七年级下册数学专题:三角形全等专题复习

合集下载

七年级下册数学全等三角形证明题

七年级下册数学全等三角形证明题

七年级下册数学全等三角形证明题
1. 给定三角形ABC,其中∠BAC=90度,AD是BC上的中线。

证明:△ABD≌△ACD。

证明:
因为∠BAD=∠CAD,而又AD=AD(公共边),所以△ABD≌△ACD (SAS)。

2. 给定四边形ABCD,其中AB=BC,CD=DA,BD是AC的中线。

证明:△ABD≌△CBD,△BCD≌△DAB。

证明:
因为BD是AC的中线,所以BD=1/2AC。

又因为AB=BC,CD=DA,所以△ABD≌△CBD(SAS),△BCD≌△DAB(SAS)。

3. 给定三角形ABC和点D,使得∠BAD=∠ACD。

证明:
△ABD≌△ACD。

证明:
因为∠BAD=∠ACD,而又共有一边AD,所以△ABD≌△ACD(AAS)。

4. 给定三角形ABC和点D,使得AC=CD,∠ACB=∠ADB。

证明:△ACB≌△ADB。

证明:
由AC=CD可知∠ADC=∠ACD。

所以
∠ADB=∠ACB+∠ACD=∠ADB+∠ADC,即∠ADC=0。

因此,D与B重合,且AB=AB,AC=AD,所以△ACB≌△ADB(SSS)。

5. 给定三角形ABC和点D,使得AB=BD,CD是BC的中线。

证明:△ABD≌△ACD。

证明:
因为CD是BC的中线,所以CD=1/2BC。

又因为AB=BD,所以
∠ABD=∠ADB。

因此,△ABD≌△ACD(SAS)。

七年级下册数学之全等三角形的性质及判定练习题及答案

七年级下册数学之全等三角形的性质及判定练习题及答案

全等三角形的性质及判定(导学案)知识过关1. “完全重合”的意思是“形状相同、大小相等”,下列图形能够完全重合吗,为什么?①把长方形纸片对折再沿折痕剪开,重叠放置后,任意剪下一个三角形,从而得到的两个三角形; ②三棱柱上下底面的两个三角形;③学生用的含有30°角的三角板(带孔)中内外两个三角形; ④张贴在家中的世界地图和手机上的世界地图.1. 由____________________的三条线段_________________所组成的图形叫做三角形.三角形可用符号“________”表示.2. _____________________的两个三角形叫做全等三角形,全等用符号“_________”表示.全等三角形的__________相等,____________相等.3. 全等三角形的判定定理:______________________________.➢ 精讲精练1. 如图,△ABC ≌△DEF ,对应边AB =DE ,______________,_________,对应角∠B =∠DEF ,_________,__________.第1题图 第2题图2. 如图,△ACO ≌△BCO ,对应边AC =BC ,______________,__________,对应角∠1=∠2,____________,____________.3. 如图,△ABC ≌△DEC ,对应边___________,__________,___________,对应角_______________,_______________, ______________.4. 如图,△ABC ≌△CDA ,对应边___________,__________,___________,对应角_______________,_______________, ______________.第4题图 第5题图5. 如图,AD ,BC 相交于点O ,若AO =DO ,BO =CO ,则FEDCBAACB12ODCBA OD A EDB A_______≌_______,理由是_________.6. 如图,若AD =CB ,AB =CD ,则___________≌___________,理由是_______________;若∠B =∠D ,∠BCA =∠DAC ,则_________≌________,理由是__________.第6题图 第7题图7. 如图,某同学把一块三角形的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( ) A .带①去 B .带②去C .带③去D .①②③都带去8. 如图,AO =BO ,若加上一个条件________________________,则△AOC ≌△BOC ,理由是__________.第8题图 第9题图9. 如图,∠1=∠2,若加上一个条件_______________________,则△ABE ≌△ACE ,理由是____________.10. 如图,AD ,BC 相交于点O ,∠A =∠C ,若加上一个条件_______________,则△AOB ≌△COD ,理由是_________.11. 如图,AB =AD ,∠1=∠2,如果要使△ABC ≌△ADE ,还需要添加一个条件,这个条件可以是_________________,理由是____________; 这个条件也可以是_______________,理由是____________; 这个条件也可以是_______________,理由是____________.12. 如图,点B ,E ,C ,F 在同一直线上,在△ABC 与△DEF 中,AB =DE ,AC =DF ,若∠_____=∠_____,则△ABC ≌△DEF ,所以BC =________,因此BE =________.13. 如图,AE =BF ,AD ∥BC ,AD =BC ,则△ADF≌_________,理由是_________,因此DF =__________.ABCD③②①OBCA21E BAFEDCBA ABC DE F21E DBA O DCBA14.已知:如图,BC=DE,∠B=∠D,∠BAC=∠DAE.求证:△ABC≌△ADE.15.已知:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:△ADC≌△AEB.16.已知:如图,AB=CD,AB∥CD.求证:△ABD≌△CDB.【参考答案】知识过关①能;②能③不能;大小不相等;④不能;大小不相等1.不在同一直线上;首尾顺次相接;△2.能够完全重合;≌;对应边;对应角3.SAS,SSS,ASA,AAS➢精讲精练1.AC=DF;BC=EF;∠A=∠D;∠ACB=∠F2.AO=BO;CO=CO;∠A=∠B;∠ACO=∠BCO3.AB=DE;AC=DC;BC=EC;∠A=∠D;∠B=∠E;∠ACB=∠DCE4.AB=CD;AC=CA;BC=DA;∠B=∠D;∠BAC=∠DCA;∠BCA=∠DAC5.△AOB;△DOC;SAS6.△ABC;△CDA;SSS;△ABC;△CDA;AAS7.C8.AC=BC;SSS(答案不唯一)9.BE=CE;SAS(答案不唯一)10.AB=CD;AAS(答案不唯一)EDAEDCBADCBA11. AC =AE ;SAS ;∠B =∠D ;ASA ;∠C =∠E ;AAS 12. A ;D ;EF ;CF 13. △BCE ;SAS ;CE 14. 证明:如图,在△ABC 和△ADE 中,BAC DAE B D BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△ABC ≌△ADE (AAS ) 15. 证明:如图,在△ADC 和△AEB 中,A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩(公共角)(已知)(已知) ∴△ADC ≌△AEB (ASA ) 16. 