离散数学_第9章_树与平面图
离散数学-图论-树

二叉树
• 定义:二元有序树称为二叉树.
– 每个顶点最多有两个子顶点,一般称为左子顶 点和右子顶点. – 类似地,称每个顶点的左子树和右子树. – 每个顶点的出度都是0或2,称为二叉正则树.
二叉树的性质
• 定理:设有二叉树T, (1)第i层最多有2i个顶点; (2)若T高度为h,则T最多有2h11个顶点,最 少有h个顶点; (3)树叶个数出度为2的顶点个数1.
1 2
Huffman树与最优编码
• 若以符号为树叶,符号概率为树叶的权,利 用通过Huffman算法得到的二叉树对符号 编码,则可以保证i pili最小. • 例:对1,1,2,3,5,6,7,8构造Huffman树.
7 3 2 1 1 5 6
8
编码:设 A, B, C, D 的频率(即权值)分别为 17%, 25%, 38%, 20%, 试设计哈夫曼编码(最佳前缀码/最优编码)。
最优编码
• 构成消息的各符号的使用频率是不一样 的,显然常用符号编码短一些,罕用符号编 码长一点,可以使传输的二进制位数最少. • 最优编码问题:给定符号集{a1,a2,...,am}, ai 的出现概率是pi,编码长度为li,要使i pili最 小.
例:如果需传送的电文为 ‘A B A C C D A’,它只用到四种字符, 用两位二进制编码便可分辨。假设 A, B, C, D 的编码分别为 00, 01,10,11,则上述电文便为 ‘00010010101100’(共 14 位), 译码员按两位进行分组译码,便可恢复原来的电文。 数据的最小冗余编码问题 在编码过程通常要考虑两个问题 译码的惟一性问题
5 1 5 6 6
U 1
1 5 6 1 5 5 4 6 5 4 5 5
2
离散数学sec9 树

实例
例5 求图的一棵最小生成树
避圈法
W(T)=38
21
实例
例5 求图的一棵最小生成树
Prim算法
W(T)=38
22
作业
第九章:3,6,8,10,11
第9章 树
• 无向树及其性质 • 生成树
1
无向树及其性质
• 无向树 • 无向树的性质
2
无向树的定义
无向树: 连通无回路的无向图 平凡树: 平凡图 森林: 每个连通分支都是树的非连通的无向图 树叶: 树中度数为1的顶点 分支点: 树中度数2的顶点
例如
(a)
(b)
3
无向树的性质
定理9.1 设G=<V,E>是n阶m条边的无向图, 下面 各命题是等价的: (1) G是树(连通无回路); (2) G中任意两个顶点之间存在惟一的路径; (4) G中无回路且m=n1; (3) G是连通的且m=n1; (6) G是连通的且G中任意一条边均为桥. (5) G中无回路, 但在任何两个不相邻的顶点之间 加一条边所得图中有惟一的一条初级回路.
在集合E中选取权值最小的边(u, v),其中u为集合Vnew中的元素, 而v则是V中没有加入Vnew的顶点(如果存在有多条满足前述条件即具 有相同权值的边,则可任意选取其中之一);
将v加入集合Vnew中,将(u, v)加入集合Enew中; 输出:使用集合Vnew和Enew来描述所得到的最小生成树。
{{a,f,g}, {e,b,f,g}, {c,b}, {d,g} }
17
基本割集与基本割集系统
• 求基本割集 设e为生成树T的树枝,Te为两棵小树T1与 T2,令Se ={e|eE(G)且e的两个端点分别属于 T1与T2},则Se为e对应的基本割集。
离散数学09 图

