顶点数n≥3,其边数为m,那么 m ≤ 3n – 6 定理9.8 设G为一平面简单连通图,其顶点数n≥4,边数为m,且G不以K3为其子图,那么 m ≤ 2n – 4 定理9.9 顶点数n不少于4的平面连通简单图G,至少有一个顶点的度数不大于5。 定理9.10 (库拉托夫斯基定理)图G是平面图,当且仅当对G或G的子图作任何同胚运算后所得图均不以K5及K3,3为子图。

9.2.3 着色问题 定义9.7 对连通平面图G实施下列步骤所得到的图G*称为G的对偶图(dual of graph):

(1)在G的每一个面ri的内部作一个G*的顶点v*i。

(2)若G中面ri与ri有公共边界,那么过边界的每一边ek作关联v*i与v*j的一条边e*k。e*k与G*的其它边不相交。 (3)当ek为面ri的边界而非ri与其它面的公共边界时,作v*i的一条环与ek相交(且仅交于一处)。所作的环不与G*的边相交。 定义9.8 图G称为可k-着色的(k-chromatic),如果可用k种颜色给G的所有顶点着

相关文档
最新文档