解:如图,∵AB ∥CD ∴∠1=∠2在△ABD 和△CDB 中,1 2 AB CD BD DB =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(公共边) ∴△ABD ≌△CDB (SAS )全等三角形的性质及判定(随堂测试)1. 已知:如图,△ABC ≌△DEF ,对应边AB =DE ,___________,_________,对应角∠ABC =∠DEF ,__________,__________.DCB A21第1题图 第2题图2. 如图,∠BAD =∠CAE ,BC =DE ,若加上一个条件__________,则△ABC ≌△ADE ,理由是___________.3. 已知:如图,A ,F ,C ,D 在同一直线上,AC =DF ,AB ∥DE ,且AB =DE .求证:△ABC ≌△DEF . 【思路分析】 ①读题标注: ②梳理思路:要证全等,需要______组条件,其中必须有一组______. 由已知得,________=_________;________=_________. 根据条件_______________,得_________=___________. 因此,由__________可证两三角形全等. 【过程书写】 证明:如图,【参考答案】1. AC =DF ,BC =EF ,∠A =∠D ,∠C =∠F2. AC =AE ,SAS (答案不唯一)3. 梳理思路:3,边AC ,DF ;AB ,DE AB ∥DE ,∠A ,∠D SASE D CBAED CBAF EDCBA【过程书写】 证明:如图, ∵AB ∥DE ∴∠A =∠D在△ABC 和△DEF 中∴△ABC ≌△DEF (SAS )全等三角形的性质及判定(习题)➢ 例题示范例1:已知:如图,C 为AB 中点,CD =BE ,CD ∥BE .求证:△ACD ≌△CBE .【思路分析】 ① 读题标注:② 梳理思路:要证全等,需要三组条件,其中必须有一组边相等. 由已知得,CD =BE ;根据条件C 为AB 中点,得AC =CB ;这样已经有两组条件都是边,接下来看第三边或已知两边的 夹角.由条件CD ∥BE ,得∠ACD =∠B .发现两边及其夹角相等,因此由SAS 可证两三角形全等. 【过程书写】先准备不能直接用的两组条件,再书写全等模块.过程书写中需要注意字母对应. 证明:如图 ∵C 为AB 中点 ∴AC =CB ∵CD ∥BE ∴∠ACD =∠B 在△ACD 和△CBE 中AC DF A D AB DE =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知)ABC DEEDC BAAC CBACD B CD BE =⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(已知) ∴△ACD ≌△CBE (SAS )➢ 巩固练习1. 如图,△ABC ≌△AED ,有以下结论:①AC =AE ;②∠DAB =∠EAB ;③ED =BC ;④∠EAB =∠DAC . 其中正确的有( ) A .1个B .2个C .3个D .4个第1题图 第2题图2. 如图,B ,C ,F ,E 在同一直线上,∠1=∠2,BF =EC ,要使△ABC ≌△DEF ,还需要添加一组条件,这个条件可以是_______________,理由是_____________;这个条件也可以是_____________,理由是_____________;这个条件还可以是_____________,理由是_____________.3. 如图,D 是线段AB 的中点,∠C =∠E ,∠B =∠A ,找出图中的一对全等三角形是_______________,理由是_________.第3题图 第4题图4. 如图,AB =AD ,∠BAE =∠DAC ,要使△ABC ≌△ADE ,还需要添加一组条件,这个条件可以是_______________,理由是_____________;这个条件也可以是_____________,理由是_____________;这个条件还可以是_____________,理由是_____________.5. 如图,将两根钢条AA',BB'的中点连在一起,使AA',BB'可以绕着中点O 自由旋转,这样就做成了一个测量工具,A'B'的长等于内槽宽AB .其中判定△OAB ≌△OA'B'的理由是( ) A .SASB .ASAC .SSSD .AASEDC A21F EDCBAH G FEDCBAECD BA第5题图 第6题图6. 要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长就是AB 的长.判定△EDC ≌ △ABC 最恰当的理由是( ) A .SASB .ASAC .SSSD .AAA7. 已知:如图,M 是AB 的中点,∠1=∠2,∠C =∠D .求证:△AMC ≌△BMD . 【思路分析】 ① 读题标注: ② 梳理思路:要证全等,需要______组条件,其中必须有一组_____相等. 由已知得:_______=_______,_______=_______. 根据条件_________________,得_______=_______. 因此,由________可证两三角形全等. 【过程书写】 证明:如图8. 已知:如图,点B ,F ,C ,E 在同一条直线上,且BC =EF ,AB ∥DE ,AB =DE .求证:△ABC ≌△DEF .【思路分析】 ① 读题标注: ② 梳理思路:要证全等,需要_____组条件,其中必须有一组____相等.由已知得:_______=_______,_______=_______. 根据条件_________________,得_______=_______. 因此,由__________可证两三角形全等. 【过程书写】B'A'OBA FED C B A21MDCBA FD CBA证明:如图➢思考小结1.两个三角形全等的判定有_____,_____,_____,_____,其中AAA,SSA不能证明三角形全等,请举反例进行说明.2.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.你能说明其中的道理吗?【参考答案】➢巩固练习1.B2.AC=DF,SAS;∠B=∠E,ASA;∠A=∠D,AAS3.△BCD≌△AED,AAS4.AC=AE,SAS;∠B=∠D,ASA;∠C=∠E,AAS5.A6.B7.①略②3,边∠1,∠2;∠C,∠DM是AB的中点,AM,BMAAS【过程书写】证明:如图,∵M是AB的中点∴AM=BM在△AMC 和△BMD 中 1 2 C D AM BM ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已证) ∴△AMC ≌△BMD (AAS ) 8. ①略②3,边BC ,EF , AB ,DE AB ∥DE ,∠B ,∠E SAS【过程书写】 证明:如图, ∵AB ∥DE ∴∠B =∠E在△ABC 和△DEF 中 AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知) ∴△ABC ≌△DEF (SAS )➢ 思考小结1. SAS ,SSS ,ASA ,AAS AAA 反例:大小三角板 SSA 反例:作图略2. 证明:如图,在△ABC 和△DEC 中 AC DC ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩(已知)(对顶角相等)(已知) ∴△ABC ≌△DEC (SAS )∴AB =DE (全等三角形对应边相等) 即DE 的长度就是A ,B 间的距离。

