《离散数学》树-精
离散数学 第九章:树

课后作业:9.13
树的遍历:
行遍(周游)根树T : 对T 的每个顶点访问且仅访问一次. 行遍2元有序正则树的方式: ① 中序行遍法: 左子树、根、右子树 ② 前序行遍法: 根、左子树、右子树 ③ 后序行遍法: 左子树、右子树、根
例如, 对图所示根树按中序、前序、 后序行遍法访问结果分别为: b a (f d g) c e a b (c (d f g) e) b ((f g d) e c) a 带下划线的是(子)树根, 一对括号内是一棵子树
9.2
一、树的概念
根树及其应用
有向树: 基图为无向树的有向图 根树: 有一个顶点入度为0, 其余的入度均为1的 非平凡的有向树 树根: 有向树中入度为0的顶点 树叶: 有向树中入度为1, 出度为0的顶点 内点: 有向树中入度为1, 出度大于0的顶点 分支点: 树根与内点的总称(出度大于等于1) 顶点v的层数: 从树根到v的通路长度,记作l(v) 树高: 有向树中顶点的最大层数,记作h(T)
定义 设2元树T有t片树叶v1, v2, …, vt, 树叶的权分别
为w1, w2, …, wt, 称 W ( t ) wi l ( vi ) 为T的权, 记作
t i 1
W(T), 其中l(vi)是vi的层数. 在所有有t片树叶, 带权
w1, w2, …, wt 的 2元树中, 权最小的2元树称为最优
例9.1.3:
Ca=aef
b d e f c
Cb=bde
Cc=cdf
a
基本回路系统为:{Ca, Cb, Cc}= { aef , bde , cdf }
每条弦对应一个基本回路。是由该条弦和树枝构成的回路。
六:★基本割集与基本割集系统
定义: 设T是n阶连通图G的一棵生成树, e1, e2, …, en1为T的树枝,Si是G的只含 树枝ei, 其他边都是弦的割集, 称Si为 对应生成树T由树枝ei生成的基本割 集。(集合) i=1, 2, …, n1. 称{S1, S2, …, Sn1}为对应T的基 本割集系统.(集合的集合) (共有n-1条树枝,每条树枝有一个基本割集)
离散数学 图论-树

中序遍历(次序:左-根-右) 前序遍历(次序:根-左-右) 后序遍历(次序:左-右-根) b 中序遍历: c b e d g f a I k h j 前序遍历: a b c d e f g h i k j 后序遍历: c e g f d b k i j h a
例:给定二叉树,写出三种访问 结点的序列
是否为根树
(a) (no)
(b) (no)
(c) (yes)
从树根到T的任意顶点v的通 路(路径)长度称为v的层数。 v5的层数为 层。
层数最大顶点的层数称为树 高.将平凡树也称为根树。 右图中树高为( )。
v1
v2 v3
v4 v8v5Fra bibliotekv6v7 v10
v9
在根树中,由于各有向边的方向是一 致的,所以画根树时可以省去各边上的所 有箭头,并将树根画在最上方.
等长码:0-000;1-001;2-010;3-011;4-100; 5-101;6-110;7-111. 总权值: W2=3*100=300
4、二叉树的周游(遍历)
二叉树的周游:对于一棵二叉树的每一个结点都访问一次且 仅一次的操作 1)做一条绕行整个二叉树的行走路线(不能穿过树枝) 2)按行走路线经过结点的位臵(左边、下边、右边) 得到周游的方法有三种: 中序遍历(路线经过结点下边时访问结点) 访问的次序:左子树-根-右子树 前序遍历(路线经过结点左边时访问结点) 访问的次序:根-左子树-右子树 后序遍历(路线经过结点右边时访问结点) 访问的次序:左子树-右子树-根
2、根树中顶点的关系
定义:设T为一棵非平凡的根树, v2 ∀vi,vj∈V(T),若vi可达vj,则称vi为 vj的祖先,vj为vi的后代; v4 v5 若vi邻接到vj(即<vi,vj>∈E(T),称 vi为vj的父亲,而vj为vi的儿子 v8 若vj,vk的父亲相同,则称vj与vk是兄 弟
《离散数学》课件-第16章树

