离散数学(双语) - 第九章答案(高辉)

合集下载

离散数学(刘任任版)第9章答案

离散数学(刘任任版)第9章答案

d
abcdea = c 1 ,Q c1 = 5(奇数) ∴至少要用3种颜色
由对称性可考虑 3种色的任一种方案, 如图.于是联结内外两 个回路的五条边(af , bg , ch, di, ej )也就随之确定了它们的颜 色, 如图。从而必有if着α色, 而fg不能着α、β和γ .故只有着 颜色δ .
2011-5-27 10
p2 k ≥ 2 p − 2q
2
2011-5-27
2. 证明: χ ( K 1 ) = 1 ,且 χ ( K 1 − v ) = 0 < 1 。故 K 1 是 1 临 (1) 界图。反之 , 设 G 是 1临界图 , 若 | V ( G ) |> 1,则 G 是零图。 但 χ ( G − V ) = χ ( G ) = 1, 即 G 不是临界图,故 从而 | V ( G ) |= 1,故 G = K 1 ( 2 ) χ ( K 2 ) = 2,且 χ ( K 2 − v ) = 1 < χ ( K 2 ). 故 K 2 是 2临界图 .。 反之,设 G 是 2临界图,即 χ ( G ) = 2。于是可划分 成两个极大独立集 V 1 和 V 2 ( 二分图 )。若 | V 1 |> 1,则任 | V 2 |= 1。 取 u ∈ V ,有 χ ( G − u ) = 2 = χ ( G )。此与 G 是 2临界图矛盾, 故 | V 1 |= 1。同理可证 设 V 1 = {u }, V 2 = { v },显然 uv ∈ E ( G ),故 G = K 2。
2011-5-27 14
= t (t − 3t + 2)(t − 4t + 5)
2 2
= (t 5 − 3t 2 + 2t )(t 2 − 4t + 5) = t − 4t + 5t − 3t + 12t − 15t + 2t − 8t + 10t

离散数学--第九章--作业答案

离散数学--第九章--作业答案

习题9 1-71、答、运算表如下表所示:2、答、(1),;,;,;,(2)、运算标如下表:3、答、(1)可以,(2)不可以4、答、(1)封闭(2)不封闭(3)加法、乘法都封闭(4)加法不封闭,乘法封闭(5)不封闭(6)加法、乘法都封闭(7)封闭(8)加法不封闭,乘法封闭(9)加法不封闭,乘法封闭(10)加法不封闭,乘法封闭5、答、(1)没有交换律、结合律,对于一个运算不能考虑分配率(3)加法满足交换律、结合律,乘法满足结合律,乘法对加法满足分配率(4)乘法满足结合律(6)加法和乘法都满足交换律、结合律,乘法对加法满足分配率(7)满足结合律(8)乘法满足交换律、结合律(9)乘法满足交换律、结合律(10)乘法满足交换律、结合律6、答、(1)没有单位元、零元,没有可逆元素(3)n阶全0矩阵是加法单位元,也是乘法的零元;n阶单位矩阵是乘法单位元;加法没有零元。

任意n阶矩阵M对于加法都是可逆元素,其逆元为-M;只有n阶可你矩阵(行列式不为0)对乘法是可逆元素,其逆元为(4)乘法单位元为n阶单位矩阵,没有零元。

每个矩阵M都是逆元(6)加法单位元0,没有零元,每个元素x都可逆,其逆元是它的相反数-x,当n=1时,乘法有单位元1,只有两个可逆元素:,。

当>时乘法没有单位元和可逆元素。

(7)没有单位元和零元,也没有可逆元素(8)乘法单位元为1,只有1是可逆元素,(9)乘法单位元为1,只有1是可逆元素,,乘法零元是0(10)乘法没有单位元、零元以及可逆元素7、答、(1)4*6=4,7*3=3(2)满足交换律、结合律、幂等律(3)没有单位元,1是零元,没有可逆元素。

离散数学习题答案解析

离散数学习题答案解析

离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。

离散数学答案 第九章 特殊代数系统

离散数学答案 第九章 特殊代数系统

第九章 特殊的代数系统习题9.11.解 ⑴是半群。

显然,二元运算“ ”在N 上是封闭的, 所以,>< ,N 是一个代数系统, 另一方面,,,,N c b a ∈∀有(){}{}c b a c b a c b a ,,max ,max == ,而(){}{}c b a c b a c b a ,,m ax ,m ax == ,因此,()()c b a c b a =,所以,运算“ ”满足结合律的,故>< ,N 是半群;⑵是半群。