北师版七年级数学下册第4章 专训3 判定三角形全等的四种思路 PPT课件

北师版七年级数学下册第4章 专训3 判定三角形全等的四种思路 PPT课件

所以∠DEH=∠DFH(全等三角形的对应角相等).
思路
4
实际问题中建立全等三角形模型用判定方法
4. 如图,要测量AB的长,因为无法过河接近点A,可
以在AB所在直线外任取一点D,在AB的延长线上 任取一点E,连接ED和BD,并且延长BD到点G, 使DG=BD,延长ED到点F,使DF=ED,连接FG, 并延长FG到点H,使H,D,A在一条直线上,则 HG=AB,试说明理由.
解: 补充条件:EF=BC,可使得△ABC≌△DEF.
理由如下:
因为AF=DC,点A,F,C,D在一条直线上, 所以AF+FC=DC+FC,即AC=DF. 因为BC∥EF,所以∠EFD=∠BCA. ì BC= EF, ï ï ï ï BCA= EFD, í行 在△ABC和△DEF中, ï ï ï ï î AC= DF, 所以△ABC≌△DEF(SAS).
答案不唯一.
思路
3
非三角形问题中构造全等三角形用判定方法
3. 如图是一个风筝模型的框架,由DE=DF,EH= FH,就能说明∠DEH=∠DFH.试用你所学的知识 说明理由.
解: 如图,连接DH.
ì DE= DF, ï ï ï ï í EH= FH, 在△DEH和△DFH中, ï ï ï ï î DH= DH, 所以△DEH≌△DFH(SSS).
习题课 阶段方法技巧训练(二)
专训3
判定三角形全等的 四种思路
全等三角形是初中几何的重要内容之一,是几 何入门最关键的一步,学习了判定三角形全等的几 种方法之后,如何根据已知条件说明三角形全等, 掌握说明全等的几种思路尤为重要.
思路
1
条件充足时直接用判定方法
1.【中考· 武汉】如图,AC和BD相交于点O,OA=OC, OB=OD,试说明:AB∥CD.

