高三数学一轮复习课时作业6:5.1 平面向量的概念及线性运算

合集下载

2021-2022年高考数学一轮复习专题5.1平面向量的概念及线性运算讲(I)

2021-2022年高考数学一轮复习专题5.1平面向量的概念及线性运算讲(I)

2021年高考数学一轮复习专题5.1平面向量的概念及线性运算讲(I)【考纲解读】【知识清单】1.向量的概念1.向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.2.零向量:长度等于0的向量,其方向是任意的.3.单位向量:长度等于1个单位的向量.4.平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.5.相等向量:长度相等且方向相同的向量.6.相反向量:长度相等且方向相反的向量.对点练习:给出下列命题:①两个具有公共终点的向量,一定是共线向量.②两个向量不能比较大小,但它们的模能比较大小.③ (为实数),则必为零.其中错误的命题的个数为( )A.1 B.2C.3 D.0【答案】故选.2.平面向量的线性运算一.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:;(2)结合律:减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则二.向量的数乘运算及其几何意义1.定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0.2.运算律:设λ,μ是两个实数,则:①;②;③.对点练习:【xx高考新课标1】设为所在平面内一点,则()A. B.C. D. 【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==,故选A. 3.共线向量共线向量定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 对点练习:设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向. 【答案】(1)证明见解析;(2)k =1.又∵λ>0,∴k =1.【考点深度剖析】平面向量的概念及线性运算,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查共线等问题;也易同解析几何知识相结合,以工具的形式出现.【重点难点突破】考点1 向量的有关概念 【1-1】给出下列命题:①两个具有共同终点的向量,一定是共线向量;②若是不共线的四点,则=是四边形为平行四边形的充要条件;③若a与b同向,且|a|>|b|,则a>b;④λ,μ为实数,若λa=μb,则a与b共线.其中假命题的个数为( )A.1 B.2C.3 D.4【答案】【解析】①不正确.当起点不在同一直线上时,虽然终点相同,但向量不共线.②正确.∵=,∴||=||且∥.又∵是不共线的四点,∴四边形是平行四边形.反之,若四边形是平行四边形,则且与方向相同,因此=.③不正确.两向量不能比较大小.④不正确.当时,a与b可以为任意向量,满足λa=μb,但a与b不一定共线.选.【领悟技法】(1)两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点.(2)零向量和单位向量是两个特殊的向量.它们的模确定,但方向不确定..(3)几个重要结论①向量相等具有传递性,非零向量的平行具有传递性;②向量可以平移,平移后的向量与原向量是相等向量.【触类旁通】【变式一】给出下列命题:①的充要条件是且;②若向量与同向,且,则;③由于零向量的方向不确定,故零向量不与任意向量平行;④若向量与向量平行,则向量与的方向相同或相反;⑤起点不同,但方向相同且模相等的几个向量是相等向量;⑥任一向量与它的相反向量不相等.其中真命题的序号是________.【答案】⑤考点2 平面向量的线性运算【2-1】如图,正方形中,点是的中点,点 是的一个三等分点,那么等于( )A .B .C .D . 【答案】D 【解析】11123223AB AD AD AB AB AD ⎛⎫⎛⎫=+-+=- ⎪ ⎪⎝⎭⎝⎭,故选D.【领悟技法】1.常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.2.找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. 【触类旁通】【变式一】平行四边形OADB 的对角线交点为C ,BM →=BC →,CN →=CD →,OA →=a ,OB →=b ,用a 、b 表示OM →、ON →、MN →.【答案】=a+b,a+b,=a-b.【解析】=a-b,==a-b,=a+b,=a+b,=+==a+b,=a-b.考点3 共线向量【3-1】在△ABC中,已知D是AB边上一点,若=,=+λ,则λ等于( )A. B. C.-D.-【答案】【解析】∵=+,=+,∴=+++.【领悟技法】共线向量定理应用时的注意点(1)向量共线的充要条件中要注意“a≠0”,否则λ可能不存在,也可能有无数个.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.【触类旁通】【变式一】已知是△ABC所在平面内的一点,若,其中λ∈R,则点一定在( )A.△ABC的内部 B.AC边所在直线上C.AB边所在直线上 D.BC边所在直线上【答案】【解析】由得,∴.则为共线向量,又有一个公共点三点共线,即点在直线上.故选.【易错试题常警惕】易错典例:下列四个命题:①若|a|=0,则a=0;②若|a|=|b|,则a=b或a=-b;③若a∥b,则a与b同向或反向;④若a=0,则-a=0.其中正确命题的序号为________.易错分析:概念理解不清致误.答案:④温馨提醒:(1)易忽略与0的区别,把零向量误写成0而致误.(2)易将向量与数量混淆而致误,如|a|=|b|误推出a=±b等.(3)忽视向量为零向量的特殊情况而致误.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。

2020年高考数学(文)一轮复习专题5.1 平面向量的概念及线性运算(讲)(原卷版)

2020年高考数学(文)一轮复习专题5.1 平面向量的概念及线性运算(讲)(原卷版)