显然,二元运算“ ”在N 上是封闭的, 所以,>< ,N 是一个代数系统, 另一方面,N c b a ∈∀,,,有()c c b c b a == ,而()c c a c b a == ,则()()c b a c b a =,所以,运算“ ”满足结合律,故><,N 是半群;⑶是半群。

显然,二元运算“ ”在N 上是封闭的, 所以,>< ,N 是一个代数系统, 另一方面,N c b a ∈∀,,,有()abc c ab c ab c b a 4)2(2)2(=== ,()()abc bc a bc a c b a 422)2(=== ,即()()c b a c b a = ,所以,运算“ ”满足结合律,故>< ,N 是半群。

⑷不是半群。

虽然,二元运算“ ”在N 上是封闭的,即>< ,N 是一个代数系统,但是 对于5,3,6,因为,()4635635635=--=-= ,而2635635)63(5=--=-= ,即())63(5635 ≠,所以,运算“ ”不满足结合律,故>< ,N 不是半群。

2.解 ⑴正确。

因为,运算显然封闭。

⑵正确。

abc bc ac ab c b a c ab b a c b a ++++++=++= )()(, bc ac ab c b a bc c b a c b a +++++=++=)()( ,即是()()c b a c b a =,所以︒满足结合律。

离散数学课后答案

离散数学课后答案

离散数学课后答案1. 集合论1.1. 集合的基本概念•问题1:什么是集合?如何表示一个集合?集合是由一些确定的元素构成的整体。

可以使用以下方式表示一个集合:–列举法:将集合的所有元素逐一列举出来,并用大括号{}包括起来。

–描述法:使用一种公式或条件来描述集合中的元素的特点,并用大括号{}包括起来。

–空集:不包含任何元素的集合,用符号∅表示。

•问题2:集合的关系有哪些?集合的关系有以下几种:–包含关系(⊆):集合A的所有元素都属于集合B,则称集合A是集合B的子集,表示为A⊆B。

–真包含关系(⊂):集合A是集合B的子集,且A≠B,则称集合A是集合B的真子集,表示为A⊂B。

–并集(∪):将两个集合中的所有元素合并在一起,去除重复元素。

–交集(∩):将两个集合中共有的元素提取出来。

–差集(-):从一个集合中去掉与另一个集合中相同的元素。

–互斥关系:两个集合没有共同的元素,即交集为空集。

1.2. 集合的运算•问题1:集合的运算有哪些?集合的运算有以下几种:–并集运算(∪):将两个集合中的所有元素合并在一起,去除重复元素。

–交集运算(∩):将两个集合中共有的元素提取出来。

–差集运算(-):从一个集合中去掉与另一个集合中相同的元素。

–补集运算(C):对于给定的全集U,集合A 在U中的补集就是U中除去集合A中的所有元素所构成的集合,表示为A’。

–笛卡尔积(×):将两个集合的元素按照有序对的形式进行组合,构成一个新的集合。

•问题2:集合运算的性质有哪些?集合运算的性质有以下几种:–交换律:A∪B = B∪A,A∩B = B∩A。

–结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。

–分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C)。

–吸收律:A∪(A∩B) = A,A∩(A∪B) = A。

–互补律:A∪A’ = U,A∩A’ = ∅。

离散数学第四版课后答案(第9章)

离散数学第四版课后答案(第9章)

