_专题15三角函数解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)集合专题(附解析)一、选择题1.【2022年全国甲卷理科·第3题】设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=ð()A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-【答案】D 解析:由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.2.【2022年全国乙卷理科·第1题】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈B.3M ∈C.4M ∉D.5M∉【答案】A 解析:由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误3.【2022新高考全国II 卷·第1题】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}-B.{1,2}C.{1,4}D.{1,4}-【答案】B 解析:{}|02B x x =≤≤,故{}1,2A B = .故选B.4.【2022新高考全国I 卷·第1题】若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤<B.123x x ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤<D.1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D 解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭ ,故选:D5.【2021年新高考全国Ⅱ卷·第2题】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B 解析:由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选B.6.【2021年新高考Ⅰ卷·第1题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2B.{}2,3C.{}3,4D.{}2,3,4【答案】B 解析:由题设有{}2,3A B ⋂=,故选B.7.【2020年新高考I 卷(山东卷)·第1题】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3}B.{x |2≤x ≤3}C.{x |1≤x <4}D.{x |1<x <4}【答案】C 解析:[1,3](2,4)[1,4)A B ==U U 故选:C8.【2020新高考II 卷(海南卷)·第1题】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8}【答案】C 解析:因为{2,3,5,7},{1,2,3,5,8}A B ==,所以{2,3,5}A B = ,故选:C9.【2021年高考全国乙卷理科·第2题】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A.∅B.S C.T D.Z 【答案】C 解析:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.【2021年高考全国甲卷理科·第1题】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A.103x x ⎧⎫<≤⎨⎬⎩⎭B.143x x ⎧⎫≤<⎨⎬⎩⎭C.{}45x x ≤<D.{}05x x <≤【答案】B 解析:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.11.【2020年高考数学课标Ⅰ卷理科·第2题】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.4【答案】B 解析:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.12.【2020年高考数学课标Ⅱ卷理科·第1题】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 解析:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A .13.【2020年高考数学课标Ⅲ卷理科·第1题】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A.2B.3C.4D.6【答案】C 解析:由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.14.【2019年高考数学课标Ⅲ卷理科·第1题】已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B = ()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,2【答案】A 解析:因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A.15.【2019年高考数学课标全国Ⅱ卷理科·第1题】设集合{}2560A x x x =-+>,{}10B x x =-<,则A B = ()A.(),1-∞B.()2,1-C.()3,1--D.()3,+∞【答案】A 解析:{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A.16.【2019年高考数学课标全国Ⅰ卷理科·第1题】已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N = ().{|43}A x x -<<.{|42}B x x -<<-.{|22}C x x -<<.{|23}D x x <<【答案】C 解析:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< 故选C.17.【2018年高考数学课标Ⅲ卷(理)·第1题】已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ()A.{}0B.{}1C.{}1,2D.{}0,1,2【答案】C 解析:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C.18.【2018年高考数学课标Ⅱ卷(理)·第2题】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A.9B.8C.5D.4【答案】A 解析:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y x y x y =+∈∈=-------Z Z ,≤,,,故选A.19.【2018年高考数学课标卷Ⅰ(理)·第2题】己知集合{}220A x x x =-->,则R A =ð()A.{}12x x -<<B.{}12x x -≤≤C.{}{}12x x x x <-> D.{}{}12x x x x ≤-≥ 【答案】B 解析:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B.20.【2017年高考数学新课标Ⅰ卷理科·第1题】已知集合{}|1A x x =<,{}|31x B x =<,则()A.{|0}A B x x =< B.A B =R C.{|1}A B x x => D.A B =∅ 【答案】A 解析:由31x <得033x <,所以0x <,故{|1}{|0}{|0}A B x x x x x x ⋂=<⋂<=<,故选A.21.【2017年高考数学课标Ⅲ卷理科·第1题】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为().A.3B.2C.1D.0【答案】B 解析:法1:集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有点组成的集合,联立圆与直线的方程,可得圆221x y +=与直线y x =相交于两点,22⎛⎫ ⎪ ⎪⎝⎭,,22⎛⎫- ⎪ ⎪⎝⎭,所以A B 中有两个元素.法2:结合图形,易知交点个数为2,即A B 的元素个数为2.故选B22.【2017年高考数学课标Ⅱ卷理科·第2题】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C 解析:法1:常规解法∵{}1A B = ∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=故{}1,3B =法2:韦达定理法∵{}1A B = ∴1是方程240x x m -+=的一个根,∴利用伟大定理可知:114x +=,解得:13x =,故{}1,3B =法3:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴124x x +=,从四个选项A﹑B﹑C﹑D 看只有C 选项满足题意.23.【2016高考数学课标Ⅲ卷理科·第1题】设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T = ()A.[]2,3B.(][),23,-∞+∞ C.[)3,+∞D.(][)0,23,+∞ 【答案】D 解析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{}23S x x x =或≤≥,所以{}023S T x x x =< 或≤≥,故选D.24.【2016高考数学课标Ⅱ卷理科·第2题】已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()A.{1}B.{12},C.{0123},,,D.{10123}-,,,,【答案】C 解析:{|(1)(2)0,}={0,1}B x x x x Z =+-<∈,又{1,}A =2,3,所以{0,1,2,3}A B =,故选C.25.【2016高考数学课标Ⅰ卷理科·第1题】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = ()(A)3(3,)2--(B)3(3,2-(C)3(1,)2(D)3(,3)2【答案】D 解析:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭.