小学数学全部公式定理
小学数学必背公式

小学数学必背公式必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr²圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr²圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学数学公式定理定义大全

小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O 除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学公式大全(定理和概念)

小学数学公式大全(定理部分)1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5。
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、方程式:含有未知数的等式叫方程式。
9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
小学数学公式定理定义大全

送给愿意学好数学的小朋友之—————小学数学公式定理定义第一部分:概念、定义定理1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、方程式:含有未知数的等式叫方程式。
9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
即分母乘以这个整数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学1~6年级所有数学公式!给孩子打印出来,不用再去翻书了!

不可否认数学公式是学数学的基础,也是孩子们解题的关键,数学成绩不好,不仅仅是因为基础不够牢固的原因,还有就是因为对数学学习的概念和公式掌握的不够牢固所导致的。
只要孩子们在数学计算的时候做到仔细不马虎,拿个满分并不是难事。
作为一名从教几十年的数学老师,常会有家长跟我抱怨孩子学习成绩上的问题,尤其是数学特别的糟糕,总是不及格。
即使平常做了很多习题,依然没有任何成效。
其实要想成绩好,公式的掌握一定必不可少,而小学阶段是打基础的重要阶段,成绩的好坏是其次,最重要的是培养正确的学习习惯!
所以老师针对这一情况整理出了1-6年级的全部数学公式给同学们学习,家长一定要监督孩子掌握并理解这些公式定理,相信这会在同学们的升学考试甚至以后的中考中都会发挥非常大的作用。
由于篇幅的原因,今天的内容就先给大家分享到这了,希望对你们起到了帮助!如果大家对我的文章感兴趣,也可以看看我的其他文章,关注我的头条号。
后续更精彩的内容都会给大家一一奉上!。
小学数学公式、定律大全

小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
小学三四年级数学定律公式及数量关系式

一、加减法运算:1.数字的加法运算:-加法的交换律:a+b=b+a-加法的结合律:(a+b)+c=a+(b+c)-加法的零元素:a+0=a-加法的逆元素:a+(-a)=02.数字的减法运算:-减法的补充定理:a-b=a+(-b)-减法的逆运算:a-b+b=a3.混合运算:-多个数的加减法运算:如a+b-c等。
二、乘法和除法:1.数字的乘法运算:-乘法的交换律:a*b=b*a-乘法的结合律:(a*b)*c=a*(b*c)-乘法的分配律:a*(b+c)=a*b+a*c2.数字的除法运算:-除法的逆运算:a÷b*b=a-除法的零元素:0÷a=0(其中a≠0)-除法的整除性:若a能被b整除,则a是b的倍数,b是a的约数。
三、数字与数量关系认识:1.十进制数:-十进制数的位数和数值:十分位(百分位、千分位、万分位)是十分之一(百分之一、千分之一、万分之一)十位(百位、千位、万位)是十分之十(百分之十、千分之十、万分之十)百位(千位、万位)是十分之百(千分之百、万分之百)千位(万位)是十分之千(万分之千)。
2.分数:-分数是由分子和分母组成的,分子表示几个单位,分母表示整体被分成几份。
-分数的大小比较:分数大小关系可以用大小关系运算符(<、>、=)进行比较。
3.小数:-小数点的位置决定小数的大小。
-小数点根据位数的不同,有个位小数、十分位小数、百分位小数等。
四、数学定律和公式:1.乘法的“零乘法”:0*a=0(其中a是任意实数)。
2.乘法的“一乘法”:1*a=a(其中a是任意实数)。
3.乘法的“同底数乘法”:a^m*a^n=a^(m+n)(其中a是任意实数,m和n是任意整数)。
4.除法的“除法同底原则”:a^m÷a^n=a^(m-n)(其中a是任意实数,m和n是任意整数,且a≠0)。
5.乘方的“幂运算法则”:-a^m*b^m=(a*b)^m-(a^m)^n=a^(m*n)-(a*b)^m=a^m*b^m。
小学数学必背公式全集