第9章 习题解答9.1 有5片树叶.分析 设T 有x 个1度顶点(即树叶).则T 的顶点数Tx x n ,523+=++=的边数.41x n m +=-=由握手定理得方程.∑=+=⋅+⨯+⨯==+=ni ix x vd x m 1.1312233)()4(22由方程解出.5=x所求无向树T 的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T 中有5个3度顶点.分析 设T 中有x 个3度顶点,则T 中的顶点数,7x n +=边数x n m +=-=61,由握手定理得方程.∑=+==+=ni ix v d x m 173)(2122由方程解出x=5.所求无向树T 的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T 中有5个3度顶点.要析 设T 中有x 个3度顶点,则T 中的顶点数x n +=7,边数x n m +=-=61,由握手定理得方程.∑=+==+=ni ix v d x m 173)(2122.由此解出5=x ,即T 中有5个3度顶.T 的度数列为1,1,1,1,1,1,1,3,3,3,3,3.由于T 中只有树叶和3度顶点,因而3度顶点可依次相邻,见图9.7所示. 还有一棵与它非同构的树,请读者自己画出.9.3 加1-k 条新边才能使所得图为无向树.分析 设具有k 个连通分支的森林为G,则G 有k 个连通分支i K T T TT ,,,21全为树,.,,2,1k i =加新边不能在i T 内部加,否则必产生回路.因而必须在不同的小树之间加新边. 每加一条新边后,所得到的森林就减少一个连通分支. 恰好加1-k 条新边,就使得图连通且无回路,因而是树.在加边过程中,只需注意,不在同一人连通分支中加边. 下面给出一种加边方法,取iv 为iT 中顶点,加新边1,,2,1),(1-=+k i vv i i,则所得图为树,见图9.8 给出的一个特例.图中虚线边为新加的边.9.4 不一定.分析 n 阶无向树T 具有1-n 条边,这是无向树T 的必要条件,但不是充公条件.例如, 阶圈(即1-n 个顶点的初级回路)和一个孤立点组成无向简单图具有1-n 条边, 但它显然不是树.9.5 非同构的无向树共有2棵,如图 9.9所示.分析由度数列1,1,1,1,2,2,4不难看出,唯一的4度顶点必须与2度顶点相邻,它与1个2度顶点相邻,还是与两个2度顶点都相邻,所得树是非同构的,再没有其他情况.因而是两棵非同构的树.9.6 有两棵非同构的生成树,见图9.10所示.分析图9.10 是5阶图(5个顶点的图), 5阶非同构的无向树只有3棵,理由如下. 5阶无向树中,顶点数5=n,边数4=m,各顶点度数之和为8,度数分配方案有3种,分别为①1,1,1,1,4;②1,1,1,2,3;③1,1,2,2.2.每种方案只有一棵非同构的树.图9.10所示的5阶图的非同构的生成树的度数列不能超出以上3种,也就是说,它至多有3棵非同构的生成树, 但由于图中无4度顶点,所示,不可能有度数列为①的生成树,于是该图最多有两棵非同构的生成树. 但在图9.10 中已经找出了两个非同构的生成树,其中(1)的度数列为③,(2) 的度数列为②,因而该图准确地有两棵非同构的生成树.9.7 基本回路为: .,,,hfab C gfa C ead C cbad C h g e c====基本回路系统为}.,,,{h g e cC C C C基本割集为:},,{},,{},,,{},,,,,{h g f Sc ed S h c b S h g ce a S fd b a ====基本回路系统为},,,{f d b aS S S S.分析 1°注意基本回路用边的序列表示,而基本割集用边的集合表示.2° 基本回路中,只含一条弦,其余的边全为树枝,其求法是这样的: 设弦),(j iv ve =,则jiv v,在生成树T 中,且在T 中,ji v v ,之间存在唯一的路径ji ,Γ与),(j iv ve =组成的回路为G 中对应弦e 的基本回路.3° 基本割集中,只含一条树枝,其余的边都是弦,其求法是这样的:设树枝),(j iv ve =,则e 为T 中桥,于是eT-(将e 从T中支掉),产生两棵小树1T 和2T ,则}|{21'''中和的两端点分别在中且在T T e G e e S e =e S 为树枝e 对应的基本割集. 显然ee S S e ,∈中另外的边全是弦. 