故选D.26.【2015高考数学新课标2理科·第1题】已知集合21,0,1,2A =--{,},{}(1)(20B x x x =-+<,则A B = ()A.{}1,0A =-B.{}0,1C.{}1,0,1-D.{}0,1,2【答案】A 解析:由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A.27.【2014高考数学课标2理科·第1题】设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N = ()A.{1}B.{2}C.{0,1}D.{1,2}【答案】D 解析:因为N ={x|1x 2}≤≤,所以M N={12},⋂,故选D.28.【2014高考数学课标1理科·第1题】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)【答案】A 解析:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.29.【2013高考数学新课标2理科·第1题】已知集合=2{|(1)4,},N {1,0,1,2,3}M x x x R -<∈=-,则M N ⋂=()A.{0,1,2}B.{1,0,1,2}-C.{1,0,2,3}-D.{0,1,2,3}【答案】A 解析:化简集合M 得{|13,}M x x x R =-<<∈,则{0,1,2}M N ⋂=.30.【2013高考数学新课标1理科·第1题】已知集合A=2{|20}x x x ->,B={|x x <<,则()A.A B =∅ B.A B R = C.B A⊆D.A B ⊆【答案】D 解析:(,0)(2,),A A B R =-∞+∞∴= ,故选B.。
专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题06 数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析:; (2)78-.解析:(1)解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022年全国甲卷理科·第17题2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析; (2)9.解析:(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国II 卷·第17题3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析解析:(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111nn n an a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国I 卷·第17题4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解析:(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考全国Ⅱ卷·第17题5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考Ⅰ卷·第17题6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2nn a =;(2)100480S =.解析:(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2nn a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15 ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31 ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63 ,则3233635b b b ==== ,即有52个5;6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100 ,则64651006b b b ==== ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年新高考I 卷(山东卷)·第18题7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--解析:(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020新高考II 卷(海南卷)·第18题的8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.解析:(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以12112222121n b b b b b +⋅=--,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S nn n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.【题目栏目】数列\等差、等比数列的综合应用【题目来源】2021年高考全国乙卷理科·第19题9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析解析:选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年高考全国甲卷理科·第18题10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++--- 1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第17题11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.解析:(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;的(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第17题12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.【答案】()1见解析;()21122n n a n =+-,1122n n b n =-+.【官方解析】()1由题设得114()2()n n n n a b b +++=+,即111()2n n n n a b a b +++=+.又因为111a b +=,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为111a b -=,所以{}n n a b -是首项为1,公差为2的等差数列.()2由()1知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【分析】()1可通过题意中的1434n n n a b a +=-+以及1434n n n b a b +=--对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;()2可通过()1中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【解析】()1由题意可知,,,,所以,即111()2n n n n a b a b +++=+,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为等差数列,.()2由()1可知,112n n n a b -+=,,所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【点评】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第19题13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =【答案】【官方解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=由已知得424q q =,解得0q =(舍去),2q =-或2q =故()12n n a -=-或12n n a -=(2)若()12n n a -=-,则()123mm S --=,由63m S =,得()2188m-=-,此方和没有正整数解若12n n a -=,则21m m S =-,由63m S =,得264m =,解得6m =综上,6m =.1434n n n a a b +-=+1434n n n b b a +-=-111a b +=111a b -=1144323442n n n n n n n n a b a b b a a b ++=+=--+++-{}n n a b +112(112n n n a b -+=()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-112n n n n a b a b ++=-+-{}n n a b -12的21n n a b n -=-21n n a b n -=-【民间解析】(1)设等比数列{}n a 的公比为q ,由11a =,534a a =可得42141q q ⨯=⨯⨯,所以24q =所以2q =±当2q =时,1112n n n a a q --==;当2q =-时,()1112n n n a a q --==-(2)由(1)可知2q =±当2q =时,由()1163631m m a q S q-=⇒=-即126312m-=-,即62642m ==,所以6m =;当2q =-时,由()1163631m m a q S q-=⇒=-即()126312m--=+,即()2188m-=-,无解综上可知6m =.【题目栏目】数列\等比数列\等比数列的综合应用【题目来源】2018年高考数学课标Ⅲ卷(理)·第17题14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】解析:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =得2d =,所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2018年高考数学课标Ⅱ卷(理)·第17题15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.