离散数学 求生成树的个数
离散数学中的图的树与生成树的计数

在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
离散数学

(注)以上算法需假定图中每条边的权都不 相同.但事实上对图中有若干条边的权相同的情 形,只要将它们的权作微小的变动,使之各不相同, 即可使用这个算法.
例:见书本图9.4
又有计算最小生成树的实例:
1 11
6
3 2
9
7 8
10
4 5
红绿粉红紫黄
另有“破圈法”:删除边破坏回路,同时保持图的连 通性,直到没有回路为止。 a
注意,具有 n 个结点和恰有 n-1 条边的图未 必是树,但连通或无回路的是。 连通无圈完全刻划了树,这是树的一个特
性;树还有另外一个重要性质是:它以最少的
边使结点连通。
定理9.2 给定树T=<V,E>,若|V|≥2,则T中至 少存在两个悬挂结点(树叶)。
证明: 1)设T=<V,E>是树,|V|=v.因为T是连通图,viT 有deg(vi)≥1且由定理5-1.1有∑deg(vi)=2(|V|-1)=2v-2.
例:下图为根树,右边是左图省掉方向的代替图。
v1
v2 v3 v4 v2
v1
v3 v4
v5
v6
v7
v8 v9
v5
v6
v7
v8 v9
v10 v11 v12
v10
v11 v12
为表示结点间的关系,有时借用家族中的
术语。一棵根树可以看成一棵家族树。令u是有
根树中的分枝结点,若从u到v有一条边或,则 结点v称为结点u的“儿子”,或称u是v的“父 亲”;若从u到w有一条路,称u是w的“祖先”, 或称w是u的“子孙”或“后代”,同一个分枝
第九章 树
9.1 无向树及生成树
9.2 根树及其应用
离散数学中的生成树与生成树计数

离散数学是计算机科学中的重要学科,其中生成树是一个重要的概念。
在图论中,生成树是一棵树,它包含了图中的所有顶点,并且是由图边组成的无环连通子图。
生成树在图论中有着重要的应用,特别是在计算机网络、运筹学和电路设计等领域。
生成树的概念与基础就是组成它的边是有限的,并且连接图中的所有顶点,但没有形成圈回到起点。
生成树通常是用来描述一个系统的最小连接方式。
生成树可以应用于计算机网络的设计中,用于构建最小生成树算法,以便在网络中选择最小的数据传输路径。
此外,在运筹学中,生成树被用于求解最小生成树问题,即为一个加权图找到一棵包含所有顶点的生成树,使得树中边的权重之和最小。
在离散数学中,生成树计数是一个重要的研究分支。
生成树计数是指对给定图,计算其生成树的数目。
生成树计数的问题可以通过使用基于图论和组合数学的算法来解决。
通常,生成树计数的问题与相应图的特性和性质密切相关。
对于一个简单图来说,如果图中任意两点之间至少有一条边,那么该图一定存在生成树。
对于有 n 个顶点的连通图来说,它的生成树数量可以通过Cayley公式计算得到。
Cayley公式表明,一个有 n 个标号的顶点的完全图的生成树数量等于 n^(n-2)。
而对于非完全图,生成树的计数问题则较为困难。
在处理非完全图的生成树计数问题时,可以使用基于递归和动态规划的算法来解决。
一个常见的方法是使用Kirchhoff矩阵树定理,它将生成树计数的问题转化为计算矩阵的行列式的问题。
Kirchhoff矩阵树定理提供了一种计算给定图的生成树数目的有效算法,通过计算图的基尔霍夫矢量的一个特征值,可以得到图的生成树的数目。
另一个常见的方法是使用Prufer编码,它是一个用于描述无环连通图的序列。
通过Prufer编码,我们可以将计算生成树的问题转化为计数树的问题。
通过对无向图进行Prufer编码,我们可以计算出生成树的数目,并且可以根据生成树的数目来确定该无向图的种类和特征。
离散数学中的树和图的应用