小学数学必背公式全集一、基础运算公式1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a5.数的相反数:a+(-a)=0二、整数运算公式1.整数的加法:a+b=c2.整数的减法:a-b=c3.整数的乘法:a×b=c4.整数的除法:a÷b=c三、小数运算公式1.小数的加法:a+b=c2.小数的减法:a-b=c3.小数的乘法:a×b=c4.小数的除法:a÷b=c四、分数运算公式1.分数的加法:a/b+c/d=(a×d+b×c)/b×d 2.分数的减法:a/b-c/d=(a×d-b×c)/b×d 3.分数的乘法:a/b×c/d=(a×c)/(b×d) 4.分数的除法:a/b÷c/d=(a×d)/(b×c)五、平方运算公式1.平方公式:(a + b)² = a² + 2ab + b²2.平方差公式:(a+b)(a-b)=a²-b²六、立方运算公式1.立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³2.立方差公式:(a + b)³ = (a³ + 3a²b + 3ab²) + b³七、二次方程公式1.一元二次方程求根公式:ax² + bx + c = 0x = (-b ± √(b² - 4ac)) / 2a八、三角函数公式1.正弦公式:sinA/a = sinB/b = sinC/c2.余弦公式:a² = b² + c² - 2bc × cosA 3.正切公式:tanA = sinA / cosA九、图形面积公式1.长方形面积公式:面积=长×宽2.正方形面积公式:面积=边长²3.三角形面积公式:面积=1/2×底×高4.正圆面积公式:面积=π×半径²十、立体体积公式1.立方体体积公式:体积=长×宽×高2.球体体积公式:体积=4/3×π×半径³3.圆柱体积公式:体积=π×半径²×高4.圆锥体积公式:体积=1/3×π×半径²×高以上是小学数学必背的公式全集,可以帮助同学们更好地掌握数学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学全部公式定理 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】 小学数学全部公式定理 一.概念 (一)整数 1、整数的意义:自然数和0都是整数。 2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物也没有,用0表示。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除:整数 a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数)。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。 6.比:两个数相除就叫做两个数的比。 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 7、比例:表示两个比相等的式子叫做比例。 8、比例的基本性质:在比例里,两个外项的积等于两个内项的积。 9、解比例:求比例中的未知项,叫做解比例。 10、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。11、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就 叫做反比例关系。 12、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。 百分数也叫做百分率或百分比。 13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 15、要学会把小数化成分数和把分数化成小数的化法。 16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公因数。(或几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做最大公因数。) 17、互质数:公约数只有1的两个数,叫做互质数。 18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的 一个叫做这几个数的最小公倍数。 19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数) 20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数) 21、最简分数:分子、分母是互质数的分数,叫做最简分数。 分数计算到最后,得数必须化成最简分数。 能被2、3、5整除的数的特征是: 个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。 个位上是0或者5的数,都能被5整除,即能用5进行约分。 如各个数位上数字和是3的倍数,这个数能被3整除。在约分时应注意利用。 22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。 24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。 1不是质数,也不是合数。 25、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应) 26、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。 27、自然数:用来表示物体个数的整数,叫做自然数。 0也是自然数。 28、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。 29、比例尺:图上距离和实际距离的比,叫做这幅图的比例尺。 图上距离:实际距离=比例尺 30、三角形内角=180度 31、平形线:在同一平面内永不相交的两条直线叫做平行线。 垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 32、分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。 异分母的分数相加减,先通分,然后再加减。 33、分数的乘法法则:用分子的积做分子,用分母的积做分母。 分数的除法法则:除以一个数等于乘以这个数的倒数。 34、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。 35、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 36、含有等号的式子叫做等式(数学术语)。等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 37、含有未知数的等式叫方程。 38、含有一未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 39、分数 把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 真分数:分子比分母小的分数叫做真分数。 假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 带分数:把假分数写成整数和真分数的形式,叫做带分数。 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 分数的加减法则: (1)同分母的分数相加减,只把分子相加减,分母不变。 (2)异分母的分数相加减,先通分,然后再加减。 分数大小的比较: (1)同分母的分数相比较,分子大的大,分子小的小。 (2)异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 分数除以整数(0除外),等于分数乘以这个整数的倒数。 一个数除以分数,等于这个数乘以分数的倒数。 甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 代数就是用字母代替数。用字母表示的式子叫做代数式。如:3x=(a+b)×c 求发芽率、出勤率、合格率、出油率、成活率…的方法都是用发芽的棵树、出勤人数、合格人数、出油重量、成活棵树等除以它们各自的总数,再乘以百分之一百。 注意:单位“1”是在“的”的前面或在“比”的后面。“问号”前面的是单位,所以个别应用题可以用带有“问号”前面的单位的数去除以单位“1”。 40.数位 41.方向:上北下南,左西右东。北与南相对,东与西相对。还分有:北,东,南,西,东北,西北,东南,西南等8个方向。 42.计量很短的时间,通常用秒。秒是比分更小的时间单位。 钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。 针面上不长不短的针是分针。分针走一小格的时间是1分。 针面上最短最细的针是时针。时针走一格的时间是1小时。 43.角 44.每个三角形至少有两个锐角;有一个直角的三角形叫做直角三角形;三个角都是锐角的三角形叫做锐角三角形;有一个钝角的三角形叫做钝角三角形;等边三角形(又称正三角形),为三边
相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构;在三角形中,有两条边相等,两个底角(底角指三角形最下面的两个角)也相等的三角形是等腰三角形。
45.两边都对称的图形叫做轴对称图形。 46.邮政编码和身份证号码的含义: 身份号码是特征组合码,由十七位数字本体码和一位数字校验码组成。排列顺序从左至右依次为:六位数字地址码,八位数字出生日期码,三位数字顺序码和一位数字校验码。 47.算盘的认识。 48.年·月·日·时 为了简明且不易出错,经常采用从0时到24时的计时法,通常叫做24时计时法。
49.线 (二)小数 1小数的意义 把整数 1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。 数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之 一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类 纯小数:整数部分是零的小数,叫做纯小数。例如:、都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。例如:、都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:、、都是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:………… 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:…………一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如:……的循环节是“9”,……的循环节是“54”。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:………… 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 例如:………… (三)分数 1分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3约分和通分 把一个分数化成同它相等但是分子、分母都比较的分数,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 (四)百分数 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。 百分数通常用"%"来表示。百分号是表示百分数的符号。 (五)行与列 竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。第4列第3行用数对表示为(4,3)。 (六)负数 0既不是正数,也不是负数。正数都大于0,负数都小于0。