18
16.3 根树及其应用
19
定义(有向树)设D是有向图,如果D的基图是无向 树,则称D为有向树。
在有向树中最重要的是根树。 定义16.6(根树)一棵非平凡的有向树,如果恰有 一个顶点的入度为O,其余所有顶点的入度均为1,则称该 树为根树。 入度为0的顶点称为树根,入度为1出度为0的顶点称 为树叶,入度为1出度不为0的点称为内点,内点和树根统 称为分支点。 树根到一个顶点的有向通路的长度称为该顶点的层数。 层数最大顶点的层数称为树高。 平凡树也称为根树。
2
16.1 树及其性质
3
定义16.1(树和森林) 连通且无回路的无向图称为无向树,简称为树,常用
T表示树。 平凡图为树,称为平凡树。 非连通且每个连通分支是树的无向图称为森林。 T中度数为1的顶点(悬挂顶点)称为树叶,度数大于
1的顶点称为分支点。 称只有一个分支点,且分支点的度数为n-1的n(n≥3)
定义16.8(子树)设T为一棵根树,则其任一顶点v 及其后代导若将层数相同的顶点都 标定次序,则称T为有序树。
根据每个分支点的儿子数以及是否有序,可将根树 分成如下若干类:
定义(跟树分类)设T为一棵根树 (1)若T的每个分支点至多有r个儿子,则称T为r叉 树。又若r叉树是有序的,则称它为r叉有序树。 (2)若T的每个分支点恰好有r个儿子,则称T为r叉 正则树。又若r叉正则树是有序的,则称它为r叉正则有 序树。 (3)若T为r叉正则树,且每个树叶的层数均为树高, 则称T为r叉完全正则树。又若r叉完全正则树是有序的, 则称它为r叉完全正则有序树。
8
平均编码长度为:L = ∑ P( i )× l( i ) = 2.53bit i=1
《离散数学》树

6
例题
例2 已知无向树T有5片树叶, 2度与3度顶点各1个, 其余顶点 的度数均为4. 求T的阶数n, 并画出满足要求的所有非同构 的无向树. 解 设T的阶数为n, 则边数为n1, 4度顶点的个数为n7. 由握 手定理得 2m=2(n1)=51+21+31+4(n7) 解出n=8, 4度顶点为1个. T的度数列为1,1,1,1,1,2,3,4 有3棵非同构的无向树
27
如何依据给定的权求最优二元树?
Huffman算法:
给定实数w1, w2, …, wt,求以上 述实数为权的最优二元树 。
哈夫曼算法:给定树求最优树 1、给初始权集S={ w1, w2 ,..., wt };t个叶子vi带权 wi , i 1, 2,..., t 2、在S中找出两个权最小的数不妨记作w1,w2,用父结点v将两 个带权的儿子v1,v2连结起来,形成一个新的子树并把该子树 看作一个结点v,带权w1+w2。 3.置权集S:=(S-{w1,w2}∪{w1+w2} 4.检查S中是否只有一个元素? 是就停止,否则转入2
分支点: 树根与内点的总称 顶点v的层数: 从树根到v的通路长度 树高: 有向树中顶点的最大层数
19
根树(续)
根树的画法:树根放上方,省去所有有向边上的箭头 如右图所示 a是树根 b,e,f,h,i是树叶 c,d,g是内点 a,c,d,g是分支点 a为0层;1层有b,c; 2层有d,e,f; 3层有g,h; 4层有i. 树高为4
离散数学 树

离散数学树
离散数学中的树(Tree)是一种常见的图论结构,它是一种无向、连通且没有简单回路的无向图,或者是一个有向连通图,其中每个节点都只有唯一一个父节点(除了根节点)。
树形结构中的每一个节点都可以视为一个子树的根节点,因为它下面连接了若干个子节点,这样就形成了一棵向下生长的树状结构。
树形结构还有一个重要的特点就是它具有很好的递归性质,因为每个节点下面都可以再建立一棵子树,这样就可以逐层递归地构建出整棵树。
在离散数学中,树被广泛应用于算法设计、数据结构以及对计算机网络和信息系统进行建模等领域。
树的深度和广度优先遍历、树的一些基本性质(如高度、度、叶子节点等)以及树的遍历应用在图的搜索算法、排序、哈夫曼编码、抽象语法树等算法中都有广泛的应用。
离散数学课件 第七章 树trees