专题5.1平面向量的概念及线性运算1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义。

知识点一向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.知识点二向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ;(2)结合律:(a +b)+c =a +(b +c)减法求a 与b 的相反向量-b 的和的运算叫做a与b 的差三角形法则a -b =a +(-b)数乘求实数λ与向量a 的积的|λa|=|λ||a|,当λ>0时,λa 的方向与a 的方向相同;当λ<0λ(μa)=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b)=λa +λb运算时,λa 的方向与a 的方向相反;当λ=0时,λa =0知识点三共线向量定理向量a(a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa.,向量概念的4点注意(1)注意0与0的区别,0是一个实数,0是一个向量,且|0|=0.(2)单位向量有无数个,它们的模相等,但方向不一定相同.(3)零向量和单位向量是两个特殊的向量,它们的模是确定的,但是方向不确定,因此在解题时要注意它们的特殊性.比如:命题“若a ∥b ,b ∥c ,则a ∥c”是假命题,因为当b 为零向量时,a ,c 可为任意向量,两者不一定平行.(4)任一组平行向量都可以平移到同一直线上.【特别提醒】向量线性运算的提醒(1)两个向量的和仍然是一个向量.(2)利用三角形法则时,两向量要首尾相连,利用平行四边形法则时,两向量要有相同的起点.(3)当两个向量共线时,三角形法则仍然适用,而平行四边形法则不适用.考点一平面向量的概念【典例1】(四川省绵阳第一中学2018-2019学年期末)给出下列四个命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b .其中正确命题的序号是()A.②③ B.①② C.③④ D.②④【方法技巧】对于向量的有关概念应注意以下几点:(1)平行向量就是共线向量,二者是等价的,它们均与起点无关;非零向量的平行具有传递性;相等向量一定是平行向量,而平行向量未必是相等向量;相等向量具有传递性.(2)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负数,可以比较大小.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的平移混为一谈.(4)非零向量a 与a |a |的关系:a |a |是与a 同方向的单位向量.【变式1】(河北省深州市第一中学2018-2019学年期中)如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是()A.AD →=BC→ B.AC →=BD →C.PE →=PF→ D.EP →=PF →考点二向量的线性运算【典例2】(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=()A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→D .14AB ―→+34AC ―→【方法技巧】向量的线性运算,即用几个已知向量表示某个向量,基本技巧为:一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.【变式2】(广东省惠州第一中学2018-2019学年质检)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A.a -12b B.12a -b C.a +12b D.12a +b 考点三根据向量线性运算求参数【典例3】(河南省洛阳第一中学2018-2019学年期中)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于()A.1B.34 C.23 D.12【方法技巧】解决此类问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.【变式3】(湖北省襄阳第四中学2018-2019学年模拟)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.考点四共线向量定理的应用【典例4】(吉林延边二中2018-2019学年模拟)设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.【方法技巧】1.证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.2.向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立.【变式4】(湖南雅礼中学2018-2019学年期中)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为()A.{0}B.∅C.{-1}D.{0,-1}。

高考数学大一轮复习 第五章 平面向量、复数 5.1 平面向量的概念及线性运算教案(含解析)

高考数学大一轮复习 第五章 平面向量、复数 5.1 平面向量的概念及线性运算教案(含解析)

第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。

(新课标)高考数学一轮复习 5.1平面向量的概念及其线性运算名师课件

(新课标)高考数学一轮复习 5.1平面向量的概念及其线性运算名师课件

uuur
= AB.
uuur DC
(3)正确.∵a=b,∴a、b的长度相等且方向相同.
∵b=c,∴b、c的长度相等且方向相同. ∴a、c的长度相等且方向相同,∴a=c.
(4)不正确.当a∥b,但方向相反时,即使|a|=|b|,也不能得到a=b,故 |aaP不|b| b |, 是a=b的充要条件.
(2)∵ uBuDu=r
uB+uCur =Cu2uDaur-b,又A、B、D三点共线,∴存在常数λ,使
=λ uAu,Bur即
uuur BD
2 ∴2λp,=-1.

p

λ,
(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的 区别与联系,当两向量共线且有公共点时,才能得出三点共线. (2)向量a,b共线是指存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立,若λ1a+λ2b= 0当且仅当λ1=λ2=0时成立,则向量a,b不共线.
(1)若|a|=|b|,则a=b;
(2)若A、B、C、D是不共线的四点,则
uuur
AB=
uD是uCur四边形ABCD为平行四边
形的充要条件;
(3)若a=b,b=c,则a=c;
(4)两向量a、b相等的充要条件是|a|=|b|且a∥b;
(5)如果a∥b,b∥c,那么a∥c.
解析 (1)不正确.两个向量的模相等,但它们的方向不一定相同,因此由|a|
2
(1)进行向量线性运算时,要尽可能地将其转化到三角形或平行四边形中,充 分利用相等向量,相反向量,三角形中位线的性质及相似三角形对应边的性 质等,把未知向量用已知向量表示出来. (2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移 项、合并同类项、提取公因式等变形手段在向量的线性运算中同样适用.