第九章 图9.1设},,,,{y x w v u V =,画出图),(E V G =,其中:(1))},(),,(),,(),,(),,{(y x y v w v x u v u E =(2))},(),,(),,(),,(),,{(y x y w x w w v v u E =再求各个顶点的度数。
解(1)见图9.1(a )。
其中顶点u 的度数是2,顶点v 的度数是3,顶点x 的度数是2,顶点y 的度数是2,顶点w 的度数是1。
图9.1 习题1图(2)见图9.1(b )。
其中顶点u 的度数是1,顶点v 的度数是2,顶点x 的度数是2,顶点y的度数是2,顶点w 的度数是3。
9.2 设G 是具有4个顶点的完全图。
(1)画出图G 。
(2)画出G 的所有互不同构的生成子图?解(1)如图9.2(1)所示。
图9.2(1) 习题2图(2) 如图9.6(2)所示﹒ ﹒ ﹒ ﹒ ﹒ ﹒图9.2(2) 习题2图9.3 一个无向简单图,如果同构于它的补图,则称这个图为自互补图。
(1)试画出五个顶点的自互补图。
(2)证明一个自互补图一定只有k 4或14+k 个顶点(k 为整数)。
解(1)(a) (b)图9.3 习题3图 (2)因为n 个顶点的无向完全图有)1(21-n n 条边,所以自互补图有)1(41-n n 条边,因此,k n 4=或14+k 。
9.4 画出两个不同构的简单无向图。
每一个图都仅有6个顶点,且每个顶点都均是3度,并指出这两个图为什么不同构。
解图9.4 习题9.4图9.5 证明任意两个同构的无向图,一定有一个同样的顶点度序列。
顶点度序列是一组按大小排列的正整数。
每一个数对应某一个顶点的度数。
证明两个同构的无向图,度数相同的顶点数目一定相同,这样才能够建立起顶点之间的一一对应关系,进而建立起边的对应关系。
所以,任意二个同构的无向图,一定有一个同样的顶点度序列。
9.6图9.6中所给的图(a )与图(b )是否同构?为什么?(a )(b ) 图9.6 习题6图 解左图9.2(a )中次数为4的点,与3个度数为1,一个度数为2的顶点相邻接,右图9.2(b )中度数为4的点,却与3个度数为1,一个度数为3的顶点相邻接。
离散数学课件_9 树与平面图

1.概念:有向树,根树,树叶,内点,分支
点,层数,树高,祖先,后代,父亲,儿子,
兄弟,有序树,m叉树,完全m叉树,根子树,
左子树,右子树,带权二叉树,最优二叉
树,前缀,前缀码,二元前缀码,二叉树遍
历等;
4
返回本章首页
2019/12/4
第三节 有向树与根树(2)
2.定理: 设T是一棵根树,r是T的树根,则 对于T的任一顶点v,存在唯一的有向路 从r到v;
3.算法:最优二叉树的Huffman算法;
4.前缀码问题:前缀码与二叉树的对应关 系;
5.二叉树的遍历:三种遍历方法,即先根遍 历,中根遍历,后根遍历法.
返回本章首页
5 2019/12/4
第四节 平面图
平面图是很多实际问题的模型. 例如在 集成电路的布线设计中就遇到了平面图 的问题.
1.基本概念:平面图,平面嵌入,面,无限 面(外部面),内部面,边界,次数等;
第九章 树与平面图
树是一类结构较为简单的图,是用途极 为广泛的离散数学模型,特别是二叉树, 它在计算机科学中用得最多.因此在学习 时应很好地掌握好诸如树的充要条件、 生成树、最优生成树、根树、树的各种 算法、及二叉树的访问次序等内容.平面 图是实际背景很强的一类图,能用本章 介绍的方法判断一个图是否为平面图.
2.基本非平面图:K3,3与K5; 3.平面图的欧拉公式; 4.平面图的判定:库拉图斯基定理.
返回本章首页
6 2019/12ቤተ መጻሕፍቲ ባይዱ4
本章小结
本章我们介绍树与平面图,但以介绍树 为主.给出树的定义及树的充要条件, 生成树、最优生成树及最优生成树的克 鲁斯卡尔算法,特别是二叉树,我们讨 论 了 二 叉 树 的 Huffman 算 法 、 前 缀 码 、 二叉树的遍历等问题.最后介绍了一类 实际背景很强的一类图——平面图.
离散数学 课件 PPT 精品课程 考研 大学课程 数学一 第九章 树

例 (2)为(1)的一棵生成树T,(3)为T的余树.
(1)
(2)
(3)
余树可能不连通,也可能含回路。
2019/1/30
11
定理9.3 任何连通图G至少存在一棵生成树. 推论1 设n阶无向连通图G有m条边,则 m≥n-1. 推论2 设n阶无向连通图G有m条边,T是G的生 成树,T'是T的余树,则T'中有m-n+1条边.
(1)
(2)
(3)
m=8,n=5
2019/1/30 12
a
d b
f
e
图中, 初级回路aed, bdf,cef.
c
这3个回路中每一 个回路都只含一条 弦,其余的边都是树 枝,这样的回路称为 基本回路.
2019/1/30
13
定义9.3 设T是n阶连通图G=<V,E>的一棵生成 树,G有n条边.设e1,e2· · · ,em-n+1为T的弦,设Cr是T 加弦er产生的G的回路,r=1,2,…m-n+1.称Cr为 对应于弦er的基本回路,称{C1,C2,· · · ,Cm-n+1}为 对应生成树T的基本回路系统.
连通分支数大于等于2,且每个连通分支均
平凡图称为平凡树. 设T=<V,E>为一棵无向树,v∈V,若d(v)=1,
则称v为T的树叶.若d(v)≥2,则称v为T的分 支点.
2019/1/30 3
例
(a)
(b)
(c )
图中(a),(b)为树,而(c)不是树, 但(c)为森林。
2019/1/30 4
T有5个树枝a, b, c, d, e, 因而有5个 基本割集:Sa={a,g,f } ; Sb={b,g,h } ; Sc={c,f,h } ; Sd={d,i,h } ; Se={e,f,i}. 基本割集系统为{Sa,Sb,Sc, Sd,Se}.
离散数学PPT课件 9平面图(ppt文档)

