运放做加法器原理的应用
运放加减电路

运放加减电路(模电实验与设计之二)学院:计算机与电子信息学院专业:00000000000 班级:000班 学号:000000000 姓名:0000一、实验目的:1、掌握集成运算放大器在线性工作条件下的使用特点;2、掌握深度负反馈条件下的虚短、虚断现象;3、掌握加法器和减法器的电路构成和特点。
二、实验主要设备和元件:万用表,双路直流稳压电源。
运算放大器:OP07 2片 电位器: RW1 10k RW2 10k RW3 10k 电阻:1K 510 3K三、实验主要任务:1、根据电路原理图,制作一个运放加减电路。
制作时,注意留出测试端口或端子,注意电位器的摆放要便于调试。
可以考虑用IC 插座,以防止不过关的焊接技术对集成运放的损害。
OP07集成运放的5脚无用,1脚和8脚在本实验中不用接。
在制作电路时,这三个脚悬空即可。
2、本实验所用的直流电源电压在9V ±到15V ±的范围内皆可,根据情况自行选择。
3、分别调节三个电位器,让133i V u V -≤≤,233i V u V -≤≤,333i V u V -≤≤。
取5个不同的、有代表性的输入组合,测量出该组合下的1o u 、2o u (o u )输出值,编制一个表格将测量结果记录下来。
同时,记录两个运放的两输入端的电位(对地电压)P u 和N u 的测量值,观察“虚短”、“虚地”现象。
在调节输入信号大小时,应该先确定1i u 和 2i u 的大小,最后确定3i u 的大小。
4、在调节电位器选择输入信号大小时,要防止1o u 和2o u 的输出值太接近电源电压。
为什么?思考得出结论后写在实验报告中。
四、实验原理:运放加减电路图第一级运算电路完成加法运算。
该电路由一个反相比例运算放大电路组成,经理论推导,可得输入、输出信号的运算关系为13121211o i i u R u u R R ⎛⎫=-+ ⎪⎝⎭,代入1231R R R k ===Ω的值,可得()112o i i u u u =-+。
运放及其典型电路

All rights reserved 版权所有,仿冒必究 Company Confidential 公司机密,不得公开
运放基本应用—比较器
带参考电压的滞回比较器电路 如下图(a)所示,同相输入端的电位为: 令uI=uN=uP,求出的uI就是阈值电压,因此得出: 当UREF>0V时,电路的传输特性如图(b)所示。
常用电路分类--环路控制(9) 环路控制(9)
双环控制
All rights reserved 版权所有,仿冒必究 Company Confidential 公司机密,不得公开
目录
运放基本应用
运放两个工作区 正/反相比例放大电路 加/减法电路 比较器电路
运放的常规应用 运放使用的一些注意事项 案例分享
All rights reserved 版权所有,仿冒必究 Company Confidential 公司机密,不得公开
运放基本应用--加/减法电路 加/减法电路
加/减法电路注意事项 为了减小偏置电流对电路的影响,运放同相输 入端和反相输入端的外围等效电阻应该相等。 电阻R1,R2和R3的阻值尽量在1千欧到1兆 欧之间选取,取值过大或过小,均可能给电路带 来负面影响。
All rights reserved 版权所有,仿冒必究 Company Confidential 公司机密,不得公开
运放基本应用--正/反相比例放大电路 正/反相比例放大电路
同相比例运算放大电路 计算关系如下: vo=(1+R3/R2)*vi; 同相比例放大电路的特点: 同相比例放大电路的输出信号与输 入信号同相,输出电压的大小与电 阻1+R3/R1值成比例。 偏置/补偿电阻R1取值近似为电阻 R2和R3的并联等效电阻。 电阻R1,R2和R3的阻值尽量在1千 欧到1兆欧之间选取,取值过大或过 小,均可能给电路带来负面影响。
运放的原理

运放的原理1. 什么是运放运放是指运算放大器,是一种电子设备,它具有高增益、差分输入和单端输出的特点。
运放的原理是利用电流或电压输入,经过放大和处理后,输出一个放大过的电流或电压信号。
运放的原理基于放大器、反馈电路和稳定性控制等方面,下面将详细探讨。