高三理数一轮复习 第五章 5.1 平面向量的概念及线性运算

高三理数一轮复习 第五章 5.1 平面向量的概念及线性运算

向量相等,则它们的起点相同,终点相同;④a=b的充要条件是|a|=|b|,
且(1)aA∥b(.2)②
关闭
其中正确题的序号是
.
答案
-15-
考点1
考点2
考点3
解析:(1)若a+b=0,则a=-b,所以a∥b. 若a∥b,则a+b=0不一定成立,故前者是后者的充分不必要条件.
(2)①不正确.两个向量的长度相等,方向可以是任意的.
.
注:限定a≠0的目的是保证实数λ的存在性和唯一性.
(2)变形形式:已知直线l上三点A,B,P,O为直线l外任一点,有
且只有一个实数 λ,使得������������=(1-λ)������������+λ������������.
-9-
知识梳理 双基自测
1234
4.两个结论
(1)P
为线段
AB
的中点⇔������������
= a+(b+c) 平行四边形法则
-7-
知识梳理 双基自测
1234
向量运算 定 义
法则(或几何意义) 运 算 律
减法
求 a 与 b 的相反
向量-b 的和的
运算叫做 a 与 b
的差
三角形法则
a-b=a+(-b)
数乘
(1)|λa|= |λ||a| ;
(2)当 λ>0 时,λa 的方
求实数 λ 与向量 a 的积的运算
(1)× (2)√ (3)× (4)× (5)×
关闭
答案
-11-
知识梳理 双基自测
1234
2.设非零向量a,b满足|a+b|=|a-b|,则( )
A.a⊥b

高考数学大一轮复习 5.1 平面向量的概念及线性运算、

高考数学大一轮复习 5.1 平面向量的概念及线性运算、
则|a|= (2)2 22 =2 2 .故选C. 答案 C
方法技巧
方法1 平面向量的线性运算技巧
1.解题的关键在于弄清构成三角形三个向量间的相互关系,能熟练地找 出图形中的相等向量,能熟练地运用相反向量将加减法相互转化. 2.用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位 置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果. 3.适当选择基底是解题关键.
考向突破
考向 平面向量的坐标表示与运算 例 已知点C(1,-1)、D(2,x),若向量a=(x,2)与 CD 的方向相反,则|a|= ( )
A.1 B.2 C.2 2 D. 2 解析 由C(1,-1)、D(2,x),

得 CD =(1,x+1),

∵向量a=(x,2)与 CD 的方向相反,
∴ x 11 = 2x ,解得x=1(舍去)或x=-2.
考向基础
考点清单
考点一 平面向量的基本概念与线性运算
1.向量的有关概念及表示法
名称
定义
表示法
向量
既有大小又有方向的量叫向量;向量的大小叫 向量: AB
做向量的长度(或模)
模:① |A B |
零向量 单位向量 平行向量 共线向量 相等向量 相反向量
长度为0的向量叫零向量;其方向是任意的 长度等于1个单位的向量 方向相同或相反的非零向量 平行向量又叫做共线向量 长度相等且方向相同的向量 长度相等且方向相反的向量

又M为BC的中点,∴ AP
= 1 λ(a+b).
2







又 AP = AB + BP = AB +μ BN = AB+μ( AN - AB)

高三理数一轮讲义:5.1-平面向量的概念及线性运算

第1节平面向量的概念及线性运算最新考纲 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . [微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地, 一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP→=12(OA →+OB →). 基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)零向量与任意向量平行.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( )(3)向量AB→与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( )(4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( )2.(必修4P78A6改编)给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( )A.①B.③C.①③D.①②3.(必修4P92A12改编)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( ) A.OM →B.2OM →C.3OM →D.4OM →OC→=c ,4.(2019·东莞调研)如图所示,已知AC →=3BC →,OA →=a ,OB →=b ,则下列等式中成立的是( ) A.c =32b -12a B.c =2b -a C.c =2a -bD.c =32a -12b5.(2018·长沙检测)若四边形ABCD 满足AD→=12BC →且|AB →|=|DC →|,则四边形ABCD 的形状是( ) A.等腰梯形 B.矩形 C.正方形D.菱形6.(2019·西安调研)设a 与b 是两个不共线向量,且向量a +λb 与-(b -2a )共线,则λ=________.考点一 平面向量的概念【例1】 (1)设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( ) A.a =2b B.a ∥b C.a =-13bD.a ⊥b(2)给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( ) A.②③ B.①②C.③④D.②④规律方法 对于向量的有关概念应注意以下几点:(1)平行向量就是共线向量,二者是等价的,它们均与起点无关;非零向量的平行具有传递性;相等向量一定是平行向量,而平行向量未必是相等向量;相等向量具有传递性. (2)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负数,可以比较大小.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的平移混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.【训练1】 (1)如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是( ) A.AD →=BC → B.AC →=BD → C.PE→=PF →D.EP→=PF → (2)给出下列说法:①非零向量a 与b 同向是a =b 的必要不充分条件; ②若AB→与BC →共线,则A ,B ,C 三点在同一条直线上; ③a 与b 是非零向量,若a 与b 同向,则a 与-b 反向; ④设λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误说法的序号是________. 考点二 平面向量的线性运算 多维探究角度1 向量的线性运算【例2-1】 (2018·全国Ⅰ卷)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC → B.14AB →-34AC → C.34AB →+14AC →D.14AB →+34AC →角度2 利用向量线性运算求参数【例2-2】 (1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( ) A.1B.34C.23D.12(2)在锐角△ABC 中,CM→=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y =________.规律方法 1.解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.2.用几个基本向量表示某个向量问题的基本技巧:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【训练2】 (1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( ) A.a -12bB.12a -b C.a +12bD.12a +b(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 考点三 共线向量定理及其应用 【例3】 设两个非零向量a 与b 不共线.(1)若AB→=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.规律方法 1.证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.2.向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立.【训练3】 (1)已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( ) A.λ+μ=2 B.λ-μ=1 C.λμ=-1D.λμ=1(2)(一题多解)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( ) A.{0} B.∅ C.{-1}D.{0,-1}[思维升华]1.向量线性运算的三要素向量的线性运算满足三角形法则和平行四边形法则,向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.三个常用结论(1)O 为△ABC 的重心的充要条件是OA→+OB →+OC →=0; (2)四边形ABCD 中,E 为AD 的中点,F 为BC 的中点,则AB→+DC →=2EF →;(3)对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B共线⇔x +y =1.注意向量共线与三点共线的区别. [易错防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.基础巩固题组 (建议用时:35分钟)一、选择题1.已知下列各式:①AB→+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC→+BD →-CD →,其中结果为零向量的个数为( ) A.1 B.2 C.3 D.42.如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A.0B.BE→ C.AD→ D.CF→ 3.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a |D.|-λa |≥|λ|·a4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( )A.A ,B ,CB.A ,B ,DC.B ,C ,DD.A ,C ,D5.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.BC→ B.12AD → C.AD → D.12BC → 6.(2019·唐山二模)已知O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( ) A.-2B.-12C.- 2D. 27.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB→=mAM →,AC →=nAN →,则m +n 的值为( )A.1B.2C.3D.48.在△ABC 中,点D 在线段BC 的延长线上,且BC→=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫0,13 C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 二、填空题9.如图,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.10.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.11.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x +y =________. 12.(2018·清华大学自主招生能力测试)设O 在△ABC 的内部,D 为AB 的中点,且OA →+OB →+2OC→=0,则△ABC 的面积与△AOC 的面积的比值为________. 能力提升题组 (建议用时:15分钟)13.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则( ) A.点P 在线段AB 上B.点P 在线段AB 的反向延长线上C.点P 在线段AB 的延长线上D.点P 不在直线AB 上14.(2019·孝感二模)设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A.12AD → B.32AD →C.12AC →D.32AC →15.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.16.(2019·郑州模拟)设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e1-2k e 2,若A ,B ,D 三点共线,则k 的值为________.。

