高考典型例题等效重力场

合集下载

高考物理一轮复习 专题7.19 电场中的等效力场问题千题精练

高考物理一轮复习 专题7.19 电场中的等效力场问题千题精练

专题7.19 电场中的等效力场问题一.选择题1.如图所示的虚线呈水平方向,图中的实线为与虚线成30︒角的匀强电场,图中OM 与电场线垂直,且OM ON =。

现从电场中的M 点沿与虚线平行的方向抛出一质量为m 、电荷量为q +可视为质点的物体,经时间t 物体恰好落在N 点。

已知物体在M 、N 两点的速率相等,重力加速度为g 。

则下列说法错误的是A .电场的方向垂直OM 斜向下B .该匀强电场的场强为mgqC .物体由M 点到N 点的过程中电场力做功的值为2212mg tD .M 、N 两点在竖直方向的高度差为234gt【参考答案】C【名师解析】物体在M 、N 两点的速率相等,则物体在M 、N 两点的动能相等,由于重力做正功,则电场力做负功,又物体带正电,所以电场线的方向应垂直OM 斜向下,A 正确;物体由M 点运动N 点的过程中,由动能定理可得,sin 60sin 60MO ON mgx Eqx ︒=︒,由于OM ON =,解得mgE q=,B 正确;将电场力分解为沿水平方向和竖直方向的分力,则竖直方向上的分力大小为111cos602F E q mg mg ==︒=,则物体在竖直方向上的合力为F =合1322mg mg mg +=,由牛顿第二定律可知,竖直方向上的分加速度为 1.5y a g =,则物体下落的高度为221324y h a t gt ==,D 正确;由几何关系可知,物体沿电场线方向的位移大小为234x gt =,此过程中电场力做负功,则电场力做功的值为2234W Eqx mg t ==,C 错误。

二.计算题1.如图12所示,绝缘光滑轨道AB 部分是倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。

整个装置处于场强为E 、方向水平向右的匀强电场中。

现有一个质量为m 的带正电小球,电荷量为q =3mg 3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?图12【名师解析】小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=(qE )2+(mg )2=23mg 3,tan θ=qEmg=33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动。

【高考物理】题型解题技巧:08电磁学篇 等效法处理带电物体在电场中的多种运动(解析版)

【高考物理】题型解题技巧:08电磁学篇 等效法处理带电物体在电场中的多种运动(解析版)

高中物理解题技巧之电磁学篇08等效法处理带电物体在电场中的多种运动一.应用技巧1.“等效重力场”模型解法综述将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法.中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)“等效重力场”建立方法——概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系.具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积2.模型分类○1“等效重力场”中的直线运动例:如图所示,在离坡底为L的山坡上的C点树直固定一根直杆,杆高也是L.杆上端A到坡底B之间有一光滑细绳,一个带电量为q、质量为m的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角θ=30º.若物体从A点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间.(g=10m/s2,sin37º=0.6,cos37º=0.8)因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向.建立“等效重力场”如图所示“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30,大小:cos 30gg =带电小球沿绳做初速度为零,加速度为g '的匀加速运动30cos 2L S AB =①221t g S AB '=②由①②两式解得gL t 3=○2“等效重力场”中的抛体类运动例:如图所示,在电场强度为E 的水平匀强电场中,以初速度为0v 竖直向上发射一个质量为m 、带电量为+q 的带电小球,求小球在运动过程中具有的最小速度.建立等效重力场如图所示,等效重力加速度g '设g '与竖直方向的夹角为θ,则θcos gg ='其中22arcsin )()(mg qE qE+=θ则小球在“等效重力场”中做斜抛运动θsin 0v v x = θcos 0v v y =当小球在y 轴方向的速度减小到零,即0=y v 时,两者的合速度即为运动过程中的最小速度2200min sin )()(qE mg qEv v v v x +===θ○3“等效重力场”中的单摆类模型例:如图所示,在沿水平方向的匀强电场中有一固定点O ,用一根长度L =0.4m 的绝缘细绳把质量为m =0.10kg 、带有正电荷的金属小球悬挂在O 点,小球静止在B 点时细绳与竖直方向的夹角为θ=37º.现将小球拉至位置A 使细线水平后由静止释放:建立“等效重力场”如图所示,“等效重力加速度”g ',方向:与竖直方向的夹角30,大小:ggg 25.137cos =='由A 、C 点分别做绳OB 的垂线,交点分别为A'、C',由动能定理得带电小球从A 点运动到C 点等效重力做功221)sin (cos )(m C C O A O mv L g m L L g =-'=-'''θθ代入数值得4.1≈C v m/s当带电小球摆到B 点时,绳上的拉力最大,设该时小球的速度为B v ,绳上的拉力为F ,则221sin B mv L L g m =-')(θ ①Lv m g m F B2='-②联立①②两式子得25.2=F N ○4“等效重力场”中的圆周运动类模型例:如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一质量为m 的带正电,电量为Emgq 33=小球,要使小球能安全通过圆轨道,在O 点的初速度应为多大?运动特点:小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受到重力、电场力,轨道作用力,且要求能安全通过圆轨道.对应联想:在重力场中,小球先在水平面上运动,重力不作功,后在圆轨道上运动的模型:过山车.等效分析:如图所示,对小球受电场力和重力,将电场力与重力合成视为等效重力g m ',大小332)()(22mgmg qE g m =+=',33==mg qE tg θ,得︒=30θ,于是重效重力方向为垂直斜面向下,得到小球在斜面上运动,等效重力不做功,小球运动可类比为重力场中过山车模型.规律应用:分析重力中过山车运动,要过圆轨道存在一个最高点,在最高点满足重力当好提供向心力,只要过最高点点就能安全通过圆轨道.如果将斜面顺时针转过300,就成了如图3-3所示的过山车模型,最高点应为等效重力方向上直径对应的点B ,则B 点应满足“重力”当好提供向心力即:Rmv g m B2='假设以最小初速度v 0运动,小球在斜面上作匀速直线运动,进入圆轨道后只有重力作功,则根据动能定理:20221212mv mv R g m B -='-解得:33100gR v = 二、实战应用(应用技巧解题,提供解析仅供参考)1.如图所示,平行板电容器上极板MN 与下极板PQ 水平放置,一带电液滴从下极板P 点射入,恰好沿直线从上极板N 点射出。