第12章《全等三角形》章节复习资料【1】

第12章《全等三角形》章节复习资料【1】

第12章《全等三角形》章节复习资料【1】一.选择题(共10小题)1.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【1】【2】【3】4.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC5.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是()A.50 B.62 C.65 D.686.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【4】【5】【6】7.如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=()A.120°B.135°C.115°D.125°8.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对9.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【7】【8】【9】10.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个二.填空题(共10小题)11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.【10】【11】【12】13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=.14.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.【13】【14】【16】17.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为.18.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.19.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.20.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=度.【17】【18】【19】【20】三.解答题(共8小题)21.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.23.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.25.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.27.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.第12章《全等三角形》章节复习资料【1】参考答案与试题解析一.选择题(共10小题)1.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.4.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.5.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是()A.50 B.62 C.65 D.68【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=5.5.故选B.7.如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=()A.120°B.135°C.115°D.125°【解答】解:∵△ABC≌△ADE,∠CAD=10°,∠EAB=120°,∴∠EAD=∠CAB=(∠EAB﹣∠CAD)=55°,∵∠FAB=∠CAD+∠CAB,∴∠FAB=65°,∵∠AFB+∠FAB+∠B=180°,∴∠AFB=180°﹣65°﹣25°=90°,∵∠GFD=∠AFB,∴∠GFD=90°,∵∠EGF=∠D+∠GFD,∴∠EGF=90°+25°=115°.故选C.8.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对【解答】解:连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.故选A.9.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.10.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个【解答】解:延长DA、BC使它们相交于点F.∵∠DAB=∠BCD,∠AED=∠BEC,∴∠B=∠D,又∵∠F=∠F,AB=CD,∴△FAB≌△FCD∴AF=FC,FD=FB,∴AD=BC∴△ADE≌△CBE①对同理可得②对∵AE=CE,AB=CD∴DE=BE又∵∠AED=∠BEC∴△ADE≌△CBE(SAS)③对同理可得④对连接BD,∵AD=CB,AB=CD,BD=BD,∴△ADB≌△CBD,∴∠A=∠C,∴△ADE≌△CBE,故⑤正确,故选D.二.填空题(共10小题)11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB 等(只要符合要求即可),使△AEH≌△CEB.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=132°.【解答】解:∵∠ACB=∠ECD=90°,∴∠BCD=∠ACE,在△BDC和△AEC中,,∴△BDC≌△AEC(SAS),∴∠DBC=∠EAC,∵∠EBD=∠DBC+∠EBC=42°,∴∠EAC+∠EBC=42°,∴∠ABE+∠EAB=90°﹣42°=48°,∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣48°=132°.14.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=50°.【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,∵,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故答案为:50°.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为0.7cm.【解答】解:∵AD⊥CE于D,BE⊥CD于E,∴∠E=∠ADC=90°∵AC=CB,∠ACB=90,∴∠BCE+∠ACD=90°,∠ACD+∠DAC=90°,∴∠BCE=∠ACD,∴△BCE≌△CAD,∴AD=CE=2.4,BE=CD,∴CD=CE﹣DE=2.4﹣1.7=0.7,∴BE=CD=0.7cm.故答案为0.7cm.18.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为1或4s.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.19.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.20.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=20度.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.三.解答题(共8小题)21.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.【解答】证明:∵∠BAE=∠BCE=90°,∴∠B+∠AEC=180°,而∠DEC+∠AEC=180°,∴∠B=∠DEC,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.23.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.【解答】结论:DE=BD+CE.证明:如右图,∵∠BAC=90°,∴∠EAC+∠DAB=90°,∵BD⊥DE,CE⊥DE,∴∠DAB+∠DBA=90°,∠D=∠E=90°,∴∠EAC=∠DBA,在△ABD和△CAE中,∵,∴△ABD≌△CAE,∴AD=CE,BD=AE,∴DE=AD+AE=CE+BD.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.【解答】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF;∵DE⊥AB于E,DF⊥AC于F.∴在Rt△DBE和Rt△DCF中∴Rt△DBE≌Rt△DCF(HL);∴EB=FC.25.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.【解答】猜想:DE+BF=EF.证明:延长CF,作∠4=∠1,如图:∵将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF=∠FAE,在△AGB和△AED中,,∴△AGB≌△AED(ASA),∴AG=AE,BG=DE,在△AGF和△AEF中,,∴△AGF≌△AEF(SAS),∴GF=EF,∴DE+BF=EF.证毕.26.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.27.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是CD=BE;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.【解答】解:(1)①结论:CD=BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE,∴CD=BE.②结论:AD=BE+DE.理由:∵△ACD≌△CBE,∴AD=CE,CD=BE,∵CE=CD+DE=BE+DE,∴AD=BE+DE.(2)②中的结论不成立.结论:DE=AD+BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE,∴AD=CE,CD=BE,∵DE=CD+CE=BE+AD,∴DE=AD+BE.28.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.【解答】解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意答:点P运动1或3.5或12秒时,△PEC与△QFC全等.。