v1 v2 v7 v6 v10 v5
v8 v9
v3
v4
v1 v2 v7 v6 v10 v5
v8 v9
v3
v4
v1 v3 v8 v2v7 v6
v9 v10 v4
v5
本节要求掌握: 平面图的概念, 平面图的边界, 欧拉公式及其应用 平面图的判定.
面的边界中出现, 所以所有面的边界总数=2e, 所以有:
2e=(r个面边界总数)≥ 3r, 即2e≥3r 所以r≤
2 3
e
由欧拉公式: v-e+r=2
得
v-e+
2 3
e≥2
整理得 e≤3v-6
用此定理可以判定一个图不是平面图, 例如证明K5不是
平面图: K5中有v=5 e=10 3v-6=3×5-6=9 不满足e≤3v-6,
K5
e条边的连通简单平面图, 若v≥3, 则e≤3v-6.
证明:⑴ 当e=2 时, 因为G是简单连通图, 所以v=3, 显然有
2≤3×3-6 即e≤3v-6
⑵当e>2时, (通过计算每个面的边界来证明)
设G有r个面, 因为G是简单图, 所以每个面至少由三条边
围成, 所以r个面的总边界数≥3r, 另外由于每条边在两个
例如右图.就是
v1
可平面化的图. v2
v3
下面是两个
重要的非平面图: v4
v5
K5和K3,3
v1
v2
v3
v4
v5
1 3 5 2 4 6
a b
c
f e
d
v1
v2
v3
v4
离散数学-树

离散数学导论
. 树
1.2 生成树
➢定义9.10
图T称为无向图G的生成树(spanning tree), 如果T为G的生成子图且T为树。
✓定理9.17
任一连通图G都至少有一棵生成。
.. 树树
1.2 生成树
✓ 定理9.18
设G为连通无 向图,那么G的 任一回路与任一生 成树T的关于G的补 G – T ,至少有一 条公共边。
1.3 根树
➢ 定义9.15
每个结点都至多有两个儿子的根树称为 二元树(quasibinary tree)。类似地,每个结点都
至多有n个儿子的根树称为n元树。 对各分支结点 的诸儿子规定了次序(例如左兄右弟)的n 元树称
为n元有序树;若对各分支结点的已排序的诸儿子
规定了在图示中的位置(例如左、中、右),那么
弦组成G的一个割集,它被称为枝t-割集(t-cut set);
而每一条弦e与T中的通路构成一回路,它被称为弦e-回
路(e-circuit)。
. 树
1.2 生成树
✓ 定理9.20
在连通无向图G中,任一回路与任 一割集均有偶数条公共边。
. 树
1.2 生成树
✓ 定理9.21
设G为一连通无向图,T是G的生成树, S = {e1, e2, e3,…,ek}
✓ 定理9.19
设G为连通无 向图,那么G的任 一割集
与任一生成树至少
有一条公共边。
.. 树树
1.2 生成树
➢ 定义9.11
设T为图G的生成树,称T中的边为树枝(branch) 称G – T 中的边为弦(chord)。对每一树枝t,T–t分为
离散数学-第9章 图