2. 运放的特点和结构运放的输入和输出特性使之能够工作在不同的电路应用中。
运放一般具有以下几个特点: - 高增益:运放的增益非常大,通常可以达到几千倍甚至几百万倍。
- 差分输入:运放具有两个输入端,允许差分输入信号,可以实现更精确的放大和处理。
- 单端输出:运放的输出通常是单端的,可以方便地连接到其他电路。
运放的基本结构包括: - 差分放大器:利用差分输入特性实现输入信号的放大。
- 频率补偿电路:用于提高运放的频率响应和稳定性。
- 输出级和电流源:用于提供输出电流和放大功能。
3. 运放的工作原理运放的工作原理可以分为放大器、反馈电路和稳定性控制三个方面。
3.1 放大器放大器是运放的基本功能,利用差分放大器实现输入信号的放大。
在运放内部,差分放大器通过放大输入信号的微小差异,使得输出信号得以放大。
3.2 反馈电路反馈电路在运放中起着重要的作用,它将输出信号的一部分经过反馈回输入端,使得运放的输出可以根据需要进行调节。
反馈电路可以分为正反馈和负反馈两种形式。
•正反馈:正反馈会使放大器产生振荡,一般不在运放中使用。
•负反馈:负反馈通过将一部分输出信号反馈到输入端,可以减小放大器的非线性失真、增加稳定性和增益等。
3.3 稳定性控制稳定性是运放的一个重要指标,主要通过电流源和频率补偿电路实现。
电流源提供运放的工作电流,频率补偿电路则用于提高运放的频率响应和防止振荡。
4. 运放的应用运放在电路设计中有广泛的应用,以下是几个常见的应用领域:4.1 模拟信号处理运放可以对模拟信号进行放大、滤波和增益控制等处理,常用于音频放大器、滤波器和调节电路等。
4.2 模拟计算运放在模拟计算器中起着重要作用,可以实现加法器、乘法器和积分器等功能。
运算放大器基本原理及应用

运算放大器基本原理及应用一. 原理(一) 运算放大器1.原理运算放大器是目前应用最广泛的一种器件;当外部接入不同的线性或非线性元器件组成输入和负反馈电路时;可以灵活地实现各种特定的函数关系..在线性应用方面;可组成比例、加法、减法、积分、微分、对数等模拟运算电路..运算放大器一般由4个部分组成;偏置电路;输入级;中间级;输出级..图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线;一般用到的只是曲线中的线性部分..如图2所示..U -对应的端子为“-”;当输入U -单独加于该端子时;输出电压与输入电压U -反相;故称它为反相输入端..U +对应的端子为“+”;当输入U +单独由该端加入时;输出电压与U +同相;故称它为同相输入端..输出:U 0= AU +-U - ; A 称为运算放大器的开环增益开环电压放大倍数.. 在实际运用经常将运放理想化;这是由于一般说来;运放的输入电阻很大;开环增益也很大;输出电阻很小;可以将之视为理想化的;这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数..2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud U +-U -;由于A ud =∞;而U O 为有限值;因此;U +-U -≈0..即U +≈U -;称为“虚短”..由于r i =∞;故流进运放两个输入端的电流可视为零;即I IB =0;称为“虚断”;这说明运放对其前级吸取电流极小..上述两个特性是分析理想运放应用电路的基本原则;可简化运放电路的计算.. 3. 运算放大器的应用 1比例电路所谓的比例电路就是将输入信号按比例放大的电路;比例电路又分为反向比例电路、同相比例电路、差动比例电路.. a 反向比例电路反向比例电路如图3所示;输入信号加入反相输入端:图3反向比例电路电路图对于理想运放;该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差;在同相输入端应接入平衡电阻R ’=R 1 // R F ..输出电压U 0与输入电压U i 称比例关系;方向相反;改变比例系数;即改变两个电阻的阻值就可以改变输出电压的值..