推荐-高三数学一轮复习课件5.1 平面向量的概念与线性运算

章 平面向量
5.1 平面向量的概念与线性运算
考情概览
-3-
考纲要求
1.了解向量的实际背景. 2.理解平面向量的概念和两个向量相 等的含义. 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解 其几何意义. 5.掌握向量数乘的运算,并理解其几何 意义,以及两个向量共线的含义. 6.了解向量的线性运算性质及其几何 意义.
反之,若四边形 ABCD 为平行四边形,则������B ∥ ������������且|������B|=|������������|,
因此,������B = ������������. ③不正确.相等向量的起点和终点可以都不同. ④不正确.当 a∥b 且方向相反时,即使|a|=|b|,也不能得到 a=b. 综上所述,真命题的序号是②.
所以������������
=
1 2
(������������
+
������B).
知识梳理
-11-
知识梳 理
双击自 测
12345
5.设在四边形 ABCD 中,有12 ������������ = ������������,且|������������|=|������������|,则这个四边 形是 等腰梯形 .
3a=c,2b=d,e=t(a+b),是否存在实数t使C,D,E三点在一条直线上?若
存在,求出实数t的值;若不存在,请说明理由.
解:由题设知,������������=d-c=2b-3a,������������=e-c=(t-3)a+tb,C,D,E 三点在一
条直线上的充要条件是存在实数 k,使得������������=k������������,即
(× )

2020年高考数学(理)一轮复习专题5.1 平面向量的概念及线性运算(讲)(原卷版)