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题

七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且1CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是______.2.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.3.如图,ABC 的三边AB ,BC ,CA 的长分别是10,15,20,其三条角平分线相交于点O ,连接OA ,OB ,OC ,将ABC 分成三个三角形,则::ABO BCO CAO S S S 等于__________.4.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.5.如图,BE、CF都是ABC的角平分线,且110∠=︒,则ABDC∠=___________.二、单选题6.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE≅FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE<,将ABC以点A为中心逆时针旋转得到ADE,点D在BC边上,DE交7.如图,在ABC∆中,AB AC∠=∠,其中所有正确结论的AC于点F.下列结论:∠AFE DFC△△;∠DA平分BDE∠;∠CDF BAD序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠8.如图,三条公路两两相交,现计划在∠ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是∠ABC()的交点.A.三条角平分线B.三条中线C .三条高的交点D .三条垂直平分线9.如图,Rt∠ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .2B .3C .4D .5三、解答题10.已知40AOB ∠=︒.(1)用直尺和圆规作出AOB ∠的平分线OD (不写作法,但保留作图痕迹,写出结论);(2)已知AOB ∠与BOC ∠互为补角,画出符合条件的所有可能的图形,并求出COD ∠的度数.11.如图,在由边长为1的小正方形组成的正方形网格中,一段圆弧经过网格的格点A 、B 、C .(1)请完成如下操作:∠以点O 为原点,竖直和水平方向所在的直线为坐标轴,小正方形的边长为单位长,建立平面直角坐标系; ∠用直尺和圆规画出该圆弧所在圆的圆心D 的位置,不写作法,保留作图痕迹,并连接AD 、CD .(2)请在(1)的基础上,解答下列问题:∠写出点的坐标:C ______、D ______;∠D 的半径为______(结果保留根号);∠若扇形DAC 是一个圆锥的侧面展开图,则该圆锥的底面积为______(结果保留π);∠若点E 的坐标为()7,0,试判断直线EC 与D 的位置关系,并说明理由.12.如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.13.如图,∠ABC 中,∠ACB =90°,AB =10,BC =6,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足P A =PB 时,求此时t 的值;(2)若点P 恰好在∠BAC 的平分线上,求t 的值.14.如图,在∠ABC 中,AD 是它的角平分线,且BD =CD ,DE ∠AB ,DF ∠AC ,垂足分别为E 、F ,求证:AB =AC参考答案:1.1【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C 在∠AOB 的平分线上,CD ∠OA 于点D ,且CD =1,∠CE =CD =1,即CE 长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∠PM∠OA ,PN∠OB ,PM=PN∠OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.3.2:3:4【分析】过点O 分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O 分别向BC 、BA 、AC 作垂线段交于D 、E 、F 三点.∠CO 、BO 、AO 分别平分、、ACB CBA BAC ∠∠∠∠OD OE OF == ∠12ABO SAB OE =,12△BCO S BC OD =,12△CAO S AC OF = ∠::::10:15:202:3:4ABO BCO CAO S S S AB BC AC ===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.4.15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,∠ OB 是ABC ∠的角平分线,∠ 30ABC ∠=︒, ∠1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5.40°##40度【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∠BE 、CF 都是∠ABC 的角平分线,∠∠A =180°−(∠ABC +∠ACB ),=180°−2(∠DBC +∠BCD )∠∠BDC =180°−(∠DBC +∠BCD ),∠∠A =180°−2(180°−∠BDC )∠∠BDC =90°+12∠A ,∠∠A =2(110°−90°)=40°.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.6.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∠OB 平分∠AOC∠∠AOB =∠BOC当∠DOE ∠∠FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是∠DOE ∠∠FOE 的对应边,A 不正确;B 答案中OE 与OF 不是∠DOE ∠∠FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是∠DOE ∠∠FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在∠DOE 和∠FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠DOE ∠∠FOE (AAS )∠D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∠将ABC 以点A 为中心逆时针旋转得到ADE ,∠ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故∠正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故∠正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC△△,CAE CDF∴∠=∠,CDF BAD∠=∠∴,故∠正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8.A【分析】根据角平分线的性质即可得到探照灯的位置在角平分线的交点处,即可得到结论.【详解】解:∠探照灯的位置到这三条公路的距离都相等,∠探照灯位置是∠ABC的三条角平分线上,故选:A.【点睛】此题考查了角平分线的性质,数据角平分线的性质定理是解题的关键.9.B【分析】过点D作DE∠AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用∠ABD 的面积列式计算即可得解.【详解】解:如图,过点D作DE∠AB于E,∠∠C=90°,AD平分∠BAC,∠DE=CD,∠S△ABD=12AB•DE=12×10•DE=15,解得:DE=3,∠CD=3.故选:B.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.10.(1)见解析(2)图见解析,60°或120°【分析】(1 )根据角平分线的定义作出图形即可;(2)分两种情形,分别画出图形求解即可.(1)解:如图,射线OD即为所求.(2)解:如图,∠BOC与∠AOB、∠BOC'与∠AOB都互为补角,∠∠AOB=40°,且OD平分∠AOB,∠∠BOC=140°,∠BOC'=140°,∠AOD=∠BOD=12∠AOB=20°,当射线OA在∠BOC的外侧时,∠COD=∠BOC+∠BOD=140°+20°=160°;当射线OA在∠BOC'内部时,∠C'OD=∠BOC'-∠BOD=140°-20°=120°.综上,∠COD的度数为60°或120°.【点睛】本题考查作图 复杂作图,角平分线的定义,补角的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)答案见详解(2)∠62(,);20(,);∠∠54π;∠相切,理由见详解 【分析】(1)∠根据叙述,利用正方形的网格即可作出坐标轴;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D .(2)∠利用(1)中所作的坐标系,即可表示出点的坐标;∠在Rt OAD 中,利用勾股定理即可求得半径长;∠理由直角三角形全等可证得∠ADC =90°,则可求得AC 的长度,AC 的长就是圆锥的底面圆的周长,在利用圆的周长公式即可求得答案;∠利用勾股定理逆定理证明DCE 为直角三角形即可证得DC CE ⊥,从而即可得出结论.(1)∠如图,建立平面直角坐标系;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D ,如图所示:(2)∠根据平面直角坐标系可得C (6,2);D (2,0);故答案为:C (6,2);D (2,0);∠在Rt AOD △中,90AOD ∠=︒,4AO =,2OD =,AD =故答案为:∠由∠得AD =在Rt DCF △中,90DFC ∠=︒,4DF =,2CF =,DC ∴在Rt AOD △和Rt DFC 中,AD DC OA DF=⎧⎨=⎩, ()Rt AOD Rt DFC HL ≅,DAO CDF ∴∠=∠,90DAO ADO ∠+∠=︒,90CDF ADO ∴∠+∠=︒,18090ADC ADO CDF ∴∠=︒-∠-∠=︒,AC ∴==,由2r π=,解得r =2254S r πππ∴===⎝⎭, ∴该圆锥的底面积为54π, 故答案为:54π. ∠直线EC 与D 相切,由图可知,在Rt CEF 中,90CFE ∠=︒,1EF =,2CF =,22222125CE EF CF ∴=+=+=,又由∠得DC =2220DC ==,2220525DC CE +=+=,22525DE ==,222DC CE DE ∴+=,∴DCE 为直角三角形,90DCE ∠=︒,DC CE ∴⊥,∴直线EC 与D 相切.【点睛】本题考查了不共线的三点确定圆心的方法、直线与圆相切的判定、根据平面直角坐标系写出点的坐标、勾股定理和圆锥的侧面展开图的弧长即为圆锥的底面圆的周长,垂径定理,圆锥的计算,正确求出弧长是难点.12.见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键. 13.(1)254 (2)323【分析】(1)连接PB ,在Rt ∠ABC 中,根据勾股定理得AC =6,由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得222PC BC PB +=,进行计算即可得;(2)由题意得,PC =t -8 , PB =14-t ,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°得PC =PE ,根据HL 得Rt ∠ACP ∠Rt ∠AEP ,即可得AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得222PE BE PB +=,进行计算即可得.(1)解:如图所示,连接PB ,∠在Rt ∠ABC 中,AB =10,BC =6,∠8AC =由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得:222PC BC PB +=222(8)6t t -+= 解得254t =, 即此时t 的值为254. (2)解:由题意得,PC =t -8 , PB =14-t ,如图所示,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°,∠ PC =PE ,在Rt ∠ACP 与Rt ∠AEP 中,PC PE AP AP =⎧⎨=⎩∠Rt ∠ACP ∠Rt ∠AEP (HL ),∠AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得,222PE BE PB +=,222(8)2(14)t t -+=- 解得:323t =, ∠当点P 在∠BAC 的平分线上时,t 的值为323. 【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是掌握这些知识点.14.证明见解析【分析】根据角平分线的性质得到DE=DF,证明Rt∠BDE≅Rt∠CDF(HL),根据全等三角形的性质得到结论.【详解】证明:∠AD是∠ABC的角平分线又∠DE∠AB于E,DF∠AC于F∠DE=DF,∠BED=∠CFD=90°又∠BD=CD∠Rt∠BED∠Rt∠CFD(HL)∠∠B=∠C∠AB=AC.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是掌握这些性质定理进行证明.。