反向比例电路对于输入信号的负载能力有一定的要求.. b 同向比例电路同向比例电路如图4所示;跟反向比例电路本质上差不多;除了同向接地的一段是反向输入端:图4 同相比例电路电路图它的输出电压与输入电压之间的关系为:; R’=R 1 // R F只要改变比例系数就能改变输出电压;且U i 与U 0的方向相同;同向比例电路对集成运放的共模抑制比要求高.. c 差动比例电路差动比例电路如图5所示;输入信号分别加在反相输入端和同相输入端:图5 差动比例电路电路图其输入和输出的关系为:i1f O U R R U -=i1fO )U R R (1U +=可以看出它实际完成的是:对输入两信号的差运算.. 2和/差电路 a 反相求和电路其电路图如图6所示输入端的个数可根据需要进行调整:图6 反相求和电路图其中电阻R'满足:它的输出电压与输入电压的关系为:它的特点与反相比例电路相同;可以十分方便的通过改变某一电路的输入电阻;来改变电路的比例关系;而不影响其它支路的比例关系.. b 同相求和电路其电路如图7所示输入端的个数可根据需要进行调整:图7 同向求和电路图它的输出电压与输入电压的关系为:它的调节不如反相求和电路;而且它的共模输入信号大;因此它的应用不很广泛.. c 和差电路其电路图如图8所示;此电路的功能是对U i1、U i2进行反相求和;对U i3、U i4进行同相求和;然后进行的叠加即得和差结果..图8 和差电路图它的输入输出电压的关系是:由于该电路用一只集成运放;它的电阻计算和电路调整均不方便;因此我们常用二级集成运放组成和差电路..它的电路图如图9所示:图9 二级集成和差电路图它的输入输出电压的关系是:⎪⎪⎭⎫⎝⎛--+=22114433f 0R U R U R U R U R U i i i i它的后级对前级没有影响采用理想的集成运放;它的计算十分方便.. 3 积分电路和微分电路 a 积分电路其电路图如图10所示:它是利用电容的充放电来实现积分运算;可实现积分运算及产生三角波形等..图10 积分电路图它的输入、输出电压的关系为:其中: 表示电容两端的初始电压值.如果电路输入的电压波形是方形;则产生三角波形输出.. b 微分电路微分是积分的逆运算;它的输出电压与输入电压呈微分关系..电路如图11所示:图11 微分电路图R u -=0它的输入、输出电压的关系为: 4 对数和指数运算电路 a 对数运算电路对数运算电路就是是输出电压与输入电压呈对数函数..我们把反相比例电路中Rf 用二极管或三级管代替级组成了对数运算电路..电路图如图12所示:图12 对数运算电路它的输入、输出电压的关系为也可以用三级管代替二极管: b 指数运算电路指数运算电路是对数运算的逆运算;将指数运算电路的二极管三级管与电阻R 对换即可..电路图如13所示:图13 指数运算电路它的输入、输出电压的关系为: 利用对数和指数运算以及比例;和差运算电路;可组成乘法或除法运算电路和其它非线性运算电路..二无源滤波电路0101=+-=⎰t c t t i u dt u RC u r iu u S I u Re 0-=滤波电路的作用:允许规定范围内的信号通过;而使规定范围之外的信号不能通过..滤波电路的分类:低通滤波器:允许低频率的信号通过;将高频信号衰减; 高通滤波器:允许高频信号通过;将低频信号衰减;带通滤波器:允许一定频带范围内的信号通过;将此频带外的信号衰减; 带阻滤波器:阻止某一频带范围内的信号通过;允许此频带以外的信号衰减;仅由无源元件电阻、电容、电感组成的滤波电路;为无源滤波电路..它有很大的缺陷如:电路小;能力差等..为此我们要学习有源滤波电路.. 三有源滤波电路有源滤波器是指利用放大器、电阻和电容组成的滤波电路;可用在信息处理、数据传输、抑制干扰等方面..但因受运算放大器频带限制;这种滤波器主要用于低频范围..1一阶有源低通滤波器其电路如图14-a 所示;它是由一级RC 低通电路的输出再接上一个同相输入比例放大器构成; 幅频特性如图14-b 所示; 通带以外以dB 20-/十倍频衰减:图14-a 一阶有源低通滤波电路 图14-b 一阶有源低通幅频特性该电路的传递函数为: 式中RC 10=ω称为截止角频率;传递函数的模为2)(1)(o vo v A j A ωωω+=幅角为00arctg ωωϕ-=)(.. 2二阶有源滤波电路为了使输出电压以更快的速率下降;以改善滤波效果;再加一节RC 低通滤波环节;称为二阶有源滤波电路..它比一阶低通滤波器的滤波效果更好..二阶有源滤波器的典型结构如图15所示:图15 二阶有源滤波器典型结构 图中;Y 1~Y 5为导纳;考虑到U P =U N ;可列出相应的节点方程式为: 在节点A 有: 在节点B 有: 联立以上二等式得:考虑到: 则:AS 即是二阶压控电压源滤波器传递函数的一般表达式..只要适当选择Y i i =1~5;就可以构成低通、高通、带通等有源滤波器..)(ba aO N P R R R U U U +=≈。