专题5.1平面向量的概念及线性运算1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.知识点一向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量记作0,其方向是任意的单位向量长度等于1个单位的向量非零向量a 的单位向量为±a |a |平行向量方向相同或相反的非零向量(又叫做共线向量)0与任一向量平行或共线相等向量长度相等且方向相同的向量两向量只有相等或不相等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为知识点二向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ;(2)结合律:(a +b)+c =a +(b+c)减法求a 与b 的相反向量-b 的和的运算叫做a 与ba -b =a +(-b)的差三角形法则数乘求实数λ与向量a 的积的运算|λa|=|λ||a|,当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa)=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b)=λa +λb知识点三共线向量定理向量a(a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa.,向量概念的4点注意(1)注意0与0的区别,0是一个实数,0是一个向量,且|0|=0.(2)单位向量有无数个,它们的模相等,但方向不一定相同.(3)零向量和单位向量是两个特殊的向量,它们的模是确定的,但是方向不确定,因此在解题时要注意它们的特殊性.比如:命题“若a ∥b ,b ∥c ,则a ∥c”是假命题,因为当b 为零向量时,a ,c 可为任意向量,两者不一定平行.(4)任一组平行向量都可以平移到同一直线上.【特别提醒】向量线性运算的3点提醒(1)两个向量的和仍然是一个向量.(2)利用三角形法则时,两向量要首尾相连,利用平行四边形法则时,两向量要有相同的起点.(3)当两个向量共线时,三角形法则仍然适用,而平行四边形法则不适用.【拓展提升】共线向量定理的深解读定理中限定了a≠0,这是因为如果a =0,则λa =0,(1)当b≠0时,定理中的λ不存在;(2)当b =0时,定理中的λ不唯一.因此限定a≠0的目的是保证实数λ的存在性和唯一性.知识点四必备结论1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2―→+A 2A 3―→+A 3A 4―→+…+A n -1A n ―→=A 1A n ―→.特别地,一个封闭图形首尾连接而成的向量和为零向量.2.在△ABC 中,AD ,BE ,CF 分别为三角形三边上的中线,它们交于点G (如图所示),易知G 为△ABC 的重心,则有如下结论:(1)GA ―→+GB ―→+GC ―→=0;(2)AG ―→=13(AB ―→+AC ―→);(3)GD ―→=12(GB ―→+GC ―→)=16(AB ―→+AC ―→).3.若OA ―→=λOB ―→+μOC ―→(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.4.对于任意两个向量a ,b ,都有:①||a|-|b||≤|a±b|≤|a|+|b|;②|a +b|2+|a -b|2=2(|a|2+|b|2).当a ,b 不共线时:①的几何意义是三角形中的任意一边的长小于其他两边长的和且大于其他两边长的差的绝对值;②的几何意义是平行四边形中两邻边的长与两对角线的长之间的关系.考点一平面向量的有关概念【典例1】(河北衡水二中2019届高三调研)给出下列四个命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b .其中正确命题的序号是()A.②③B.①②C.③④D.②④【归纳总结】向量有关概念的关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线.【变式1】(山东泰安一中2019届高三模拟)给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零;③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为()A .0 B.1C .2D .3考点二向量的线性运算【典例2】(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=()A.34AB ―→-14AC ―→B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→D .14AB ―→+34AC―→【方法技巧】向量的线性运算,即用几个已知向量表示某个向量,基本技巧为:一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.【变式2】(山西平遥中学2019届期末)在△ABC 中,AB ―→=c ,AC ―→=b ,若点D 满足BD ―→=2DC ―→,则AD ―→等于()A.23b +13cB.53c -23b C.23b -13c D .13b +23c考点三根据向量线性运算求参数【典例3】(湖南长郡中学2019届期中)在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO ―→=λAB ―→+μBC ―→,其中λ,μ∈R ,则λ+μ等于()A .1 B.12C.13D .23【方法技巧】解决此类问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.【变式3】(四川省百校2019届高三模拟冲刺)已知向量()()2,1,1,a b λ=-=,若()()2//2a b a b +- ,则实数λ=()A .2B .-2C .12D .1-2考点四线向量定理的应用【典例4】(2019·河南郑州第一次质量预测)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为()A.{0}B.∅C.{-1}D.{0,-1}【方法技巧】利用共线向量定理解题的方法(1)a ∥b ⇔a =λb(b≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.即A ,B ,C 三点共线⇔AB ―→,AC ―→共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.【变式4】(2019·安徽合肥市第二次质量检测)设两个非零向量a 与b 不共线,若a 与b 的起点相同,且a ,t b ,13(a +b)的终点在同一条直线上,则实数t 的值为________.。