例9.2.2 分析
分析 由于V中有5个结点,因此要用5个小圆圈 分别表示这5个结点,点的具体摆放位置可随意 放。而对E中的6条边,圆括号括起的结点对表示 无向边,直接用直线或曲线连接两个端点,尖括 号括起的结点对表示有向边,前一个是始点,后 一个始终点,用从始点指向终点的有向直线或曲 线连接。
ai
j
1 , 0 ,
若 ( vi,vj ) 否则
E
或
vi,vj
E
i,j 1,2,3, ,n
2023/11/27
例9.2.4
试写出下图所示图G的邻接矩阵。
分解析 若首结先点将排图序中为的v16v个2v结3v4点v5排v6,序则, v1 然其邻后接利矩用v1阵定v义2 9.v23.2写v4出其v5邻接v6矩阵。 初按结学vv点时21 0排可1 序先01标在上0矩01结阵1 点的000,行0若与1第01列i1前行01分前别的 v5 结在否则可邻点则vvvv标接到为6543 记矩第00011。A如阵jG列若下0001的前结:第11100的点0111i10000行结排第点序111100111j有为11100列边v11000元00111v相2素11100v连30111为v4,v15则,v6,
2023/11/27
例9.2.5
试写出下图所示图G的所有结点的邻接点、所有边
的邻接边,并指出所有的孤立结点和环。
v3
v4
v5
e4 e5 v2
e6 e1
e2 v6 e7
v1 e3
2023/11/27
例9.2.5 分析
根据定义9.2.4,如果两个结点间有边相连,那 么它们互为邻接点;如果两条边有公共结点,那 么它们互为邻接边。需要注意的是,只要当一个 结点处有环时,它才是自己的邻接点;由于一条 边有两个端点,在计算邻接边时要把这两个端点 都算上,例如e2和e4都是e1的邻接边。所有边都 是自己的邻接边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回本章首页
7 2019/8/26
返回本章首页
3 2019/8/26
第三节 有向树与根树(1)
有向树是有向图中结构最为简单的一类 图. 它是一种典型的非线性结构,在计 算机算法分析、数据结构等方面有广泛 的应用;在有向树中,根树最为重要, 我们主要考虑根树.
1.概念:有向树,根树,树叶,内点,分支点, 层数,树高,祖先,后代,父亲,儿子,兄弟, 有序树,m叉树,完全m叉树,根子树,左子 树,右子树,带权二叉树,最优二叉树,前 缀,前缀码,二元前缀码,二叉树遍历等;
返回本章首页
6 2019/8/26
本章小结
本章我们介绍树与平面图,但以介绍树 为主.给出树的定义及树的充要条件, 生成树、最优生成树及最优生成树的克 鲁斯卡尔算法,特别是二叉树,我们讨 论 了 二 叉 树 的 Huffman 算 法 、 前 缀 码 、 二叉树的遍历等问题.最后介绍了一类 实际背景很强的一类图——平面图.
返回本章首页
5 2019/8/26
第四节 平面图
平面图是很多实际问题的模型. 例如在 集成电路的布线设计中就遇到了平面图 的问题.
1.基本概念:平面图,平面嵌入,面,无限面 (外部面),内部面,边界,次数等;
2.基本非平面图:K3,3与K5; 3.平面图的欧拉公式; 4.平面图的判定:库拉图斯基定理.
返回本章首页
4 2019/8/26
第三节 有向树与根树(2)
2.定理: 设T是一棵根树,r是T的树根,则 对于T的任一顶点v,存在唯一的有向路 从r到v;
3.算法:最优二叉树的Huffman算法;
4.前缀码问题:前缀码与二叉树的对应关 系;
5.二叉树的遍历:三种遍历方法,即先根遍 历,中根遍历,后根遍历法.
返回首页
1 2019/8/26
第一节 树的概念
本节介绍树的一些最基本的概念与结论. 1.概念有:树,树叶,分支点(或内点),森林,
平凡树等 2.结论: 设G是n阶无向图,则下列条件等
价: (1)G是树;(2)G连通并且删去G的任一
边,所得之图都不连通;(3)对G中的 任 意 两 点 u,v(u≠v) , 恰 有 一 条 从 u 到 v 的简单路;(4)G不含回路,且G有n-1 条边;(5)G连通,且G有n-1条边.
第九章 树与平面图
树是一类结构较为简单的图,是用途极 为广泛的离散数学模型,特别是二叉树, 它在计算机科学中用得最多.因此在学习 时应很好地掌握好诸如树的充要条件、 生成树、最优生成树、根树、树的各种 算法、及二叉树的访问次序等内容.平面 图是实际背景很强的一类图,能用本章 介绍的方法判断一个图是否为平面图.
返回本章首页
2 2019/8/26
ห้องสมุดไป่ตู้
第二节 生成树与最优支撑树
本节讨论连通图的生成树与连通权图的 最优生成树(或称为最优支撑树).
1.基本概念:生成树,余树,树枝,最优(小) 生成树等;
2.定理:图G有生成树当且仅当G是连通的; 3.算法:(1)无向连通图可采用破坏回路与
不形成回路两种方法寻找生成树; (2)权图中求最优生成树的两种算法,即 克鲁斯卡尔算法与管梅谷的破圈法.