【答案】(Ⅰ)11(11n n a λλλ-=--;(Ⅱ)1λ=-.【解析】(Ⅰ)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠.由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即1(1)n n a a λλ+-=.由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是11()11n n a λλλ-=--.(Ⅱ)由(Ⅰ)得1()1n n S λλ=--,由53132S =得5311(132λλ-=-,即51()132λλ=-,解得1λ=-.【题目栏目】数列\等比数列\等比数列的前n 项和【题目来源】2016高考数学课标Ⅲ卷理科·第17题16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.【答案】(1)[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==;(2)1893.【解析】(1)设{}n a 的公差为d ,据已知有72128d +=,解得1d =.所以数列{}n a 的通项公式为n a n =.[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==.(2)因为0,110,1,10100,2,1001000,3,1000,n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893⨯+⨯+⨯=.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2016高考数学课标Ⅱ卷理科·第17题17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和【答案】(Ⅰ)21n +(Ⅱ)11646n -+分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111((21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[((()]235572123n n -+-++-++ =11646n -+.考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法【题目栏目】数列\数列的求和\裂项相消法求和问题【题目来源】2015高考数学新课标1理科·第17题18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:12111na a a ++<…+【答案】解析:(Ⅰ)由131n n a a +=+,得1113(22n n a a ++=+,且11322a +=所以{}12n a +是首相为32,公比为3的等比数列。
第3讲 三角函数与解三角形(2022年高考真题)(解析版)

第3讲 三角函数与解三角形 一、单选题 1.(2022·全国·高考真题(理))双曲线C的两个焦点为
12,FF
,以C的实轴为直径的圆记为
D,过
1
F
作D的切线与C的两支交于M,N两点,且123cos5FNF,则C的离心率为( )
A.
5
2 B.32 C.132 D.172
【答案】C 【解析】 【分析】 依题意不妨设双曲线焦点在x轴,设过1F作圆D的切线切点为G,可判断N在双曲线的右支,设12FNF,21FFN,即可求出sin,sin,cos,在21FFN中由12sinsinFFN求出12sinFFN,再由正弦定理求出1NF,2NF,最后根据双曲线
的定义得到23ba,即可得解; 【详解】 解:依题意不妨设双曲线焦点在x轴,设过1F作圆D的切线切点为G,
所以1OGNF,因为123cos05FNF,所以N在双曲线的右支, 所以OGa,1OFc,1GFb,设12FNF,21FFN, 由123cos5FNF,即3cos5,则4sin5,sinac,cosbc, 在21FFN中,12sinsinsinFFN
4334sincoscossin555baabccc,
由正弦定理得211225sinsinsin2NFNFccFFN, 所以112553434sin2252ccababNFFFNc,2
555sin222ccaaNFc
又12345422222ababaNFNFa, 所以23ba,即32ba, 所以双曲线的离心率221312cb
eaa 故选:C 2.(2022·全国·高考真题)若
sin()cos()22cossin4
,则( )
A.tan1 B.tan1 C.tan1 D.tan1 【答案】C 【解析】 【分析】 由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解. 【详解】 由已知得:sincoscossincoscossinsin2cossinsin,
北京市十年高考数学真题(2013-2022)与优质模拟题汇编专题05三角函数与解三角形(解析版)

大数据之十年高考真题(2013-2022)与优质模拟题(北京卷)专题05三角函数与解三角形1.【2022年北京卷05】已知函数f(x)=cos 2x −sin 2x ,则( ) A .f(x)在(−π2,−π6)上单调递减B .f(x)在(−π4,π12)上单调递增C .f(x)在(0,π3)上单调递减D .f(x)在(π4,7π12)上单调递增【答案】C 【解析】因为f (x )=cos 2x −sin 2x =cos2x .对于A 选项,当−π2<x <−π6时,−π<2x <−π3,则f (x )在(−π2,−π6)上单调递增,A 错; 对于B 选项,当−π4<x <π12时,−π2<2x <π6,则f (x )在(−π4,π12)上不单调,B 错; 对于C 选项,当0<x <π3时,0<2x <2π3,则f (x )在(0,π3)上单调递减,C 对; 对于D 选项,当π4<x <7π12时,π2<2x <7π6,则f (x )在(π4,7π12)上不单调,D 错. 故选:C.2.【2021年北京7】函数f(x)=cosx −cos2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98D .偶函数,最大值为98【答案】D由题意,f(−x)=cos(−x)−cos(−2x)=cosx −cos2x =f(x),所以该函数为偶函数, 又f(x)=cosx −cos2x =−2cos 2x +cosx +1=−2(cosx −14)2+98, 所以当cosx =14时,f(x)取最大值98. 故选:D.3.【2020年北京卷10】2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).真题汇总A.3n(sin30°n +tan30°n)B.6n(sin30°n+tan30°n)C.3n(sin60°n +tan60°n)D.6n(sin60°n+tan60°n)【答案】A 【解析】单位圆内接正6n边形的每条边所对应的圆周角为360°n×6=60°n,每条边长为2sin30°n,所以,单位圆的内接正6n边形的周长为12nsin30°n,单位圆的外切正6n边形的每条边长为2tan30°n ,其周长为12ntan30°n,∴2π=12nsin 30°n+12ntan30°n2=6n(sin30°n+tan30°n),则π=3n(sin30°n +tan30°n).故选:A.4.【2018年北京理科07】在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1B.2C.3D.4【答案】解:由题意d=√1+m2=|√m2+1sin(θ+α)−2|√m+1,tanα=1m=y x,∴当sin(θ+α)=﹣1时,d max=12√m+1≤3.∴d的最大值为3.故选:C.5.【2016年北京理科07】将函数y=sin(2x−π3)图象上的点P(π4,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=12,s的最小值为π6B.t=√32,s的最小值为π6C.t=12,s的最小值为π3D.t=√32,s的最小值为π3【答案】解:将x=π4代入得:t=sinπ6=12,将函数y=sin(2x−π3)图象上的点P向左平移s个单位,得到P ′(π4−s ,12)点,若P ′位于函数y =sin2x 的图象上, 则sin (π2−2s )=cos2s =12,则2s =±π3+2k π,k ∈Z , 则s =±π6+k π,k ∈Z ,由s >0得:当k =0时,s 的最小值为π6,故选:A .6.【2022年北京卷13】若函数f(x)=Asinx −√3cosx 的一个零点为π3,则A =________;f(π12)=________. 【答案】 1 −√2 【解析】∵f(π3)=√32A −√32=0,∴A =1∴f(x)=sinx −√3cosx =2sin(x −π3)f(π12)=2sin(π12−π3)=−2sin π4=−√2故答案为:1,−√27.【2020年北京卷12】若函数f(x)=sin(x +φ)+cosx 的最大值为2,则常数φ的一个取值为________. 【答案】π2(2kπ+π2,k ∈Z 均可)【解析】因为f (x )=cosφsinx +(sinφ+1)cosx =√cos 2φ+(sinφ+1)2sin (x +θ), 所以√cos 2φ+(sinφ+1)2=2,解得sinφ=1,故可取φ=π2.故答案为:π2(2kπ+π2,k ∈Z 均可).8.【2019年北京理科09】函数f (x )=sin 22x 的最小正周期是 . 【答案】解:∵f (x )=sin 2(2x ),∴f (x )=−12cos(4x)+12, ∴f (x )的周期T =π2, 故答案为:π2.9.【2018年北京理科11】设函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为 .【答案】解:函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,可得:ω⋅π4−π6=2kπ,k ∈Z ,解得ω=8k +23,k ∈Z ,ω>0 则ω的最小值为:23. 故答案为:23.10.【2017年北京理科12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若sin α=13,则cos (α﹣β)= .