核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算习题理

核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算习题理1.向量的有关概念(1)向量:既有____________又有____________的量叫做向量,向量的大小,也就是向量的_________(或称模).AB →的模记作____________.(2)零向量:____________的向量叫做零向量,其方向是________的. (3)单位向量:长度等于______________的向量叫做单位向量.a||a 是一个与a 同向的____________.-a|a |是一个与a ________的单位向量.(4)平行向量:方向________或________的________向量叫做平行向量.平行向量又叫________,任一组平行向量都可以移到同一直线上.规定:0与任一向量____________.(5)相等向量:长度____________且方向____________的向量叫做相等向量. (6)相反向量:长度__________且方向__________的向量叫做相反向量. (7)向量的表示方法:用________表示;用____________表示;用________表示. 2.向量的加法和减法 (1)向量的加法①三角形法则:以第一个向量a 的终点A 为起点作第二个向量b ,则以第一个向量a 的起点O 为________以第二个向量b 的终点B 为________的向量OB →就是a 与b 的________(如图1).推广:A 1A 2→+A 2A 3→+…+A n-1A n →=____________.图1图2②平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作▱ABCD ,则以A为起点的__________就是a 与b 的和(如图2).在图2中,BC →=AD →=b ,因此平行四边形法则是三角形法则的另一种形式.③加法的运算性质:a +b =____________(交换律);(a +b )+c =____________(结合律);a +0=____________=a .(2)向量的减法已知向量a ,b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=____________,即a -b 表示从向量b 的终点指向向量a (被减向量)的终点的向量(如图).3.向量的数乘及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作____________,它的长度与方向规定如下:①||λa =____________;②当λ>0时,λa 与a 的方向____________; 当λ<0时,λa 与a 的方向____________; 当λ=0时,λa =____________. (2)运算律:设λ,μ∈R ,则: ①λ(μa )=____________; ②(λ+μ)a =____________; ③λ(a +b )=____________. 4.两个向量共线定理向量a (a ≠0)与b 共线的充要条件是有且只有一个实数λ,使得____________.自查自纠1.(1)大小 方向 长度 ||AB →(2)长度为0 任意(3)1个单位长度 单位向量 方向相反 (4)相同 相反 非零 共线向量 平行 (5)相等 相同 (6)相等 相反 (7)字母 有向线段 坐标2.(1)①起点 终点 和 A 1A n → ②对角线AC →③b +a a +(b +c ) 0+a (2)a -b 3.(1)λa ①|λ||a | ②相同 相反 0 (2)①μ(λa ) ②λa +μa ③λa +λb 4.b =λa设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则当a 为零向量时,a 的方向任意;当a 不为零向量时,a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.故选D .设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解:AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB →+43AC →.故选A .(2015·东北三省联考)在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形解:依题意得AC →=AB →+BC →=AB →+AD →,则BC →=AD →,因此BC ∥AD 且BC =AD ,故四边形ABCD 一定是平行四边形.故选D .(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.解:在△ABC 中,MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →,所以x =12,y =-16.故填12;-16. (2015·全国)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,∴存在唯一的实数μ∈R ,使得λa +b=μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.∵a ,b 不平行,∴⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.类型一 向量的基本概念给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________.解:①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又∵A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB →∥DC →且|AB →|=|DC →|,可得AB →=DC →.故“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件.③正确.∵a =b ,∴a ,b 的长度相等且方向相同;又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.由a =b 可得|a |=|b |且a ∥b ;由|a |=|b |且a ∥b 可得a =b 或a =-b ,故“|a |=|b |且a ∥b ”不是“a =b ”的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.故填②③.【点拨】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.下列命题中,正确的是________.(填序号)①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A ,B ,C ,D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c ;⑤两个向量不能比较大小,但它们的模能比较大小.解:①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是任意的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行; ④不正确,如果b 为零向量,则a 与c 不一定平行;⑤正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.故填⑤.类型二 向量的线性运算(1)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 上靠近点B 的一个三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12AD → D.12AB →-23AD →解:在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →,因为点F 为BC 的一个三等分点,所以CF →=23CB →,所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →.故选D .(2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 解:∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c .故选A .【点拨】(1)解题的关键在于搞清构成三角形的三个向量间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧是:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(1)(2015·福建模拟)在△ABC 中,AD →=2DC →,BA →=a ,BD →=b ,BC →=c ,则下列等式成立的是( )A .c =2b -aB .c =2a -bC .c =3a 2-b2D .c =3b 2-a2解:因为在△ABC 中,BC →=BD →+DC →=BD →+12AD →=BD →+12(BD →-BA →)=32BD →-12BA →,所以c =32b-12a .故选D .(2)(2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.BC →D.12BC →解:EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →.故选A . 类型三 向量共线的充要条件及其应用已知A ,B ,C 是平面内三个不相同的点,O 是平面内任意一点,求证:向量OA →,OB →,OC →的终点A ,B ,C 共线的充要条件是存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.证明:(1)先证必要性. 若OA →,OB →,OC →的终点A ,B ,C 共线,则AB →∥BC →,∴存在实数m 使得BC →=mAB →,即OC →-OB →=m (OB →-OA →), ∴OC →=-mOA →+(1+m )OB →.令λ=-m ,μ=1+m ,则λ+μ=-m +1+m =1,即存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1. (2)再证充分性. 若OC →=λOA →+μOB →,且λ+μ=1, 则OC →=λOA →+(1-λ)OB →, ∴OC →-OB →=λ(OA →-OB →),即BC →=λBA →, ∴BC →∥BA →,又BC 与BA 有公共点B , ∴A ,B ,C 三点共线.综合(1)(2)可知,原命题成立.【点拨】证明三点A ,B ,C 共线,借助向量,只需证明由这三点A ,B ,C 所组成的向量中有两个向量共线,即证明存在一个实数λ,使AB →=λBC →.但证明两条直线AB ∥CD ,除了证明存在一个实数λ,使AB →=λCD →外,还要说明两直线不重合.注意:本例的结论可作定理使用.(1)已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解:BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →,∴A ,B ,D 三点共线.故选A .(2)设两个非零向量a 与b 不共线,若k a +b 和a +k b 共线,则实数k =________.解:∵k a +b 和a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.故填±1.(3)(2015·南京模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.解法一:∵G 是△OAB 的重心,∴OG →=13(OA →+OB →)=13m OP →+13nOQ →.由P ,G ,Q 三点共线可得,13m +13n =1,故1m +1n=3.解法二:设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,且λ≠0,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ得1n +1m =3.故填3.1.准确理解向量的概念,请特别注意以下几点: (1)a ∥b ,有a 与b 方向相同或相反两种情形;(2)向量的模与数的绝对值有所不同,如|a |=|b | a =±b ; (3)零向量的方向是任意的,并不是没有,零向量与任意向量平行; (4)对于任意非零向量a ,a||a 是与a 同向的单位向量,这也是求单位向量的方法; (5)向量平行,其所在直线不一定平行,两向量还可能在一条直线上;(6)只要不改变向量a 的大小和方向,可以自由平移a ,平移后的向量与a 相等,所以线段共线与向量共线是有区别的,当两向量共线且有公共点时,才能得出线段共线,向量的共线与向量的平行是一致的.2.向量具有大小和方向两个要素,既能像实数一样进行某些运算,又有直观的几何意义,是数与形的完美结合.向量是一个几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析、判断,这是研究平面向量最重要的方法与技巧.3.向量加法的三角形法则可简记为“首尾相接,指向终点”;减法法则可简记为“起点重合,指向被减向量”;加法的平行四边形法则可简记 “起点重合,指向对角顶点”.4.平面向量的三种线性运算的结果仍为向量,在三种线性运算中,加法是最基本、最重要的运算,减法运算与数乘运算都以加法运算为基础,都可以归结为加法运算.5.对于两个向量共线定理(a (a ≠0)与b 共线⇔存在唯一实数λ使得b =λa )中条件“a ≠0”的理解:(1)当a =0时,a 与任一向量b 都是共线的;(2)当a =0且b ≠0时,b =λa 是不成立的,但a 与b 共线.因此,为了更具一般性,且使充分性和必要性都成立,我们要求a ≠0.换句话说,如果不加条件“a ≠0”,“a 与b 共线”是“存在唯一实数λ使得b =λa ”的必要不充分条件.1.设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |解:由题意a |a |=b|b |表示与向量a 和向量b 同向的单位向量相等,故a 与b 同向共线.故选C .2.已知两个非零向量a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是( )A .-2B .-1C .1D .2解:∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD→共线.设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ且p =-λ,∴λ=1,p =-1.故选B .3.已知O ,A ,M ,B 为平面上四点,且OM →=λOB →+(1-λ)OA →,实数λ∈(1,2),则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上D .O ,A ,M ,B 四点一定共线解:由题意得OM →-OA →=λ(OB →-OA →),即AM →=λAB →.又λ∈(1,2),∴点B 在线段AM 上.故选B .4.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a, AC →=b ,则AD →=( )A .a -12bB.12a -bC .a +12bD.12a +b 解:连接OD ,CD ,显然∠BOD =∠CAO =60°,则AC ∥OD ,且AC =OD ,即四边形CAOD为菱形,故AD →=AO →+AC →=12a +b ,故选D .5.已知平面内一点P 及△ABC ,若PA →+PB →+PC →=AB →,则点P 与△ABC 的位置关系是( )A .点P 在线段AB 上B .点P 在线段BC 上 C .点P 在线段AC 上D .点P 在△ABC 外部解:由PA →+PB →+PC →=AB →得PA →+PC →=AB →-PB →=AP →,即PC →=AP →-PA →=2AP →,所以点P 在线段AC 上.故选C .6.在平行四边形ABCD 中,点E 是AD 的中点,BE 与AC 相交于点F ,若EF →=mAB →+nAD →(m ,n ∈R ),则mn的值为( )A .-2B .-12C .2 D.12解:设AB →=a ,AD →=b ,则EF →=m a +n b ,BE →=AE →-AB →=12b -a ,由向量EF →与BE →共线可知存在非零实数λ,使得EF →=λBE →,即m a +n b =12λb -λa ,又a 与b 不共线,则⎩⎪⎨⎪⎧m =-λ,n =12λ, 消去λ得m n=-2.故选A .7.如图,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=______.解:由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →.又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC →.又AM →=λAB →+μAC →,所以λ+μ=12x +12(1-x )=12.故填12. 8.直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足OP →=OA →+12(AB →+AC →),则|AP →|=________.解:如图,取BC 边中点D ,连接AD ,则12(AB →+AC →)=AD →,OP →=OA →+12(AB →+AC →)⇒OP →=OA →+AD →⇒OP →-OA →=AD →⇒AP →=AD →,因此|AP →|=|AD →|=1,故填1.9.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:BC →=BA →+AD →+DC →=-a +b +12a =b -12a .MN →=MD →+DA →+AN →=-14a +(-b )+12a =14a -b .10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A ,C ,D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A ,C ,D 三点共线,求k 的值.解:(1)证明:∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2=-12(-8e 1-2e 2)=-12CD →,∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A ,C ,D 三点共线. (2)AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2, ∵A ,C ,D 三点共线, ∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →, 即3e 1-2e 2=λ(2e 1-k e 2), 得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.故k 的值为43.11.如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.解:∵A ,M ,D 三点共线, ∴OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①∵C ,M ,B 三点共线,∴OM →=λ2OB →+(1-λ2)OC →=λ2b +1-λ24a ,②由①②可得⎩⎪⎨⎪⎧12λ1=λ2,1-λ1=1-λ24, 解得⎩⎪⎨⎪⎧λ1=67,λ2=37.故OM →=17a +37b . 设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解:若C ,D 调和分割点A ,B ,则AC →=λAB →(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于选项A ,若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于选项C ,若C ,D 同时在线段AB 上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C 选项错误;对于选项D ,若C ,D 同时在线段AB 的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C ,D 不可能同时在线段AB 的延长线上,D 选项正确.故选D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学一轮复习
1
5.1 平面向量的概念及线性运算