离散数学是数学的一个分支,主要研究离散对象的性质和关系。
在离散数学中,树和图是两个重要的概念和工具。
它们不仅在数学中具有重要的地位,而且在计算机科学、电子工程、通信工程等领域中也有广泛的应用。
首先,让我们来了解一下树和图的定义。
在离散数学中,树是一种特殊的图。
树是由若干个节点组成的,其中一个节点被称为根节点,其他节点分布在根节点之下的若干层次中,并且每个节点最多有一个父节点。
除此之外,树的每个节点可以有零个或多个子节点。
树的一个重要特点是:任意两个节点之间有且仅有一条路径相连。
在离散数学中,图是由若干个节点和连接节点的边组成的。
图可以分为有向图和无向图。
有向图中的边是有方向的,无向图中的边没有方向。
图的节点可以表示实体,边可以表示实体之间的关系。
图的一个重要特点是:图中的节点和边可以有多个连接。
树和图有着广泛的应用。
在计算机科学中,树和图常常被用于数据结构和算法。
比如,树可以用来实现二叉搜索树、堆、二叉树等数据结构;图可以用来实现图算法,如最短路径算法、最小生成树算法、拓扑排序算法等。
树和图的应用还涉及到网络优化、模式识别、数据挖掘、人工智能等领域。
在电子工程中,树和图被用来描述和分析电路。
树可以用来表示电路的拓扑结构,图可以用来表示电路元件之间的连接关系。
树和图在电路分析和设计中起到了至关重要的作用。
比如,树可以用来分析电路的戴维南等效电路、回路等;图可以用来优化电路的布局和布线。
在通信工程中,树和图被用来表示通信网络和通信路径。
通信网络可以看作是由节点和连接节点的通信链路组成的图,而通信路径可以看作是图中的一条路径。
树和图在通信网络的规划、管理和优化中扮演重要的角色。
比如,树可以用来构建网络拓扑,图可以用来分析和优化通信路径。
总之,离散数学中的树和图是非常重要的概念和工具,并且在各个领域中有广泛的应用。
无论是计算机科学、电子工程还是通信工程,都离不开树和图的帮助。
因此,我们应该加强对树和图的学习和应用,以更好地解决实际问题。
离散数学 图论-树

中序遍历(次序:左-根-右) 前序遍历(次序:根-左-右) 后序遍历(次序:左-右-根) b 中序遍历: c b e d g f a I k h j 前序遍历: a b c d e f g h i k j 后序遍历: c e g f d b k i j h a
例:给定二叉树,写出三种访问 结点的序列
是否为根树
(a) (no)
(b) (no)
(c) (yes)
从树根到T的任意顶点v的通 路(路径)长度称为v的层数。 v5的层数为 层。
层数最大顶点的层数称为树 高.将平凡树也称为根树。 右图中树高为( )。
v1
v2 v3
v4 v8v5Fra bibliotekv6v7 v10
v9
在根树中,由于各有向边的方向是一 致的,所以画根树时可以省去各边上的所 有箭头,并将树根画在最上方.
等长码:0-000;1-001;2-010;3-011;4-100; 5-101;6-110;7-111. 总权值: W2=3*100=300
4、二叉树的周游(遍历)
二叉树的周游:对于一棵二叉树的每一个结点都访问一次且 仅一次的操作 1)做一条绕行整个二叉树的行走路线(不能穿过树枝) 2)按行走路线经过结点的位臵(左边、下边、右边) 得到周游的方法有三种: 中序遍历(路线经过结点下边时访问结点) 访问的次序:左子树-根-右子树 前序遍历(路线经过结点左边时访问结点) 访问的次序:根-左子树-右子树 后序遍历(路线经过结点右边时访问结点) 访问的次序:左子树-右子树-根
2、根树中顶点的关系
定义:设T为一棵非平凡的根树, v2 ∀vi,vj∈V(T),若vi可达vj,则称vi为 vj的祖先,vj为vi的后代; v4 v5 若vi邻接到vj(即<vi,vj>∈E(T),称 vi为vj的父亲,而vj为vi的儿子 v8 若vj,vk的父亲相同,则称vj与vk是兄 弟
第四部分图论练习题答案

《离散数学》第四部分---图论练习题答案一、选择或填空1、设G是一个哈密尔顿图,则G一定是( )。
(1) 欧拉图(2) 树(3) 平面图(4) 连通图答:(4)2、下面给出的集合中,哪一个是前缀码?( )(1) {0,10,110,101111} (2) {01,001,000,1}(3) {b,c,aa,ab,aba} (4) {1,11,101,001,0011}答:(2)3、一个图的哈密尔顿路是一条通过图中( )的路。
答:所有结点一次且恰好一次4、在有向图中,结点v的出度deg+(v)表示( ),入度deg-(v)表示( )。
答:以v为起点的边的条数,以v为终点的边的条数5、设G是一棵树,则G 的生成树有( )棵。
(1) 0 (2) 1 (3) 2 (4) 不能确定答:16、n阶无向完全图K n 的边数是( ),每个结点的度数是( )。
答:2)1(nn, n-17、一棵无向树的顶点数n与边数m关系是( )。
8、一个图的欧拉回路是一条通过图中( )的回路。
答:所有边一次且恰好一次9、有n个结点的树,其结点度数之和是( )。
答:2n-210、下面给出的集合中,哪一个不是前缀码( )。
(1) {a,ab,110,a1b11} (2) {01,001,000,1}(3) {1,2,00,01,0210} (4) {12,11,101,002,0011}答:(1)11、n个结点的有向完全图边数是( ),每个结点的度数是( )。
答:n(n-1),2n-212、一个无向图有生成树的充分必要条件是( )。
答:它是连通图13、设G是一棵树,n,m分别表示顶点数和边数,则(1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。
答:(3)14、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。
答:215、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。
《离散数学》练习题和参考答案