【答案】解:方法一:∵角α与角β均以Ox 为始边,它们的终边关于y 轴对称, ∴sin α=sin β=13,cos α=﹣cos β,∴cos (α﹣β)=cos αcos β+sin αsin β=﹣cos 2α+sin 2α=2sin 2α﹣1=29−1=−79方法二:∵sin α=13, 当α在第一象限时,cos α=2√23, ∵α,β角的终边关于y 轴对称,∴β在第二象限时,sin β=sin α=13,cos β=﹣cos α=−2√23, ∴cos (α﹣β)=cos αcos β+sin αsin β=−2√23×2√23+13×13=−79 :∵sin α=13,当α在第二象限时,cos α=−2√23, ∵α,β角的终边关于y 轴对称,∴β在第一象限时,sin β=sin α=13,cos β=﹣cos α=2√23,∴cos (α﹣β)=cos αcos β+sin αsin β=−2√23×2√23+13×13=−79综上所述cos (α﹣β)=−79, 故答案为:−7911.【2015年北京理科12】在△ABC 中,a =4,b =5,c =6,则sin2A sinC= .【答案】解:∵△ABC 中,a =4,b =5,c =6,∴cos C =16+25−362×4×5=18,cos A =25+36−162×5×6=34∴sin C =3√78,sin A =√74, ∴sin2A sinC=2×√74×343√78=1.故答案为:1.12.【2014年北京理科14】设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=﹣f (π6),则f (x )的最小正周期为 .【答案】解:由f (π2)=f (2π3),可知函数f (x )的一条对称轴为x =π2+2π32=7π12, 则x =π2离最近对称轴距离为7π12−π2=π12.又f (π2)=﹣f (π6),则f (x )有对称中心(π3,0), 由于f (x )在区间[π6,π2]上具有单调性,则π2−π6≤12T ⇒T ≥2π3,从而7π12−π3=T4⇒T =π.故答案为:π.13.【2022年北京卷16】在△ABC 中,sin2C =√3sinC . (1)求∠C ;(2)若b =6,且△ABC 的面积为6√3,求△ABC 的周长. 【答案】(1)π6 (2)6+6√3 【解析】(1)解:因为C ∈(0,π),则sinC >0,由已知可得√3sinC =2sinCcosC ,可得cosC =√32,因此,C =π6.(2)解:由三角形的面积公式可得S △ABC =12absinC =32a =6√3,解得a =4√3.由余弦定理可得c 2=a 2+b 2−2abcosC =48+36−2×4√3×6×√32=12,∴c =2√3,所以,△ABC 的周长为a +b +c =6√3+6.14.【2021年北京16】已知在△ABC 中,c =2bcosB ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC存在且唯一确定,并求出BC边上的中线的长度.①c=√2b;②周长为4+2√3;③面积为SΔABC=3√34;【答案】(1)π6;(2)答案不唯一,具体见解析.(1)∵c=2bcosB,则由正弦定理可得sinC=2sinBcosB,∴sin2B=sin2π3=√32,∵C=2π3,∴B∈(0,π3),2B∈(0,2π3),∴2B=π3,解得B=π6;(2)若选择①:由正弦定理结合(1)可得cb =sinCsinB=√3212=√3,与c=√2b矛盾,故这样的△ABC不存在;若选择②:由(1)可得A=π6,设△ABC的外接圆半径为R,则由正弦定理可得a=b=2Rsinπ6=R,c=2Rsin2π3=√3R,则周长a+b+c=2R+√3R=4+2√3,解得R=2,则a=2,c=2√3,由余弦定理可得BC边上的中线的长度为:√(2√3)2+12−2×2√3×1×cosπ6=√7;若选择③:由(1)可得A=π6,即a=b,则S△ABC=12absinC=12a2×√32=3√34,解得a=√3,则由余弦定理可得BC边上的中线的长度为:√b2+(a2)2−2×b×a2×cos2π3=√3+34+√3×√32=√212.15.【2020年北京卷17】在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a的值:(Ⅱ)sinC和△ABC的面积.条件①:c=7,cosA=−17;条件②:cosA=18,cosB=916.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sinC =√32, S =6√3;选择条件②(Ⅰ)6(Ⅱ)sinC =√74, S =15√74.【解析】选择条件①(Ⅰ)∵c =7,cosA =−17,a +b =11∵a 2=b 2+c 2−2bccosA ∴a 2=(11−a)2+72−2(11−a)⋅7⋅(−17)∴a =8(Ⅱ)∵cosA =−17,A ∈(0,π)∴sinA =√1−cos 2A =4√37 由正弦定理得:asinA =csinC ∴4√37=7sinC ∴sinC =√32S =12basinC =12(11−8)×8×√32=6√3选择条件②(Ⅰ)∵cosA =18,cosB =916,A,B ∈(0,π)∴sinA =√1−cos 2A =3√78,sinB =√1−cos 2B =5√716由正弦定理得:asinA =bsinB ∴3√78=5√716∴a =6(Ⅱ)sinC =sin(A +B)=sinAcosB +sinBcosA =3√78×916+5√716×18=√74S =12basinC =12(11−6)×6×√74=15√74.16.【2019年北京理科15】在△ABC 中,a =3,b ﹣c =2,cos B =−12. (Ⅰ)求b ,c 的值;(Ⅱ)求sin (B ﹣C )的值. 【答案】解:(Ⅰ)∵a =3,b ﹣c =2,cos B =−12. ∴由余弦定理,得b 2=a 2+c 2﹣2ac cos B =9+(b −2)2−2×3×(b −2)×(−12), ∴b =7,∴c =b ﹣2=5;(Ⅱ)在△ABC 中,∵cos B =−12,∴sin B =√32, 由正弦定理有:c sinC=b sinB,∴sinC =csinB b =5×√327=5√314,∵b >c ,∴B >C ,∴C 为锐角, ∴cos C =1114,∴sin (B ﹣C )=sin B cos C ﹣cos B sin C=√32×1114−(−12)×5√314=4√37.17.【2018年北京理科15】在△ABC中,a=7,b=8,cos B=−1 7.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cos B=−17,∴sin B=√1−cos2B=√1−(−17)2=4√37,由正弦定理得asinA =bsinB得sin A=asinBb=7×4√378=√32,则A=π3.(Ⅱ)由余弦定理得b2=a2+c2﹣2ac cos B,即64=49+c2+2×7×c×1 7,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=c sin A=3×√32=3√32.18.【2017年北京理科15】在△ABC中,∠A=60°,c=37a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【答案】解:(1)∠A=60°,c=37a,由正弦定理可得sin C=37sin A=37×√32=3√314,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=13 14,∴sin B=sin(A+C)=sin A cos C+cos A sin C=√32×1314+12×3√314=4√37,∴S△ABC=12ac sin B=12×7×3×4√37=6√3.19.【2016年北京理科15】在△ABC中,a2+c2=b2+√2ac.(Ⅰ)求∠B的大小;(Ⅱ)求√2cos A +cos C 的最大值.【答案】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+√2ac . ∴a 2+c 2﹣b 2=√2ac .∴cos B =a 2+c 2−b 22ac =√2ac 2ac =√22,∴B =π4(Ⅱ)由(I )得:C =3π4−A , ∴√2cos A +cos C =√2cos A +cos (3π4−A )=√2cos A −√22cos A +√22sin A=√22cos A +√22sin A=sin (A +π4). ∵A ∈(0,3π4),∴A +π4∈(π4,π),故当A +π4=π2时,sin (A +π4)取最大值1, 即√2cos A +cos C 的最大值为1.20.【2015年北京理科15】已知函数f (x )=√2sin x2cos x2−√2sin 2x2.(Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在区间[﹣π,0]上的最小值. 【答案】解:(Ⅰ)f (x )=√2sin x2cos x2−√2sin 2x2=√22sin x −√22(1﹣cos x ) =sin x cos π4+cos x sin π4−√22=sin (x +π4)−√22,则f (x )的最小正周期为2π; (Ⅱ)由﹣π≤x ≤0,可得 −3π4≤x +π4≤π4,即有﹣1≤sin(x +π4)≤√22,则当x =−3π4时,sin (x +π4)取得最小值﹣1, 则有f (x )在区间[﹣π,0]上的最小值为﹣1−√22.21.【2014年北京理科15】如图,在△ABC 中,∠B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17. (1)求sin ∠BAD ; (2)求BD ,AC 的长.【答案】解:(1)在△ABC 中,∵cos ∠ADC =17,∴sin ∠ADC =√1−cos 2∠ADC =√1−(17)2=√4849=4√37, 则sin ∠BAD =sin (∠ADC ﹣∠B )=sin ∠ADC •cos B ﹣cos ∠ADC •sin B =4√37×12−17×√32=3√314.(2)在△ABD 中,由正弦定理得BD =AB⋅sin∠BAD sin∠ADB=8×3√3144√37=3,在△ABC 中,由余弦定理得AC 2=AB 2+CB 2﹣2AB •BC cos B =82+52﹣2×8×5×12=49, 即AC =7.22.