七年级数学下___全等三角形证明题精选

七年级数学下___全等三角形证明题精选

七年级数学下---全等三角形证明题精选1、已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且∠B+∠D=180°,求证:AE=AD+BEABDCE 122、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。

求证:∠ACE=∠BDF 。

3. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。

求证:BF ⊥AC 。

4. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。

求证:△ABC ≌△A ’B ’C ’。

5、已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥D 于F 。

求证:OE=OF 。

ABCDEFOAB CDEFABC D A' B'C'D' 1 23 4A BCDE F O6.已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。

OB ACDE7.已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。

求证:△AEF ≌△DBC 。

A BCDEF8.如图,B ,E 分别是CD 、AC 的中点,AB ⊥CD ,DE ⊥AC 求证:AC=CD (连接AD )9.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.10、如图,已知AD 是∠BAC 的平分线, DE ⊥AB 于E , DF ⊥AC 于F , 且BE=CF , 求证: (1)AD 是△ABC 的中线;(2)AB=AC .11.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.12、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E . 求证∠CDA =∠EDB .(作CF ⊥AB )CBE D图1NMABC DEMN图2ACBEDN M图3A1 2 EF CDB13、在Rt △ABC 中,∠B AC =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G , 求证:AE =BG (平行四边形对边相等).14、如图,已知△ABC 是等边三角形,∠BDC =120º,说明AD=BD+CD 的理由15、如图,在△ABC 中,AD 是中线,BE 交AD 于F,且AE=EF,说明AC=BF 的理由。

(完整版)七年级下册数学三角形全等动点问题

(完整版)七年级下册数学三角形全等动点问题

初一数学全等三角形之动点问题专题(B类)一、考点、热点回顾动点型问题是近年来中考的一个热点问题。

动态几何问题就是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等,对运动变化过程伴随的数量关系和图形的位置关系等进行探究。

动点型问题集几何与代数知识于一体,数形结合,有较强的综合性,题目灵活多变,动中有静,动静结合,能够在运动变化中发展学生空间想象能力,综合分析能力。

《等边三角形中的动点问题》是首先从三角形一边上的单动点运动,引起三角形的边与角的变化,判断三角形的形状变化;其次探讨三角形两边上的双动点运动,引起三角形的角与边的变化,再从在三角边上运动到三角形的边的延长线上运动,由三角形的形状探究到三角形的面积的探究等。

本设计是以等边三角形为主线,点的运动引起边、角的变化,三角形的形状的判断及三角形面积的大小,抓住图形中“变”和“不变”,以“不变的”来解决“变”,以达到“以静制动”,变“动态问题”为“静态问题”来解。

对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用。

本节课的教学设计,注意到了问题的层次性,由浅入深,由简单到复杂,从给定结论到结论开放,以等边三角形为载体,动点在三角形的边、延长线上运动等问题串的形式,层层递进,环环相扣,让不同的学生都有收收获,有所成功,还体现出了分类讨论、等积变换、三角函数等思想方法。

二、典型例题1、单动点问题引例:已知,如图△ABC 是边长3cm 的等边三角形. 动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动. 设点P 的运动时间为(s ),那么t=____时,△PBC 是直角 三角形?2、双动点问题引例:已知,如图△ABC 是边长3cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点B 出发,沿BC 向点C 运动,如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),那么t 为何值时,△PBQ 是直角三角形?巩固练习,拓展思维已知,如图△ABC 是边长3cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.设运动时间为t (s ),那么 当t 为何值时,△DCQ 是等腰三角形?BCPA CQBPA QDBCPAA变式练习:1、已知,如图△ABC 是边长3cm 的等边三角形.动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),连接PC. 请探究:在点P 、Q 的运动过程中△PCD 和△QCD 的面积是否相等?变式练习:2、已知等边三角形△ABC ,(1)动点P 从点A 出发,沿线段AB 向点B 运动,动点Q 从点B 出发,沿线段BC 向点C 运动,连接CP 、AQ 交于M ,如果动点P 、Q 都以相同的速度同时出发,则∠AMP=___度。