一、选择题
1.(2015·衡水模拟)下列关于向量的叙述不正确的是( )

A.AB
→的相反向量是BA→

B.模长为1的向量是单位向量,其方向是任意的
C.若A,B,C,D四点在同一条直线上,且AB=CD,则AB
→=CD→

D.若向量a与b满足关系a+b=0,则a与b共线
2.如图,正六边形ABCDEF中,BA
→+CD→+EF→
=( )

A.0 B.BE

C.AD→ D.CF

3.如图,点M是△ABC的重心,则MA
→+MB→-MC→
为( )

A.0
B.4ME

C.4MD

D.4MF

4.(2015·皖西七校联考)若直线l上不同的三个点A,B,C与直线l外一点O,使得x2OA

+xOB→=2BC→成立,则满足条件的实数x的集合为( )
高三数学一轮复习
2
A.{-1,0} B.{1+52,1-52}
C.{-1+52,-1-52} D.{-1}
5.(2014·济南一模)已知A,B,C是平面上不共线的三点,O是△ABC的重心,动点P

满足OP→=1312OA→+12OB→+2OC→,则点P一定为△ABC的( )
A.AB边中线的中点
B.AB边中线的三等分点(非重心)
C.重心
D.AB边的中点

6.(2015·兰州质检)若点M是△ABC所在平面内的一点,且满足5AM
→=AB→+3AC→
,则
△ABM与△ABC的面积比为( )

A.15 B.
2
5

C.35 D.
4
5

二、填空题
7.(2014·四川资阳模拟)在Rt△ABC中,C=π2,B=π6,CA=1,则|2AC→-AB→|=__________.
8.(2014·西安模拟)任意四边形ABCD中,E,F分别是AD,BC的中点,则EF

__________(用向量AB
→,DC→
表示).

9.(2014·南京盐城二模)已知|OA→|=1,|OB→|=2,∠AOB=2π3,OC→=12OA→+14OB
→,则OA→

OC

的夹角大小为__________.