实验六 集成运算放大器的应用模拟运算

实验六 集成运算放大器的应用(一)模拟运算电路预习部分一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。
它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。
⑧脚为空脚。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
1) 反相比例运算电路电路如图2-7-2所示。
对于理想运放, 该电路的输出电压与输入电压之间的关系为Uo =-(R F / R 1)Ui为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1‖R F 。
2) 反相加法电路图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路电路如图2-7-3所示,输出电压与输入电压之间的关系为F i Fi F O //R //R R R U R R U R R U 2132211=⎪⎪⎭⎫ ⎝⎛+-= 图2-7-1 μA741管脚图3) 同相比例运算电路图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。
图中R 2=R F ,用以减小漂移和起保护作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
(a) 同相比例运算电路 (b) 电压跟随器图2-7-4 同相比例运算电路4) 差动放大电路(减法器)对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路反相积分电路如图2-7-6所示。
lm741加法器工作原理

lm741加法器工作原理LM741加法器是一种电子电路,用于将两个输入信号相加并输出其和。
其工作原理如下:1. 输入阶段:LM741加法器有两个输入引脚(称为Vin+和Vin-),分别用于连接两个输入信号。
这两个输入信号可以是直流电压、交流信号或脉冲信号。
2. 反馈电阻:在LM741加法器的负输入引脚(Vin-)和输出引脚之间连接了一个电阻(称为反馈电阻),通常为一个负反馈电阻。
3. 运算放大器:LM741加法器中使用了一个运算放大器。
运算放大器是一种放大输入信号并产生放大输出信号的电子设备。
在LM741加法器中,运算放大器的输出引脚(Vout)连接到输出信号引脚,以输出两个输入信号的和。
4. 叠加电路:通过在输入信号引脚和输出信号引脚之间添加适当的电阻和电容,可以实现对输入信号的放大和滤波。
当两个输入信号被连接到LM741加法器的输入引脚上时,它们通过反馈电阻与运算放大器连接。
运算放大器将其输入信号的加权和作为输出信号进行放大。
输出信号的放大倍数取决于运算放大器的增益。
LM741加法器的输出信号等于两个输入信号的加权和加上反馈电阻与运算放大器的输出电压之间的产品。
在加法器中,输入信号的加权和决定了输出信号的大小和方向。
如果两个输入信号大小相等,且方向相反,输出信号将为零。
如果两个输入信号大小相等,且方向相同,输出信号将是两个输入信号的加倍。
需要注意的是,LM741加法器是一个理想化的模型,实际的电路可能会受到电源电压、电阻、电容、运算放大器的非线性等因素的影响,因此在实际应用中可能需要进行适当的校准和调整。
反相加法器

课题:集成运放反相加法器日期: 2013年1月9日星期三授课人:魏尚来授课班级:10对口电子课时:1节课型:考核课教学三维目标:知识与技能目标:1.熟记集成运放的理想特性。