北师大版七年级下全等三角形专题训练

北师大版七年级下全等三角形专题训练

全等三角形复习【复习巩固】1.判断三角形全等的条件有:2.角边角和角角边的区别:3.判断三角形全等的一般思路:【分组练习】一.分别指出对应顶点,对应角,对应边。

再完成练习1.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能说明△ABC≌△DEF,这个条件是( )A.∠A=∠D =EFC.∠ACB=∠F =DF变式1:如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.变式2:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.2.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )=BD B.∠CAB=∠DBA C.∠C=∠D =AD变式1:如图,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.试说明:AC=BD.变式2:如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AAS D.HL变式1:如图,AD平分∠BAC,AB=AC,那么判定△ABD≌△ACD的理由是()A.SSS B.SAS C.ASA D.AAS变式2:如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.变式3:在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC变式4:已知AB=AD给出下列条件:(1)AB=AC(2)∠CDA=∠BDADCFEBAG(3)∠CAD=∠BAD (4)∠B=∠D,若再添一个条件后,能使△ABD≌△ACD的共有()A.1个 B.2个 C.3个 D.4个4.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是( )A.∠A=∠CB.∠D=∠B ∥BC ∥BE变式1:如图,已知AB∥CD,AE=CF,则下列条件中不一定能使△ABE≌△CDF的是()A.AB=CD B.BE∥DF C.∠B=∠D D.BE=DF:变式2:如图,已知AE=DB,BC=EF,AC=DF,求证:(1)AC∥DF;(2)CB∥EF.5.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠C =AE =CE =CD变式1:如图,已知AB=AC=12 cm,AD=AE=7 cm,CD=10 cm,△ABE的周长是 .变式2:如图,AD=AE,∠C=∠B,∠CDB=55°,则∠AEB= .变式3:如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是( ):=ED B.∠BAD=∠EACC.∠B=∠ED.∠BAC=∠EAD变式4:如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,且CD=BE,△ADC与△AEB全等吗请说明理由.变式5:如图,已知AB=AC,E,D分别是AB,AC的中点,且AF•⊥BD交BD的延长线于F,AG⊥CE交CE的延长线于G,试判断AF和AG的关系是否相等,并说明理由.6.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为( )cm cm cm cm7.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD变式1:如图,AB∥CD,AD∥BC;则图中的全等三角形共有()A.5对 B.4对 C.3对 D.2对7题变式1 变式2变式2:如图,AD=BC,DC=AB,AE=CF,找出图中的一对全等三角形,并说明你的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OED CBA七年级(下)期复习(三)——三角形全等班级_____________ 姓名_____________一 全等三角形判定定理与性质 二 对称式全等1.如图,CE ⊥AB 于点E,BD ⊥AC 于点D,BD 、CE 交于O 点,且AO 平分∠BAC ,试说明OB=OC.2.如图,∠E=∠F= 090 , ∠B=∠C,AE=AF,试说明EM=FN.3.如图,在△ABC 中,AB=AC,BD 、CE 分别是∠ABC 、∠ACB 的平分线,AD ⊥BD ,AE ⊥CE ,D 、E 为垂足,BD 、CE 交于O 点.(1)求证:△AB D ≌△ACE(2)求证:OE=OD4.如图,AB=AC,点D 、E 分别在AC 、AB 上, AG ⊥BD ,AF ⊥CE ,垂足分别为是G 、F ,且AG=AF ,求证:AD=AE三 角平分线的运用10.,..180ABC AD A E F AB AC EDF BAF ∆∠∠+∠=中是的平分线,分别是上的点,且求证:DE=DF2.如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:AE+CD=AC3.已知,在四边形ABCD 中,B C >AB,DA=DC,BD 平分∠ABC,求证:∠A+∠C=1804.在△ABC 中,∠A=100°,∠ABC=40°,BD 是∠ABC 的平分线,延长BD 至E ,使DE=AD,求证:BC=AB+CEA CDE FBGCBCFEDCBA5.在五边形ABCDE 中,AB=AE,BC+DE=CD, ∠ABC+∠AED=180°,求证AD 平分∠CDE四 倍长中线法的运用1. 已知在三角形ABC 中,AB=10,BC=8,求第三边AC 边上的中线BD 的取值范围。

2. 已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图, 求证EF =2AD 。

3.已知:AD 是△ABC 的中线,AE ⊥AC ,AF ⊥AB ,且AE=AC ,AF=AB .求AD =21EF4.已知△ABC 中,AD 平分∠BAC ,E,F 分别在BD ,AD 上,DE=CD,EF=AC ,求证EF//AB五 中垂线的运用1.如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F.(1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.2、已知:如图,DE 为△ABC 的边AB 的垂直平分线,CD 为△ABC 的外角平分线,与DE 交于D ,DM ⊥BC 于M ,DN ⊥AC 于N 。

求证:AN=BM 。

CA E DGFC BAACB DB DGFE DC BA 3.如图,在△ABC 中,AD 平分BAC ∠,分别过点D 作DE AB ⊥于E ,DF AC ⊥,交AC 的延长线于F . (1)求证:△AED ≌△AFD ;(2)过D 作DG BC ⊥于G ,若BE =CF ,BG =5cm ,求BC 的长.4.如图,在ABC ∆中,AD 为BAC ∠的平分线,BC DG ⊥于G ,G 为BC 中点,AB DE ⊥于E ,AC DF ⊥交AC 的延长线于F 。

(1)求证:CF BE =;(2)如果6=AB ,4=AC ,求AE ,BE 的长。

5.如图:在△ABE 中,点C 是BE 边上的一点,连接AC ,已知AD 是∠BAC 的角平分线,EF 是AD 的垂直平分线且交AB 边于点F 。

(1)求证:△EAF ≌△EDF (2)求证:DF ∥AC(3)判断∠EAC 与∠B 相等吗?说明理由。

6.如图,已知:AB ∥CD ,∠BAE=∠DCF ,AC ,EF 相交于点M ,有AM=CM. (1)求证:AE ∥CF ;(2)若AM 平分∠FAE ,求证:FE 垂直平分AC.六:等腰三角形1、如图 AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证:AD=AE(2)连接OA ,BC ,试判断直线OA 与线段BC 的关系,并说明理由.2.如图,△ABC 中,AD 平分∠BAC ,AD 交BC 于点D ,且D 是BC 的中点.求证:AB=AC .ABE CDO3.如图所示,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于 F ,且AE=EF 。

求证:AC=BF4.如图,'AA ,'BB 分别是∠EAB ,∠DBC 的平分线.若''AA BB AB ==,∠BAC 的度数为_____________.5.如图,在四边形ABCD 中,AD//BC ,E是AB 的中点,连接DE 并延长交CB 的延长线于点F,点G 在BC 边上,且∠GDF=∠ADF. (1)求证:△ADE ≌△BFE;(2)连接EG,判断EG 与DF 的位置关系,并说明理由。