三、解答题

10.若a,b是两个不共线的非零向量,a与b起点相同,则当t为何值时,a,tb,13(a
+b)三向量的终点在同一条直线上?
高三数学一轮复习
3
11.如图,在平行四边形OADB中,设OA→=a,OB→=b,BM→=13BC→,CN→=13CD→.
试用a,b表示OM→,ON→及MN

.

12.如图,已知△OAB中,点C是以A为中心的B的对称点,D是将OB

分成21的

一个内分点,DC和OA交于E,OA→=a,OB→=b.
(1)用a与b表示向量OC
→、DC→

(2)若OE→=λOA→ ,求实数λ的值.
高三数学一轮复习

4
答案
一、选择题
1.

『解析』
A,B显然正确;对于C,如图,A,B,C,D四点满足条件,但AB→≠CD→,所

以C不正确;对于D,由a+b=0,得b=-a,由共线向量定理知,a与b共线,所以D
正确.

『答案』
C

2.

『解析』
由于BA→=DE→,故BA→+CD→+EF→=CD→+DE→+EF→=CF


.

『答案』
D

3.

『解析』
点M是△ABC的重心,所以有F点是AB的中点,MF→=13CF→=

1

2
CM→.

因为MA→+MB→=2MF→,
所以MA→+MB→-MC→=2MF→+CM→=4MF

.

『答案』
D

4.

『解析』
因为x2OA→+xOB→=2BC→,所以x2OA→+xOB→=2(OC→-OB→)⇒x22OA→+x2+1OB→=OC


.

又因为A,B,C三点共线,则x22+x2+1=1⇒x22+x2=0⇒x=0或x=-1;当x=0时三点重
合,不符合题意,舍去.所以x=-1,选D.
『答案』
D

5.

『解析』
∵O是△ABC的重心,∴OA→+OB→+OC→=0,∴OP→=13-12OC→+2OC→=12OC→,

∴点P是线段OC的中点,即是AB边中线的三等分点(非重心).故选B.
『答案』
B

6.
高三数学一轮复习
5
『解析』
设AB的中点为D,由5AM→=AB→+3AC→,得3AM→-3AC→=2AD→-2AM→,即3CM

=2MD→.如图所示,故C,M,D三点共线,且MD→=35CD→,也就是△ABM与△ABC对于边AB
的两高之比为3∶5,则△ABM与△ABC的面积比为35,选C.

『答案』
C

二、填空题
7.

『解析』
作AC′→=2AC→,则2AC→-AB→=BC′→,由题设可知△ABC′是正三角形,所以|2AC→-

AB→|=|BC′→|=2.
『答案』
2

8.
『解析』
如图所示,因为E,F分别是AD与BC的中点,

所以EA→+ED→=0,
BF
→+CF→
=0.

又因为AB→+BF→+FE→+EA→=0,
所以EF→=AB→+BF→+EA

.①

同理EF→=ED→+DC→+CF

.②

由①+②得,2EF→=AB→+DC→+(EA→+ED→)+(BF→+CF→)=AB→+DC→,
所以EF→=12(AB→+DC

).
高三数学一轮复习
6
『答案』
1
2
(AB→+DC→)

9.

『解析』
令12OA→=OA1→,14OB→=OB1→,因为|OA→|=1,|OB→|=2,所以|OA1→|=|OB1→|,由OC→=

12OA→+1
4
OB→=OA1→+OB1→,可知四边形OA1CB1为菱形.因为菱形对角线平分所对角,又∠AOB

=2π3,
∴∠AOC=
π
3
.

『答案』
π
3

三、解答题
10.

『解析』
设OA→=a,OB→=tb,OC→=

1

3
(a+b),

∴AC→=OC→-OA→=-23a+13b,AB→=OB→-OA→=tb-a.
要使A,B,C三点共线,只需AC→=λAB

.

即-
23a+1
3
b=λ(tb-a)=λtb-λa.

又∵a与b为不共线的非零向量,

∴有 -23=-λ,13=λt⇒ λ=23,t=12.
∴当t=12时,三向量终点在同一直线上.
11.

『解析』
由题意知,在平行四边形OADB中,BM→=13BC→=16BA→=16(OA→-OB


)=16(a-b)
高三数学一轮复习
7

16a-1
6
b,

则OM→=OB→+BM→=b+
16a-16b=16a+5
6
b.

ON→=23OD→=23(OA→+OB→)=23(a+b)=23a+23b,
MN→=ON→-OM→=23(a+b)-16a-56b=12a-16b.
12.

『解析』
(1)依题意,A是BC中点,

∵2OA→=OB→+OC→,即OC→=2OA→-OB→=2a-b.
DC→=OC→-OD→=OC→-23OB→=2a-b-23b=2a-53b.
(2)设OE
→=λOA→

则CE→=OE→-OC→=λa-(2a-b)=(λ-2)a+b,
∵CE→与DC→共线,
∴存在实数k,使CE→=kDC→,
(λ-2)a+b=k2a-53b,解得λ=45.

相关文档
最新文档