第7章树trees分类§7.1 树定义1:T是集合A上一个二元关系,T称为树tree,如果存在v0∈A,任意v∈A,v≠v0,到v0都有唯一一条路径,(v0, v0) T. T叫做根树,记做(T,v0)。
A中元素称为T的顶点vertex,T中元素称为边,v0称为根root。
定理1. 设(T,v0)是树,则(a)T中没有回路。
(b)只有一个根v0。
(c)任意v∈A,v≠v0,v有入度1,v0入度是0。
证明:定义2层次levelv0的层次为0,v0的子女offspring层次为1,v0是子女的父母parent。
v i的层次为k,v i的子女offspring层次为k +1,v i是子女的父母parent,T的最大层次称为高度height。
无子女的顶点叫叶leaf。
v i的子女叫同胞sibling,同胞如有长幼,从左到右,老大,老二,老三等,组成线性序,T称为有序树,ordered tree定理2. 设(T,v0)是根树,则(a)T反自反。
(b)T反对称。
(c)(a,b)∈T,(b,c)∈T ⇒ (a,c)∉T。
定义3:n-树:每个顶点至多n个子女。
二叉树:2-树。
完全n-树:每个非叶顶点恰有n个子女。
定义4A rooted binary tree is a rooted tree in which every node has at most two children.A full binary tree (sometimes proper binary tree or 2-tree) is a tree in whichevery node other than the leaves has two children.A perfect binary tree is a full binary tree in which all leaves are at the same depth or same level.[1] (This is ambiguously also called a complete binary tree.)A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.[2]An infinite complete binary tree is a tree with levels, where for each level d thenumber of existing nodes at level d is equal to 2d. The cardinal number of the set of all nodes is . The cardinal number of the setof all paths is .A balanced binary tree is a tree where the depth of all the sub-trees differs by at most 1.定理3. 设(T,v0)是根树,v∈T,则T(v)是T的子树,T(v)的根是v。
离散数学及其应用课件:树

树
图7-13 二叉树
树
例7.11 计算机中存储的文件目录,目录可以包含子目录
和文件。图7-14用多叉树表示一个文件系统。C表示根目录,
可以表示成根树,内点表示子目录,树叶表示文件或空目录。
树
图7-14 多叉树表示的文件系统
树
2.二叉树的遍历
定义7.10 对于一棵根树的每个结点都访问一次且仅一次
树
图7-16 给定单词二叉搜索树
树
7.2.3 最优二叉树及其应用
1.哈夫曼树
树
例7.14 计算图7-17所示带权二叉树的权值。
图7-17-带权二叉树
树
7.2.1 根树的概念
定义7.6 一个有向图D,如果略去有向边的方向所得的无
向图为一棵无向树,则称D为有向树。换句话说,若有向图的
基图是无向树,那么这个有向图为有向树。入度为0的顶点称
为树根(Root),入度为1且出度为0的顶点称为树叶;入度为1且
出度大于0的顶点称为内点。内点和树根统称为分支点。
有一种特殊结构的有向树叫根树。
图7-2 无向图
树
树
例7.2 设T 是一棵树,它有三个2度结点,两个3度结点,一
个4度结点,求T 的树叶数。
树
7.1.2 生成树的概念与性质
1.生成树的概念
定义7.2 设G=<V,E>是无向连通图,T 是G 的生成子图,并
且T 是树,则称T 是G的生成树(SpanningTree),记为TG 。
树
定理7.1 设G=<V,E>是n 阶无向图,G 中有m 条边,则下面
关于G 是树的命题是等价的:
(1)G 连通而不含回路;
(2)G 的每对顶点之间具有唯一的一条路径;
离散数学-树

离散数学导论
. 树
1.2 生成树
➢定义9.10
图T称为无向图G的生成树(spanning tree), 如果T为G的生成子图且T为树。
✓定理9.17
任一连通图G都至少有一棵生成。
.. 树树
1.2 生成树
✓ 定理9.18
设G为连通无 向图,那么G的 任一回路与任一生 成树T的关于G的补 G – T ,至少有一 条公共边。
1.3 根树
➢ 定义9.15
每个结点都至多有两个儿子的根树称为 二元树(quasibinary tree)。类似地,每个结点都
至多有n个儿子的根树称为n元树。 对各分支结点 的诸儿子规定了次序(例如左兄右弟)的n 元树称
为n元有序树;若对各分支结点的已排序的诸儿子
规定了在图示中的位置(例如左、中、右),那么
弦组成G的一个割集,它被称为枝t-割集(t-cut set);
而每一条弦e与T中的通路构成一回路,它被称为弦e-回
路(e-circuit)。
. 树
1.2 生成树
✓ 定理9.20
在连通无向图G中,任一回路与任 一割集均有偶数条公共边。
. 树
1.2 生成树
✓ 定理9.21
设G为一连通无向图,T是G的生成树, S = {e1, e2, e3,…,ek}
✓ 定理9.19
设G为连通无 向图,那么G的任 一割集
与任一生成树至少
有一条公共边。
.. 树树
1.2 生成树
➢ 定义9.11
设T为图G的生成树,称T中的边为树枝(branch) 称G – T 中的边为弦(chord)。对每一树枝t,T–t分为