【2014年北京理科18】已知函数f (x )=x cos x ﹣sin x ,x ∈[0,π2](1)求证:f (x )≤0; (2)若a <sinxx <b 对x ∈(0,π2)上恒成立,求a 的最大值与b 的最小值. 【答案】解:(1)由f (x )=x cos x ﹣sin x 得 f ′(x )=cos x ﹣x sin x ﹣cos x =﹣x sin x , 此在区间∈(0,π2)上f ′(x )=﹣x sin x <0,所以f (x )在区间∈[0,π2]上单调递减,从而f (x )≤f (0)=0. (2)当x >0时,“sinx x>a ”等价于“sin x ﹣ax >0”,“sinx x<b ”等价于“sin x ﹣bx <0”令g (x )=sin x ﹣cx ,则g ′(x )=cos x ﹣c , 当c ≤0时,g (x )>0对x ∈(0,π2)上恒成立,当c ≥1时,因为对任意x ∈(0,π2),g ′(x )=cos x ﹣c <0,所以g (x )在区间[0,π2]上单调递减,从而,g (x )<g (0)=0对任意x ∈(0,π2)恒成立,当0<c <1时,存在唯一的x 0∈(0,π2)使得g ′(x 0)=cos x 0﹣c =0,g (x )与g ′(x )在区间(0,π2)上的情况如下:x (0,x 0) x 0(x 0,π2)g ′(x ) + ﹣ g (x )↑↓因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0进一步g (x )>0对任意x ∈(0,π2)恒成立,当且仅当g(π2)=1−π2c ≥0即0<c ≤2π综上所述当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立,当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立,所以若a <sinxx <b 对x ∈(0,π2)上恒成立,则a 的最大值为2π,b 的最小值为123.【2013年北京理科15】在△ABC 中,a =3,b =2√6,∠B =2∠A . (Ⅰ)求cos A 的值; (Ⅱ)求c 的值.【答案】解:(Ⅰ)由条件在△ABC 中,a =3,b =2√6,∠B =2∠A , 利用正弦定理可得 a sinA=b sinB,即3sinA=2√6sin2A =2√62sinAcosA. 解得cos A =√63.(Ⅱ)由余弦定理可得 a 2=b 2+c 2﹣2bc •cos A ,即 9=(2√6)2+c 2﹣2×2√6×c ×√63, 即 c 2﹣8c +15=0.解方程求得 c =5,或 c =3.当c =3时,此时a =c =3,根据∠B =2∠A ,可得 B =90°,A =C =45°, △ABC 是等腰直角三角形,但此时不满足a 2+c 2=b 2,故舍去.当c =5时,求得cos B =a 2+c 2−b 22ac =13,cos A =b 2+c 2−a 22bc =√63,∴cos2A =2cos 2A ﹣1=13=cos B ,∴B =2A ,满足条件. 综上,c =5.1.函数f (x )=cos (ωx −π3)(ω>0)的图像关于直线x =π2对称,则ω可以为( ) A .13B .12 C .23D .1【答案】C【解析】f(x)=cos(ωx −π3)(ω>0)对称轴为:ωx −π3=kπ⇒π2ω−π3=kπ⇒ω=2k +23(ω>0)(k ∈Z)当k =0时,ω取值为23. 故选:C.2.在△ABC 中,∠B =45°,c =4,只需添加一个条件,即可使△ABC 存在且唯一.条件:①a =3√2; ②b =2√5;③cosC =−45中,所有可以选择的条件的序号为( ) A .① B .①② C .②③ D .①②③【答案】B 【解析】对于①,c =4,∠B =45°,a =3√2,所以,b 2=a 2+c 2−2accosB =10,得b =√10,所以,此时,△ABC 存在且唯一,符合题意;对于②,c =4,∠B =45°,b =2√5,所以,csinC =bsinB ,解得sinC =csinB b=√105,因为c <b ,所以,∠C <∠B ,所以∠C 为锐角,此时,△ABC 存在且唯一,符合题意;对于③,c =4,∠B =45°,cosC =−45,所以,π2<C <π,得sinC =35,进而csinC =bsinB , 可得b =csinB sinC=2√235=10√23,明显可见,c=123<10√23=b ,与∠C >∠B 矛盾,故③不符题意.故可以选择的条件序号为:①② 故选:B模拟好题3.已知cosα=35,α是第一象限角,且角α,β的终边关于y轴对称,则tanβ=()A.34B.−34C.43D.−43【答案】D 【解析】∵cosα=35,α是第一象限角,∴sinα=√1−cos2α=45,tanα=sinαcosα=43,∵角α,β的终边关于y轴对称,∴tanβ=−tanα=−43.故选:D.4.将函数y=cos(2x+π2)的图象向右平移π2个单位长度后,所得图象对应的函数为()A.y=sin2x B.y=−sin2x C.y=cos2x D.y=−cos2x 【答案】A【解析】将函数y=cos(2x+π2)的图象向右平移π2个单位长度后,所得图象对应的函数为y=cos[2(x−π2)+π2]=cos(2x−π2)=sin2x.故选:A.5.半径为3的圆的边沿有一点A,半径为4的圆的边沿有一点B,A、B两点重合后,小圆沿着大圆的边沿滚动,A、B两点再次重合小圆滚动的圈数为()A.1B.2C.3D.4【答案】D【解析】设A、B两点再次重合小圆滚动的圈数为n,则n×2π×3=6nπ=k×2π×4=8kπ,其中k、n∈N∗,所以,n=4k3,则当k=3时,n=4.故A、B两点再次重合小圆滚动的圈数为4.故选:D.6.已知点P(cosθ,sinθ)在直线ax−y+3=0上.则当θ变化时,实数a的范围为()A.[−2√2,2√2]B.(−∞,−2√2]∪[2√2,+∞)C.[−3,3]D.(−∞,−3]∪[3,+∞)【答案】B【解析】∵点P(cosθ,sinθ)在直线ax −y +3=0上, ∴acosθ−sinθ+3=0,∴sinθ−acosθ=√1+a 2sin (θ−φ)=3,其中tanφ=a , ∵sin (θ−φ)≤1, ∴√1+a 2≥3,即a 2≥8, 解得a ≤−2√2或a ≥2√2.故选:B.7.已知函数f(x)= cos2x +cosx ,且x ∈[0,2π],则f(x)的零点个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】由cos2x +cosx =2cos 2x +cosx −1=(cosx +1)(2cosx −1)=0 可得cosx =−1或cosx =12,又x ∈[0,2π],则x =π,或x =π3,或x =5π3 则f(x)的零点个数为3 故选:C8.已知函数f(x)=√3sin2x −2cos 2x +1,将f(x)的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变,得到函数y =g(x)的图象,若g (x 1)⋅g (x 2)=−4,则|x 1−x 2|的值不可能为( ) A .5π4B .3π4C .π2D .π4【答案】C 【解析】∵f (x )=√3sin2x −cos2x =2sin (2x −π6),∴g (x )=2sin (4x −π6), ∴g (x )的最小正周期T =2π4=π2,∵g (x )max =2,g (x )min =−2,又g (x 1)⋅g (x 2)=−4, 不妨设g (x 1)=2,g (x 2)=−2∴x 1与x 2分别对应g (x )的最大值点和最小值点, ∴|x 1−x 2|=T2+kT =π4+kπ2(k ∈Z );当k =2时,|x 1−x 2|=5π4;当k =1时,|x 1−x 2|=3π4;当k =0时,|x 1−x 2|=π4 故选:C9.已知函数f (x )=sin (2x +φ)(0<φ<π2),若把f (x )的图像向左平移π12个单位后为偶函数,则φ=( ) A .−π6 B .−π3C .5π12D .π3【答案】D 【解析】由题意得:g (x )=f (x +π12)=sin (2x +π6+φ).∵g (x )为偶函数,∴π6+φ=π2+kπ(k ∈Z ),解得:φ=π3+kπ(k ∈Z ). ∵0<φ<π2, ∴φ=π3. 故选:D .10.已知△ABC ,则“sin A +cos A <1”是“△ABC 是钝角三角形”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】解:△ABC 中,0<A <π,∵sinA +cosA =√2sin(A +π4)<1,∴sin(A +π4)<√22,∵ π4<A +π4<π+π4,∴A +π4>3π4,∴A >π2,所以△ABC 是钝角三角形,充分性成立; 若△ABC 是钝角三角形,角A 不一定是钝角,反例:A =π6,此时sin A +cos A =sin π6+cos π6>1,必要性不成立; 故选:A.11.在△ABC 中,a =2,b =√3,A =2B ,则cosB =______.【答案】√33【解析】 解:在△ABC 中,由正弦定理可得asinA =bsinB , 即2sin2B=√3sinB ,即22sinBcosB =√3sinB , 所以cosB =√33.故答案为:√33.12.若sinαcosβ−cosαsinβ=cos60∘,请写出一组符合题意的α、β___________.【答案】α=45°、β=15°(答案不唯一)【解析】解:因为sinαcosβ−cosαsinβ=sin(α−β),cos60∘=cos(90∘−30∘)=sin30∘,所以sin(α−β)=sin30∘,所以α−β=30°+k×360°,k∈Z或α−β=150°+k×360°,k∈Z,不妨令α=45°、β=15°;故答案为:α=45°、β=15°(答案不唯一)13.已知△ABC的三个角A,B,C的对边分别为a,b,c,则能使cosAcosB =ba成立的一组A,B的值是________.【答案】A=B=π6(答案不唯一)【解析】由正弦定理得:a=2RsinA,b=2RsinB,∵cosAcosB =ba,∴cosAcosB=sinBsinA,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∵A∈(0,π),B∈(0,π)∴A=B=π6(答案不唯一).故答案为:A=B=π6(答案不唯一).14.