注意,两棵小树1T 和2T ,中很可能有平凡的树(一个顶点).aT -得两棵小树如图9.11中(1) 所示. G 中一个端点在i T 中,另一个端点在2T 中的边为a(树枝), h g c e ,,,,它们全是弦,于是},,,,{h g c e a Sa=bT - 得两棵小树如图9.11中(2) 所示, 其中有一棵为平凡树. G 中一个端点在1T 中,另一个端点在2T 中的边数除树枝b 外,还有弦,,h c 所以, },,{h c b Sb=dT -产生的两棵小树如图9.11中(3) 所示 . G 中一个端点在1T 中,另中一个端点在2T 中的边,除树枝d 外,还有两条弦e c ,,所示, },,{e c d Sd=fT -产生的两棵小树如图9.11中(4) 所示. 由它产生的基本割集为},,{h g f Sf=9.8 按Kruskal 求最小生成树的算法,求出的图9.3(1)的最小生成树T 为图9.12中(1) 所示, 其7)(=T W .(2) 的最小生成树T 为图9.12中(2)所示,其.11)(=T W9.9 421,,B B B为前缀码.分析 在421,,B B B中任何符号串都不是另外符号串的前串,因而它们都是前缀码.而在3B 中, 1是11,101的前缀,因而3B不是前缀码. 在5B 中,,a 是ac aa ,等的前缀,因而5B 也不是前缀码.9.10 由图9.4 (1) 给出的2元前缀码.}11,011,01010,0100,00{1=B由(2) 给出的3元前缀码为.}.2,1,022,0202,0201,0200,01,00{2=B分析 1B 是2元树产生的2元前缀码(因为码中的符号串由两个符号0,1组成),类似地,2B 是由3元树产生的3元前缀码(因为码中符号串由3个符号0,1,2组成).一般地,由r 元树产生r 元前缀码.9.11 (1) 算式的表达式为ji h g f e d c b a *)*()()*)*((((++÷-+.由于使其成为因而可以省去一些括号优先于,,,*,-+÷ji h g f e d c b a **)()*)*((++÷-+.(2) 算式的波兰符号法表达式为.****hij fg bcde a ++-÷+(3) 算式的逆波兰符号法表达式为.****+÷+-+jI hi fg e d abc9.12 答案 A:①; B ②; C:④; D:⑨.分析 对于每种情况都先求出非同构的无向树,然后求出每棵非同构的无向树派生出来的所有非同构的根树.图9.13 中,(1),(2),(3),(4)分别画出了2阶,3阶,4阶,5阶所有非同构的无向树,分别为1棵,1棵,2棵和3棵无向树.2阶无向树只有1棵,它有两个1度顶点,见图9.13中(1)所示,以1个顶点为树根,1个顶点为树叶,得到1棵根树.3阶非同的无向树也只有1棵,见图9.13中(2)所示.它有两个1度顶点,1个2度顶点,以1度顶点为根的根树与以2度顶点为根的树显然是非同构的根树,所以2个阶非同构的根树有两棵.4阶非同构的无向树有两棵,见图9.13中(3)所示. 第一棵树有3片树叶,1个3度顶点, 以树叶为根的根树与以3度顶点为根的树非同构.所以,由第一棵树能生成两个非同构的根树, 见图9.14 中(1)所示. 第二棵树有两片树叶,两个2度顶点,由对称性,以树叶为根的根树与2度顶点为根的根树非同构,见图9.14中(2) 所示. 所以,4阶非同构的根树有4棵.5阶非同构的无向树有3棵,见图9.13中(4)所示. 由第一棵能派生两棵非同构的根树, 由第二棵能派生4棵非同构的根树,由第三棵能派生3棵非同构的根树,所以,5阶非同构的根树共有9棵,请读者将它们都画出来.9.13 答案 A:②; B:②; C:③; D:③; E:③;F:④; G: ④; H:③.分析 将所有频率都乘100,所得结果按从小到大顺序排列:.35,20,15,10,10,5,5=======a b c d e f g w w w w w w w以以上各数为权,用Huffman 算法求一棵最优树,见图9.15所示.对照各个权可知各字母的前缀码如下:a ——10,b ——01,c ——111,d ——110,e ——001,f ——0001,g ——0000.于是,a,b 的码长为e d c ,,,2的码长为g f ,,3的码长为4. W(T)=255(各分支点的权之和),W(T)是传输100按给定频率出现的字母所用的二进制数字,因则传输104个按上述频率出现的字母要用25500⨯个二进制数字..24=1055最后还应指出一点,在画最优树叶, 由于顶点位置的不同,所得缀码可能不同,即有些字母的码子在不同的最优树中可能不同,但一般说来码长不改变.特别是,不同的最优树,它们的权是固定不变的.9.14 答案 A:②; B:④分析用2元有序正则树表示算式,树叶表示参加运算的数,分支点上放运算符,并将被减数(被除数)放在左子树上,所得2元树如图9.16所示.用前序行遍法访问此树,得波兰符号表示法为abc-++de-*.**ghf用后序行遍法访问此树,得逆波兰符号表示法为dec*fghab--++**。