2.掌握反相加法器的原理分析。
3.能够熟练的运用加法器设计电路。
过程与方法:教师讲授与学生练习相结合;师生互动。
情感与价值观:通过加法器的教学培养学生理论联系实际思想。
教学重点:反相加法器的原理分析教学难点:对虚地的理解以及输出电压的符号。
教学过程:一:集成运放的理想特性1. 开环差模电压增益无穷大,A vd ∞;2. 差模输入阻抗无穷大,r id ∞;3. 输出阻抗为零,r o=0;4. 共模抑制比无穷大,K CMR∞5.开环频带宽度无穷大,BW 0 ∞;二:集成运放反相加法器1. 电路的组成和电路图的画法如图1输入信号电压V i1、V i2经过R1、R2加到运放的反相输入端V n和地之间,输出电压通过R f反馈到反相输入端V n,同相端通过R p接地。
图12.虚地差模输入电压:v id =(Vp -V n )=vd o A v 由于开环差模电压增益A vd 无穷大可得v id =Vp -V n=0即 Vp =V n 。
由于输入阻抗无穷大输入电流为零,所以R p 上无压降,即Vp 接地。
由于Vp =V n 所以N 点电压也为零,所以称为虚地。
3.原理R 1上的电流为i 1,R 2上的电流为i 2,R f 上的电流为i f 由于虚地以及输入电流r i 为0可对反相输入节点列出电流方程式:i 1+i 2=i f即fn o n i n i R V V R V V R V V -=-+-2211 得 foi i R V R V R V -=+2211 由此得2211i f i fo V R R V R R V +=-这就是加法运算的表达式,式中的负号是应为反相输入所引起的。
若R 1=R 2=R f则 -V o =V i1+V i2在输出级再加一级反相电路就可消去负号,实现完全符合常规的算术加法,而且还可以扩展多个输入电压相加。
运算放大器的8种应用电路

运算放大器8种应用电路1.电压跟随器电压跟随器(也称为缓冲器)不会放大或反相输入信号,而是在两个电路之间提供隔离。
输入阻抗很高,而输出阻抗很低,避免了电路内的任何负载效应。
当输出直接连接回输入之一时,缓冲器的总增益为+1且Vout = Vin。
2.放大器反相器反相器,也称为反相缓冲器,与先前的电压跟随器相反。
如果两个电阻相等,则反相器不会放大,但会反相输入信号。
输入阻抗等于R,增益为-1,给出Vout = -Vin。
同相放大器不会对输入信号进行反相或产生反相信号,而是以(RA+ RB)/RB或通常为1+(RA/RB)的比率进行放大。
输入信号连接到同相(+)输入。
4.反相放大器反相放大器同时以-RA/RB的比率对输入信号进行反相和放大。
放大器的增益由使用反馈电阻RA的负反馈控制,输入信号被馈送到反相(-)输入。
上面的反相和同相放大器电路可以连接在一起以形成桥式放大器配置。
输入信号是两个运放共用的,输出电压信号跨接在负载电阻R L两端,该电阻在两个输出之间浮动。
如果两个运放增益A1和A2的大小彼此相等,则输出信号将加倍,因为它实际上是两个单独的放大器增益的组合。
6.电压加法器加法器,也称为求和放大器,产生与输入电压V1和v2之和成比例的反相输出电压。
可以汇总更多输入。
如果输入电阻的值相等(R1=R2=R),则总输出电压为给定值,增益为+1。
如果输入电阻不相等,则输出电压为加权和,并变为:Vout =-(V1(RA / R1)+ V2(RA / R2)+等)7.电压减法器减法器也称为差分放大器,它使用反相和同相输入来产生输出信号,该信号是两个输入电压V1和V2之差,从而允许一个信号与另一个信号相减。
如果需要,可以添加更多的输入以将其减去。
如果电阻相等(R=R3和RA=R4),则输出电压为给定值,电压增益为+1。
如果输入电阻是不相等的电路变得放大器时产生负输出的差分V1高于V2和正输出时V1低于V2。
8.电压比较器比较器有许多用途,但最常见的是将输入电压与参考电压进行比较,如果输入电压高于参考电压,则切换输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运放做加法器原理的应用
1. 什么是运放?