若函数y=sin(2ωx+π3)的图像向右平移π6个单位长度后与函数y=cos(2ωx+π4)的图象重合,则ω的一个可能的值为___________;【答案】−54(答案不唯一)【解析】解:将函数y=sin(2ωx+π3)的图像向右平移π6个单位长度后,得到函数y=sin[2ω(x−π6)+π3]=sin(2ωx−πω3+π3)=sin[(2ωx−πω3−π6)+π2]=cos(2ωx−πω3−π6)的图像,即y=cos(2ωx−πω3−π6)与函数y=cos(2ωx+π4)的图像重合,即−πω3−π6=π4+2kπ,k ∈Z ,所以ω=−6k −54,k ∈Z ,故答案为:−54(答案不唯一).15.已知函数y =sin(ωx +φ)(ω>0)与直线y =12的交点中,距离最近的两点间距离为π3,那么此函数的周期是___________. 【答案】kπ且k ∈Z 【解析】根据正弦型函数的周期性,当sin(ωx +φ)=12,则: 若ωx 1+φ=π6,最近的另一个值为ωx 2+φ=5π6,所以ω(x 2−x 1)=2π3,而x 2−x 1=π3,可得ω=2. 故此函数的最小正周期是2πω=π,则函数的周期为kπ且k ∈Z . 故答案为:kπ且k ∈Z16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知acosB =√3bsinA . (1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求△ABC 的面积. 条件①:a =3;条件②:b =2√2;条件③:cosC =−23;条件④:c =2. 【答案】(1)B =π6 (2)答案不唯一,见解析 【解析】(1)解:由acosB =√3bsinA 及正弦定理可得sinAcosB =√3sinAsinB ,∵A 、B ∈(0,π),则sinA >0,cosB =√3sinB >0,∴tanB =√33,故B =π6.(2)解:若选①②,由余弦定理可得b 2=a 2+c 2−2accosB ,即c 2−3√3c +1=0, 解得c =3√3±√232,此时,△ABC 不唯一;若选①③,已知a =3,B =π6,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26,由正弦定理b sinB =asinA 可得b =asinB sinA=9(√15+2)11, 所以,S △ABC =12absinC =12×3×9(√15+2)11×√53=45√3+18√522;若选①④,已知a =3,B =π6,c =2,此时△ABC 唯一,S △ABC =12acsinB =32;若选②③,已知b =2√2,B =π6,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26, 由正弦定理bsinB =csinC 可得c =bsinC sinB=4√103, 所以,S △ABC =12bcsinA =20√3−8√59;若选②④,已知b =2√2,B =π6,c =2,由余弦定理可得b 2=a 2+c 2−2accosB ,可得a 2−2√3a −4=0, ∵a >0,解得a =√3+√7,此时,△ABC 唯一,S △ABC =12acsinB =√3+√72;若选③④,已知B =π6,c =2,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26, 由正弦定理bsinB =csinC 可得b =csinB sinC=3√55,S △ABC =12bcsinA =5√3−2√510. 17.在 △ABC 中,c =√7,且 △ABC 同时满足条件①、条件②、条件③、条件④这四个条件中的三个,请选择三个条件并解答下列问题: (1)求边 b ; (2)求 S △ABC .条件① a +b =5; 条件②sin B =√217;条件③bcosB =4√77; 条件④cos A =√714.【答案】(1)答案见解析; (2)答案见解析; 【解析】(1)选①②③,因为sin B =√217,bcosB =4√77,所以cosB =√1−sin 2B =4√77,b =1,选②③④,因为sin B =√217,bcosB =4√77, 所以cosB =√1−sin 2B =4√77,b =1,选①②④,因为cos A =√714可得sinA =√1−cos 2A =3√2114, 由正弦定理可得asinA =bsinB ,所以a ×√217=b ×3√2114, 所以a =32b ,又a +b =5,所以b =2, 选①③④,因为bcosB =4√77,又cosB =a2+c 2−b 22ac所以b(a 2+c 2−b 2)=2ac 4√77,又c =√7,所以b(a2+7−b 2)=8a ,又a +b =5,所以b =2,a =3(2)选①②③,由(1) b =1,又a +b =5,所以a =4, 所以S △ABC =12acsinB =12×4×√7×√217=2√3,选②③④,由cos A =√714可得sinA =√1−cos 2A =3√2114, 由正弦定理可得asinA =bsinB ,又b =1,sin B =√217, 所以a =32,所以S △ABC =12acsinB =12×32×√7×√217=3√34, 选①②④,由(1)b =2,因为a +b =5, 所以a =3,所以S △ABC =12acsinB =12×3×√7×√217=3√32, 选①③④,由(1) b =2,因为a +b =5,所以a =3, 所以cosB =2√77,sinB =√1−cos 2B =√217,所以S △ABC =12acsinB =12×3×√7×√217=3√32, 18.在△ABC 中,√3sin(B +π6)=−cos(B +π6). (1)求B 的值;(2)给出以下三个条件:①a 2−b 2+c 2+3c =0;②a =√3,b =1;③S △ABC =15√34,若这三个条件中仅有两个正确,请选出正确的条件并回答下面问题: (i )求sinA 的值;(ii )求∠ABC 的角平分线BD 的长. 【答案】(1)B =2π3;(2)(i )sinA =3√314,(ii )BD =158.【解析】(1)由题设√3sin(B +π6)+cos(B +π6)=2sin(B +π3)=0,而π3<B +π3<4π3,所以B +π3=π,故B =2π3.(2)若①②正确,则c 2+3c +2=(c +1)(c +2)=0,得c =−1或c =−2, 所以①②有一个错误条件,则③是正确条件, 若②③正确,则S △ABC =12absinC =15√34,可得sinC =152>1,即②为错误条件;综上,正确条件为①③,(i )由2accosB =a 2+c 2−b 2,则c(3−a)=0,即a =3, 又S △ABC =12acsinB =15√34,可得c =5,所以9−b 2+25+15=0,可得b =7,则asinA =bsinB =√3,故sinA =3√314, (ii )由角平分线的性质知:AD =58×7=358且∠ABD =π3, 在△ABD 中BD sinA =AD sin∠ABD ,则BD =158.19.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知acosB =√3bsinA . (1)求角B 的大小;(2)从以下3个条件中选择2个作为己知条件,使三角形存在且唯一确定,并求△ABC 的面积. 条件①:a =3;条件②:b =2√2;条件③:cosC =−23;④c =2 【答案】(1)B =π6(2)答案见解析【解析】(1)由acosB =√3bsinA 和正弦定理得sinAcosB =√3sinBsinA ,因为0<A <π,所以sinA ≠0,所以cosB =√3sinB >0,tanB =√33,因为0<B <π,所以B =π6. (2)若选条件①:a =3;条件②:b =2√2,由(1)B =π6, 由余弦定理得(2√2)2=32+c 2−2×3c ×√32,解得c =3√3±√232, 因为答案不唯一,所以舍去.若选条件②:b =2√2;条件③:cosC =−23;由(1)B =π6, 因为cosC =−23,0<C <π,所以sinC =√53,由正弦定理得√53=2√212,解得c =4√103,由余弦定理得(4√103)2=8+a 2+2×2√2a ×23,解得a =2√30−4√23, 则△ABC 的面积为S =12absinC =20√3−8√59; 若选条件①:a =3;条件③:cosC =−23;由(1)B =π6, 因为cosC =−23,0<C <π,所以sinC =√53,所以sinA =sin (π−B −C )=sinBcosC +cosBsinC =12×(−23)+√32×√53=√15−26, 由正弦定理得√53=√15−26,解得c =30√3+12√511,则△ABC 的面积为S =12absinC =45√3+18√522. 若选条件①:a =3; ④c =2,由(1)B =π6, 则△ABC 的面积为S =12acsinB =32.若选条件②:b =2√2;④c =2,由(1)B =π6, 由余弦定理得(2√2)2=4+a 2−2×2a ×√32,解得a =√3+√7,则△ABC 的面积为S =12acsinB =12×2×(√3+√7)×12=√3+√72.若选条件③:cosC =−23;④c =2,由(1)B =π6,因为cosC =−23,0<C <π,所以sinC =√53,所以sinA =sin (π−B −C )=sinBcosC +cosBsinC =12×(−23)+√32×√53=√15−26, 由正弦定理得√53=√15−26,解得a =5√3−2√55, 则△ABC 的面积为S =12acsinB =12×2×5√3−2√55×12=5√3−2√510. 20.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a −2c )cosB +bcosA =0. (1)求B ;(2)从以下条件中选择两个,使△ABC 存在且唯一确定,并求△ABC 的面积. ①若a =5;②b =3;③C =2π3;④△ABC 的周长为9.【答案】(1)B =π3; (2)选①④,面积为9√34.【解析】(1)因为(a −2c )cosB +bcosA =0,由正弦定理得(sinA −2sinC)cosB +sinBcosA =0, 2sinCcosB =sinAcosB +sinBcosA =sin(A +B)=sinC , 三角形中sinC ≠0,所以cosB =12,B ∈(0,π),所以B =π3; (2)因为B =π3,所以0<C <2π3,因此条件③不能确定三角形;若已知①②,则由正弦定理得sinA =asinB b=5sin π33=5√36>1,无解;若已知①④,即a =5,a +b +c =9,则b +c =4<a ,与三角形的性质矛盾,三角形不存在. 所以只有条件②④能确定三角形.b =3,a +b +c =9,则a +c =6,由(1)B =π3,b sinB=a sinA=c sinC=a+c sinA+sinC,即3sin π3=6sinA+sinC ,所以sinA +sinC =√3,sinA +sinC =sinA +sin(2π3−A)=sinA +sin 2π3cosA −cos2π3sinA =32sinA +√32cosA =√3sin(A +π6)=√3,sin(A +π6)=1,又A ∈(0,2π3),所以A =π3,从而C =π3, △ABC 为等边三角形,唯一确定,面积为S =12×32×sin π3=9√34.。