大学_《离散数学》课后习题答案

大学_《离散数学》课后习题答案

《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。

教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。

《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。

离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。

离散数学的应用遍及现代科学技术的诸多领域。

离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。

离散数学第九章图的道路与连通习题答案

离散数学第九章图的道路与连通习题答案

P PT=
abcdefg a 1111000 b 1111000 c 1111000 d 1111000 e 0000100 f 0000011 g 0000011
a
b
g
e
d
c
f
所以强分图有:
{a,b,c,d},{e},{f,g}
2021/4/9
10
感谢您的阅读收藏,谢谢!
2021/4/9
11
m=n(n-1)/4,一个图为自补图的最低条件可设为结 点数须为4k或4k+1。 例如:当k=1时:
2021/4/9
5
习题十 10
判别图中两图是否同构,并说明理由。
解:
两图不同构。因为如果同构,两图中唯一的3度结点 应对应,但左图3度点的邻接结点度数分布是2,1, 1,而右图的为2,2,1,不对应。
a 0101000
b 0010100
解:
c 1100100
邻接矩阵A= d 0 0 1 0 0 0 0
e 0000000
f 0000101
g 0000110
abcdefg
a 1111100 b 1111100 c 1111100
可达矩阵P= d 1 1 1 1 1 0 0
e 0000000 f 0000111 g 0000111
Cn2 。 其次,当G是完全图时,每对结点间都有一条边,
即m =Cn2 , 反之亦然。
2021/4/9
Байду номын сангаас
1
证明:在不少于2人的一群人中,至少有2个人这群人中有相 同数目的朋友。
证明:
可转化为图论问题,以人为结点,如果2人是朋友关系,就 对应的2个结点之间连一条边。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.1:P595
Ex2: a) Simple graph b) Multigraph c) Pseudograph
Ex20:Team four beat the vertices to which there are edges from team four, namely only team three. The other teams —team one, team two, team five and team six —all beat team four.
9.2:P608
Ex4 For the graph in exercise 1 the sum is 12, there are 6 edges; For the pseudograph in exercise 2, the sum is 26, there are 13 edges; For the pseudograph in exercise 3, the sum is 24, there are 12 edges;
Ex8: in this directed multigraph there are 4 vertices and 8 edges. The degrees are deg -(a)=2,deg +(a)=2; deg -(b)=3,deg +(b)=4; deg -(c)=2,deg +(c)=1; deg -(d)=1,deg +(d)=1;
Ex20 f) We take two copies of Q3 and joining corresponding vertices.
Ex22: This graph is bipartite, with bipartition {a,c} and {b,d,e}
9.3:P618
Ex2: the list is as follows
Vertex adjacent vertices
a b,d
b a,d,e
c d,e
d a,b,c
e b,c
Ex8
0101010111011001
000100101⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
Ex16: Because of the numbers larger than 1, we need multiple edges in this graph.
Ex36: These graphs are not isomorphic. The second has a vertex of degree 4, whereas the first
9.4:P629
Ex2: a) a path of length 4; b) a path of length 4; c) not a path; d) not a path
Ex12 b) Notice that the sequence a,b,c,d,e,f,a provides a path from every vertex to every other vertex , so this graph is strongly connected.
Ex20: The two graphs are isomorphic: u1↔v2, u2↔v1, u3↔v3, u4↔v4, u5↔v8, u6↔v7, u7↔v5,u8↔v6.
Ex24(a) to find the number of paths of length 2, we need to look at A 2, which is
3121221413222130311
30312223141221213⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
Since the (3,4)th entry is 0, so there are no paths of length 2.
9.5:P643
Ex4: The graph has no Euler circuit, since the degree of vertex c is odd. There is an Euler path between the two vertices of odd degree. One such path is f,a,b,c,d,e,f,b,d,a,e,c
Ex30:
This graph can have no Hamilton circuit because of the cut edge {c,f}.
9.6:P655
Ex2: the length of a shortest path is 7.
Ex12: In theory, we can use Dijkstra ’s algorithm.
a) the path through Chicago is the fastest.
b) The path via New York is the cheapest.
c) The path via Denver (or the path Via Los Angeles) is the fastest.
d) The path via Dallas( or the path via Chicago) is the fastest.
Ex14:Here we simply assign the weight of 1 to each edge.
9.7:P665
Ex5: This is K 3,3,with parts {a,d,f} and {b,c,e}, therefore it is not planar.
Ex20: this graph is not homeomorphic to K 3,3, since by rerouting the edge between a and h we see that it is planar.
Ex8: Since there is a triangle, at least 3 colors are needed. The coloring in which b and c are blue, a and f are red, and d and e are green shows that 3 colors suffice.。

相关文档
最新文档