运放 (Operational Amplifier) 是一种重要的电子器件,常用于模拟电路和数字
电路中。
它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、计算等各方面。
2. 运放的基本原理
运放是由差模放大器和电压跟随器组成的,其基本原理如下:
•差模放大器:差模放大器接收两个输入信号,分别为非反相输入和反相输入,将两个输入信号相比较,得到差值,并经过放大输出。
•电压跟随器:电压跟随器将输入信号与输出信号进行等效,实现高输入阻抗和低输出阻抗。
3. 运放作为加法器的应用
运放可以被用作加法器,将多个输入信号相加并输出其和。
运放作为加法器的
应用可以分为以下几个方面:
3.1 加法器的基本原理
•运放加法器通过将多个输入信号分别连接到非反相输入端,然后将它们的电流通过电阻连接到反相输入端,实现信号的相加。
•加法器的输出信号是输入信号的代数和,即将多个输入信号相加。
•运放加法器的输出电压可以用以下公式表示:
Vout = -(Rf/R1)*Vin1 - (Rf/R2)*Vin2 - ...
其中,Vout为输出电压,Vin1、Vin2等为输入信号电压,Rf为反馈电阻,R1、R2等为输入电阻。
3.2 加法器的应用场景
a) 信号合成
•运放加法器可以将多个输入信号合成为一个信号。
•在音频处理中,可以将多个音频信号混合为一个音频输出。
•在图像处理中,可以将多个图像信号合成为一个图像输出。
b) 数据计算
•运放加法器可以用于各种计算,如模拟计算器、数据采集系统等。
•在模拟计算器中,可以将多个输入信号进行求和、平均值计算等。
•在数据采集系统中,可以将多个传感器的数据进行求和、均值计算等。
c) 增益调节
•运放加法器可以通过调整输入信号的比例来改变输出信号的幅值。
•可以通过改变输入电阻的数值来调整输出信号的增益。
•在音频放大器中,可以通过调整输入信号的电平来控制音频输出的音量。
4. 运放加法器的设计和实现
4.1 电路设计
•运放加法器的电路设计主要包括选择合适的运放芯片、确定电阻的数值和封装等。
•需要根据输入信号的幅值范围、电压供应等条件来选择适合的运放芯片。
•选择合适的电阻数值可以根据输入信号的幅值和运放的放大倍数来确定。
4.2 电路实现
•运放加法器的电路实现需要根据电路设计的要求进行连接和布线。
•将输入信号分别连接到非反相输入端,并通过电阻连接到反相输入端。
•选择合适的反馈电阻和输入电阻,根据公式计算输出电压。
5. 结论
运放作为加法器的应用在信号合成、数据计算和增益调节等方面发挥着重要作用。
通过选择合适的运放芯片、电阻数值和连接方式,可以设计和实现不同类型的加法器电路。
对于实际应用中需要对多个输入信号进行处理的场景,运放加法器是一种简单、灵活、高效的解决方案。
以上就是运放做加法器原理的应用的相关内容,希望对您有所帮助。