《离散数学》练习题和参考答案《离散数学》练习题和参考答案⼀、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪⼏个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,⾃由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )北京是中华⼈民共和国的⾸都。
(2) 陕西师⼤是⼀座⼯⼚。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三⾓形有4条边。
(5) 前进!(6) 给我⼀杯⽔吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在⼀些⼈是⼤学⽣”的否定是( ),⽽命题“所有的⼈都是要死的”的否定是( )。
答:所有⼈都不是⼤学⽣,有些⼈不会死7、设P:我⽣病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在⽣病时,我才不去学校 (2) 若我⽣病,则我不去学校(3) 当且仅当我⽣病时,我才不去学校(4) 若我不⽣病,则我⼀定去学校答:(1)PQ→(2)QP?→(3)QP?(4)QP→8、设个体域为整数集,则下列公式的意义是( )。
(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任⼀整数x存在整数 y满⾜x+y=0(2)存在整数y对任⼀整数x满⾜x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( ) (1) ⾃然数(2) 实数 (3) 复数(4) (1)--(3)均成⽴答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学7-树

(b)
(a)
V5
2
1
V7
8
9
V2
V4
2
3
V8
5
V1
V1
V4
V5
1
3
V7
V6
8
V4
2
V8
5
6
V1
1
V5
6
V7
V6
8
3
V8
5
6
V7
9
V3
(e)
V3
(f)
(g)
22
V2
V3
(h)
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
23
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
成圈。
首先证明T无简单回路。对n作归纳证明。
(i) n=1时,m=n-1=0,显然无简单回路;
(ii)假设顶点数为n-1时无简单回路,现考察顶点数是n的情况:此时至少有一
个顶点v其次数d(v)=1。因为若n个顶点的次数都大于等于2,则不少于n条边,但这与
m=n-1矛盾。
删去v及其关联边得到新图T’,根据归纳假设T’无简单回路,再加回v及其关联
边又得到图T,则T也无简单回路。
再由图的连通性可知,加入任何一边后就会形成圈,且只有一个圈,否则原图
中会含圈。
9
二. 基本定理——证明
证明(4):(3)(4),即证一个无圈图若加入任一边就形成圈,
则该图连通,且其任何一边都是桥。
若图不连通,则存在两个顶点vi和vj,在vi和vj之间没有路,若
加边(vi,vj)不会产生简单回路,但这与假设矛盾。由于T无简单回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在离散数学中,生成树(Spanning Tree)是一个图(Graph)的子图,它包含图中的所有顶点,并且是一个树(Tree)。
生成树的一个重要性质是它不包含任何环(Cycle)。
求一个给定图的生成树个数是一个经典问题,通常使用矩阵树定理(Matrix Tree Theorem)来解决。
矩阵树定理给出了一个图的生成树个数的计算公式,它基于图的拉普拉斯矩阵(Laplacian Matrix)的行列式。
拉普拉斯矩阵是一个方阵,其大小为图的顶点数,矩阵的元素定义如下:
•如果i和j是不同的顶点,则矩阵的第i行第j列的元素是顶点i和j之间的边的权重(如果存在边的话),否则是0。
•对于每个顶点i,矩阵的第i行第i列的元素是顶点i的度(即与顶点i相邻的边的数量)的负值。
矩阵树定理指出,图的生成树个数等于其拉普拉斯矩阵的任何一个n-1阶主子式的行列式值的绝对值。
n是图的顶点数,n-1阶主子式意味着去掉矩阵中的一行和一列后得到的矩阵。
下面是一个简单的例子,说明如何使用矩阵树定理计算生成树的个数:
假设有一个包含4个顶点的简单图,其边和权重如下:
A -- 2 -- B
| |
1 3 1
| |
C -- 4 -- D
1 -3 1 0
0 1 -3 4
0 0 1 -4
主子式的行列式值。
去掉第一行和第一列后,我们得到:
1 0
1 -3 4
0 1 -4
x3矩阵的行列式,我们得到:
1 * 1) - (0 * 0) = 1
2 - 1 = 11
过程可能涉及复杂的行列式计算,特别是对于大型图来说。
在实际应用中,通常会使用专门的数学软件或库(如Python中的NumPy或SciPy)来进行这些计算。
此外,还有一些算法(如Kruskal算法和Prim算法)可以用来构造生成树,但它们并不直接计算生成树的总数。
这些算法通常用于找到图的一个生成树,而不是计算所有可能的生成树的数量。