专题03导数2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题03 导数选填题一、选择题1.(2022年全国甲卷理科·第6题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A 1-B .12-C .12D .1【答案】B解析:因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a bf x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B .【题目栏目】导数\导数的应用\导数与函数的最值\含参函数的最值问题【题目来源】2022年全国甲卷理科·第6题2.(2022新高考全国I 卷·第7题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a<<C .c a b <<D .a c b<<【答案】C解析: 设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1()(0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,.当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x -<<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =, 所以当01x <<-时,()0h x <,所以当01x <<-时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C .【题目栏目】导数\导数的应用\导数与函数的最值\具体函数的最值问题【题目来源】2022新高考全国I 卷·第7题3.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e ab <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-,由题意可知,点(),a b 在直线()1t t y e x t e +-上,可得()()11t t tb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2021年新高考Ⅰ卷·第7题4.(2021年高考全国乙卷理科·第10题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A a b < B .a b >C .2ab a <D .2ab a >【答案】D解析:若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x的图象如下图所示:.由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.【题目栏目】导数\导数的应用\导数与函数的极值\含参函数的极值问题【题目来源】2021年高考全国乙卷理科·第10题5.(2020年高考数学课标Ⅰ卷理科·第6题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( )A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2020年高考数学课标Ⅰ卷理科·第6题6.(2020年高考数学课标Ⅲ卷理科·第10题)若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D解析:设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2020年高考数学课标Ⅲ卷理科·第10题7.(2019年高考数学课标Ⅲ卷理科·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a eb -==-【答案】【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e -=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =-,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
2013高考数学试题分类汇编:专题15 算法框图(解析版)

专题15 算法框图一、选择题:1.(山东省青岛一中2013届高三1月调研理)阅读右面的程序框图,则输出的S =A .14B .30C .20D .552. (山东省青岛即墨市2013届高三上学期期末考试理9)如果执行下面的程序框图,输出的S=110,则判断框处为A.10<k ?B.11≥k ?C. 10≤k ?D.11>k ?【答案】C【解析】由程序可知该程序是计算(22)242(1)2k k S k k k +=+++==+ ,由(1)110S k k =+=得10k =,则当10k =时,110111k k =+=+=不满足条件,所以条k≤,选C.件为10二、填空题:3. (山东省济南市2013年1月高三上学期期末理14)已知程序框图如右图所示,则输出的i=;4.(山东省德州市2013年1月高三上学期期末校际联考理14)执行如图所示程序框图,输出结果S= 。
【好题回顾】1.(山东省临沂市2012年高三第二次模拟试题理6)执行如图的程序框图,如果输入8p=,则输出的S=(A)6364(B)12764(C)127128(D)2551282.(山东省青岛市2012年高三第二次模拟试题理科6)执行如图所示的程序框图,若输出的b的值为31,则图中判断框内①处应填A.3B.4C.5D.63.(2012年山东省泰安一模理科10)执行如图所示的程序框图,输出的S值为-A.3B.—6C.10D.154. (山东实验中学2012届高三第一次诊断性考试理14)阅读右侧的程序框图,输出的结果S的值为_______5. (山东省2012年济南市二模理科14)如果执行右面的程序框图,那么输出的S= .。
专题14 三角函数选填题-【2023高考必备】2013-2022十年全国高考数学真题分类汇编

()
A. 表高B. 表高
A.346B.373C.446D.473
11.(2020年高考数学课标Ⅰ卷理科·第9题)已知 ,且 ,则 ()
A. B. C. D.
12.(2020年高考数学课标Ⅰ卷理科·第7题)设函数 在 的图像大致如下图,则f(x)的最小正周期为()
()
A. B. C. D.
13.(2020年高考数学课标Ⅱ卷理科·第2题)若α为第四象限角,则()
C. D.
34.(2014高考数学课标2理科·第4题)钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=()
A.5B. C.2D.1
35.(2014高考数学课标1理科·第8题)设 , ,且 ,则()
A. B. C. D.
二、多选题
36.(2022新高考全国II卷·第9题)已知函数 的图像关于点 中心对称,则()
B.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
C.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
D.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
25.(2017年高考数学课标Ⅲ卷理科·第6题)设函数 ,则下列结论错误的是()
A. 的一个周期为 B. 的图像关于直线 对称
C. 的一个零点为 D. 在 单调递减
专题02 函数-【2023高考必备】2013-2022十年全国高考数学真题(全国通用版)(原卷版)

C.2.5天D.3.5天
7.(2020新高考II卷(海南卷)·第8题)若定义在 的奇函数f(x)在 单调递减,且f(2)=0,则满足 的x的取值范围是()
A. B.
C. D.
8.(2020新高考II卷(海南卷)·第7题)已知函数 在 上单调递增,则 的取值范围是()
A. B. C. D.
A.10名B.18名C.24名D.32名
18.(2020年高考数学课标Ⅲ卷理科·第12题)已知55<84,134<85.设a=log53,b=log85,c=log138,则()
A a<b<cB.b<a<cC.b<c<aD.c<a<b
19.(2020年高考数学课标Ⅲ卷理科·第4题)Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型: ,其中K为最大确诊病例数.当I( )=0.95K时,标志着已初步遏制疫情,则 约为()(ln19≈3)
49.(2015高考数学新课标1理科·第13题)若函数 为偶函数,则
50.(2014高考数学课标2理科·第15题)已知偶函数 在 单调递减, .若 ,则 的取值范围是__________.
51.(2013高考数学新课标1理科·第16题)若函数 = 的图像关于直线 =-2对称,则 的最大值是______.
A B
()
C D
41.(2014高考数学课标1理科·第3题)设函数 , 的定义域都为R,且 是奇函数, 是偶函数,则下列结论正确的是()
A. 是偶函数B.| | 是奇函数
C. | |是奇函数D.| |是奇函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于 ,所以 ,故
.
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2019年高考数学课标全国Ⅰ卷理科·第17题
11.(2018年高考数学课标卷Ⅰ(理)·第17题)(12分)在平面四边形 中, , , , .