6、如图,ΔABC 中,AB=AC ,E 是AB 上一点,F 是AC 延长线上一点,连EF 交BC 于D ,若EB=CF 。

求证:DE=DF 。

7、 在△ABC 中,AD 是∠BAC 的角平分线,M 是BC 的中点,过M 作ME//AD 交BA 延长线于E ,交AC 于F ,求证:)(21AC AB CF BE +==8、如图,△ABC 中,AB =AC ,D 、E 、F 分别是BC 、AB 、AC 上的点,BD =CF ,CD =BE ,G 为EF 中点,连结DG ,问DG 与EF 之间有何位置关系?证明你的结论。

9.已知如图:AB=DE ,直线AE 、BD 相交于C ,∠B+∠D=180°,AF ∥DE ,交BD 于F ,求证:CF=CD10、在三角形ABC 中,AB=AC ,直线l 过点A ,过B 、C 分别作BC 的垂线交l 与D,E 两点,求证:AD=AEB七:等腰直角三角形1、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。

(1)求证:BF=AC; (2)求证:CE=21BF;2、如图,已知RT△ACB中,∠C=90°,AC=BC,AD=AC,DE⊥AB,垂足为D,交BC于E.求证:BD=DE=CE.3、在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于点E,又AE=,21BD求证:BD平分∠ABC4.已知等腰直角△ABC中,∠BAC=90°,直角∠EDF的顶点D是BC边上的中点,点E、F分别是AB、AC两边上的两个动点,那么在E、F运动过程中下列结论正确的是_______________。

①AE=CF ②四边形AEDF是面积不变③DF=BE④△DEF始终为等腰直角三角形⑤∠AED=∠AGF。

5.两个等腰直角三角形ABC与DEF,点E,B,C在同一条直线上,P是CE中点,探究DP与AP的关系、6.(1)在△ABC中,AD⊥BC于D,∠BCA的平分线交AB于E,交AD于F,过F作FG//BC交AB于G,AE=4,则BG=(2)在直角△ABC中,AD是斜边BC上的高,BE是∠ABC的平分线,交AC于E,交AD于F,FG⊥AD于G,求证AG=FD(3)已知,如图6,⊿ABC中,∠ACB=90 ,CD⊥AB于D,∠CAB 的平分线交CD于F,交CB于E,EG⊥AB于G,求证:EG=CF图6FGBEDAC7、(1)如图,BM、CN分别是△ABC的高,且BP=AC , QC=AB ,试判断AP和AQ的关系.(2).已知如图,在锐角△ABC中,BE,CF是高,在BE,CF或它们的延长线上分别截取CQ=AB,BP=AC,且PP`⊥BC,QQ`⊥BC,求证:PP`+QQ`=BC八:等边三角形1(1°,DE交∠C(2°,DE交∠C吗?2.如图D是等边三角形ABC内一点,AD=BD, ∠DBP=∠DBC,且BP=BA. 求:∠P的度数.3、如图,点M N,分别在正三角形ABC的BC CA,边上,且BM CN=,AM BN,交于点Q.求证:(1)AM=BN;(2)60BQM=∠.ACNQMBACPMNQBA九 动点问题1.如图,等边△ABC 的边长为6cm ,点P 在直线CA 上,动点Q 以13cm/秒的速度由B 向C 在射线BC上运动,当点P 与点A 相距4cm 时,点Q 运动_____ ___秒能使△ABP ≅△CAQ 。

2.如图,在等腰ABC △中,腰长8AB AC ==厘米,底边6BC =厘米,点D 为AB 的中点.如果点M 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点N 在线段CA 上由C 点向A 点运动.当点N 的运动速度为 厘米/秒时,能够使△BMD 与△CNM 全等.3.如图,已知△ABC 中,AB=AC=10厘米,BC=8厘米,点D 为AB 的中点,如果点P 在线段BC 上以3厘米/秒的速度由B 点向终点C 运动,同时,点Q 在线段CD 上由C 点向终点A 运动,当点Q 的运动速度为 厘米/秒时,能够使△BPD 与△CQP 全等。

4.如图,在长方形ABCD 中,AB=9cm ,BC=6cm ,点P 沿着AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿着DA 边从点D 开始向点A 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (秒)表示移动的时间(5.40≤≤t ),那么:(1)当t 为何值时,QAP ∆是等腰直角三角形;(2)设四边形QAPC 的面积为S ,写出S 与t 之间的关系式;(3)是否存在t 值,使以点Q 、A 、P 为顶点的三角形与PBC ∆全等,若存在,求出t 的值,若不存在,说明理由。

5. 如图:一动点P 在底边长为8cm ,腰长为5cm•的等腰△ABC•的底边BC•上从B•向C•以0.25cm/s 的速度运动,当点P 运动到与△ABC•的两个顶点组成等腰三角形时,求点P 运动的时间.十:截长补短 1.(1)已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C(2)如图,已知△ABC 中,∠B =2∠C ,AD 平分∠BAC 交BC 于D .求证:AC =AB +BD .(3)如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D 。

求证:①CD=AB+BD ;②若延长CB 至N ,使BN=AB ,连接AN ,是否可以证出(1)中结论?③若作AC 的中垂线分别交AC 于G ,交CD 于H ,连接AHBP C A QD B DCBCDB2.(1)如图,梯形ABCD 中,∠A= ∠D =90度, BE 、CE 均是角平分线, 求证:BC=AB+CD.(2) 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

相关文档
最新文档