(1)求 ;(2)若 ,求 .
【答案】解析:(1)在 中,由正弦定理得 .
16.(2015高考数学新课标2理科·第17题)(本题满分12分) 中, 是 上的点, 平分 , 面积是 面积的2倍.
(Ⅰ)求 ;
(Ⅱ)若 , ,求 和 的长.
【答案】
解析:(Ⅰ) , ,因为 , ,所以 .由正弦定理可得 .
(Ⅱ)因为 ,所以 .在 和 中,由余弦定理得
, .
.由(Ⅰ)知 ,所以 .
故 .
(2)由题设及(1)得 ,即 .
所以 ,故 .
由题设得 ,即 .
由余弦定理得 ,即 ,得 .
故 的周长为 .
【考点】三角函数及其变换.
【点评】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如 ,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.
【题目栏目】三角函数\正弦定ห้องสมุดไป่ตู้和余弦定理\正、余弦定理的综合应用
【题目来源】2021年新高考全国Ⅱ卷·第18题
5.(2021年新高考Ⅰ卷·第19题)记 是内角 , , 的对边分别为 , , .已知 ,点 在边 上, .
(1)证明: ;
(2)若 ,求 .
【答案】解析:
(1)由题设, ,由正弦定理知: ,即 ,
问题:是否存在 ,它的内角 的对边分别为 ,且 , ,________?
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】解析:解法一:
由 可得: ,
不妨设 ,
则: ,即 .
选择条件①的解析:
据此可得: , ,此时 .
选择条件②的解析:
据此可得: ,
则: ,此时: ,则: .
选择条件③的解析:
【题目栏目】三角函数\正弦定理和余弦定理\三角形中的面积问题
【题目来源】2017年高考数学课标Ⅱ卷理科·第17题
15.(2016高考数学课标Ⅰ卷理科·第17题)(本题满分为12分) 的内角 的对边分别为 ,已知
( )求 ;
( )若 , 的面积为 ,求 的周长.
【答案】( ) ;( )
【官方解答】( )由已知及正弦定理得:
(1)求 面积;
(2)若 ,求b.
【答案】(1)
(2)
解析:(1)由题意得 ,则 ,
即 ,由余弦定理得 ,整理得 ,则 ,又 ,
则 , ,则 ;
(2)由正弦定理得: ,则 ,则 , .
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2022新高考全国II卷·第18题
3.(2022新高考全国I卷·第18题)记 的内角A,B,C的对边分别为a,b,c,已知 .
(1)若 ,求B;
(2)求 的最小值.
【答案】(1) ;
(2) .
解析:(1)因为 ,即 ,
而 ,所以 ;
(2)由(1)知, ,所以 ,
而 , 所以 ,即有 .
所以
.
当且仅当 时取等号,所以 的最小值为 .
【题目栏目】三角函数\三角函数的综合问题
【题目来源】2022新高考全国I卷·第18题
4.(2021年新高考全国Ⅱ卷·第18题)在 中,角 、 、 所对的边长分别为 、 、 , , ..
(Ⅰ)
【基本解法1】
由题设及 ,故
上式两边平方,整理得
解得
【基本解法2】
由题设及 ,所以 ,又 ,所以 ,
(Ⅱ)由 ,故
又
由余弦定理及 得
所以b=2
【知识拓展】解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意 三者的关系,这样的题目小而活,备受老师和学生的欢迎.
∴ ,又 ,∴ ,得证.
(2)由题意知: ,
∴ ,同理 ,
∵ ,
∴ ,整理得 ,又 ,
∴ ,整理得 ,解得 或 ,
由余弦定理知: ,
当 时, 不合题意;当 时, ;
综上, .
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2021年新高考Ⅰ卷·第19题
6.(2020年新高考I卷(山东卷)·第17题)在① ,② ,③ 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求 的值;若问题中的三角形不存在,说明理由.
考点:1、三角形面积公式;2、正弦定理和余弦定理.
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2015高考数学新课标2理科·第17题
17.(2013高考数学新课标2理科·第17题) 中内角 的对边分别为 ,已知 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2018年高考数学课标卷Ⅰ(理)·第17题
12.(2017年高考数学新课标Ⅰ卷理科·第17题) 的内角 的对边分别为 ,已知 的面积为 .
(1)求A;
(2)若BC=3,求 周长的最大值.
【答案】(1) ;(2) .
解析:(1)由正弦定理可得: ,
,
,
(2)由余弦定理得: ,
即 .
(当且仅当 时取等号),
,
解得: (当且仅当 时取等号),
周长 , 周长的最大值为 .
【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.
【点评】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.
【题目栏目】三角函数\正弦定理和余弦定理\三角形中的面积问题
可得 , ,
与条件 矛盾,则问题中的三角形不存在.
解法二:∵ ,
∴ ,
,
∴ ,∴ ,∴ ,∴ ,
若选①, ,∵ ,∴ ,∴c=1;
若选②, ,则 , ;
若选③,与条件 矛盾.
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2020新高考II卷(海南卷)·第17题
8.(2020年高考数学课标Ⅱ卷理科·第17题) 中,sin2A-sin2B-sin2C=sinBsinC.
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2020年高考数学课标Ⅱ卷理科·第17题
9.(2019年高考数学课标Ⅲ卷理科·第18题) 的内角 的对边分别为 ,已知 .
(1)求 ;
(2)若 为锐角三角形,且 ,求 面积的取值范围.
【答案】(1) ;(2) .
【官方解析】
由余弦定理可知: 即
整理可得 ,解得 (舍去)或 .
(2)法一:设 ,则在 中,由勾股定理可得
在 中,有
由余弦定理可得
即 即
所以 ,解得
所以 .
法二:依题意易知
又因为 ,
所以
所以 .
法三:∵ ,
由余弦定理 .
∵ ,即 为直角三角形,
则 ,得 .
由勾股定理 .
又 ,则 ,
.
【考点】 余弦定理解三角形;三角形的面积公式
与条件 矛盾,则问题中的三角形不存在.
解法二:∵ ,
∴ ,
,
∴ ,∴ ,∴ ,∴ ,
若选①, ,∵ ,∴ ,∴c=1;
若选②, ,则 , ;
若选③,与条件 矛盾.
【题目栏目】三角函数\三角函数的综合问题
【题目来源】2020年新高考I卷(山东卷)·第17题
7.(2020新高考II卷(海南卷)·第17题)在① ,② ,③ 这三个条件中任选一个,补充在下面问题中,若问题中 三角形存在,求 的值;若问题中的三角形不存在,说明理由.
(1)求 ; (2)若 , ,求 的周长.
【答案】(1) ;(2) 的周长为 .
【分析】(1)由三角形面积公式建立等式 ,再利用正弦定理将边化成角,从而得出 的值;(2)由 和 ,计算出 ,从而求出角 ,根据题设和余弦定理可以求出 和 的值,从而可求出 的周长.
【解析】(1)由题设得 ,即 .
由正弦定理得 .
【题目栏目】三角函数\正弦定理和余弦定理\三角形中的面积问题
【题目来源】2017年高考数学新课标Ⅰ卷理科·第17题
13.(2017年高考数学课标Ⅲ卷理科·第17题)(12分) 的内角 的对边分别为 .已知 , , .
(1)求 ;
(2)设 为 边上一点,且 ,求 的面积.
【答案】(1) ;(2)
【解析】(1)由 可得 ,因为 ,故 .