等效重力场

等效重力场

(2)小球在什么位置时速度最大.
答案:(1) T mg (3
2 cos ) 1 sin

4
(2)与竖直方向成

2
位置
3. 已知如图,匀强电场方向水平向右,场强 E 1.5 106 V/m,丝线长 L=40cm,上端系于O点,下端系质量为 m 1.0 104 kg ,带电量为
B O 370 A
Hale Waihona Puke 例 3、如图所示,一条长为 L 的细线上端固定,下端拴一个质量为 m 的带电小球,将它置 于一方向水平向右,场强为正的匀强电场中,已知当细线离开竖直位置偏角α 时,小球 处于平衡状态。
图 (1)若使细线的偏角由 α 增大到 ,然后将小球由静止释放。则 应为多大,才能使 细线到达竖直位置时小球的速度刚好为零? (2)若α 角很小,那么(1)问中带电小球由静止释放在到达竖直位置需多少时间?
解析:带电小球在空间同时受到重力和电场力的作用,这两个力都是恒力,故不妨将两 个力合成,并称合力为“等效重力” , “等效重力”的大小为:
(mg ) 2 ( Eq ) 2
这里的 g '
mg mg mg ' ,令 cos cos
g 可称为“等效重力加速度” ,方向与竖直方向成α 角,如图 3 所示。这 cos
能起到“柳暗花明”的效果,同时也是一种思想的体现。那
么,如何实现这一思想方法呢?
一、概念类比
为了方便后续处理方法的迁移,首先搞清“等效重力场”中 的部分概念与复合之前的相关概念之间关系。具体对应如下: 1.等效重力场 2.等效重力 重力场、电场叠加而成的复合场 重力、电场力的合力
3.等效重力加速度
解:小球先在斜面上运动,受重力、电场力、支持力,然后在

用“等效法”处理带电粒子在电场和重力场中的运动

用“等效法”处理带电粒子在电场和重力场中的运动

用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.【题型1】在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B 点的初速度多大?【题型2】如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)【题型3】如图所示,一质量为m1=1 kg,带电荷量为q=+0.5 C的小球以速度v0=3 m/s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A点沿切线落入竖直光滑圆弧轨道ABC,圆弧轨道ABC的形状为半径R<3 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点竖直线OO′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g=10 m/s2)求:(1)两极板间的电势差大小U;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R的取值应满足的条件.【题型4】如图所示,竖直平面内的直角坐标系O–xy中,第二象限内有一半径为R的绝缘光滑管道,其圆心坐标为(0,R),其底端与x轴相切于坐标原点处,其顶端与y轴交于B点(0,2R);第一象限内有一与x轴正方向夹角为45°、足够长的绝缘光滑斜面,其底端坐标为(R,0);x轴上0≤x≤R范围内是水平绝缘光滑轨道,其左端与管道底端相切、右端与斜面底端平滑连接;在第二象限内有场强大小E1=3mg、方向水平向右的匀强电场区域Ⅰ;在第一象限内x≥R范围内有场强大小E2=mgq、方向水平向左的匀强电场区域Ⅱ。

备考2024届高考物理一轮复习讲义第九章静电场专题十三带电体在电场中运动的综合问题题型3“等效法”在

备考2024届高考物理一轮复习讲义第九章静电场专题十三带电体在电场中运动的综合问题题型3“等效法”在

题型3 “等效法”在复合场中的运用1.等效重力场物体仅在重力场中的运动是最常见、最基本的运动,但是物体处在匀强电场和重力场中的运动就会变得复杂一些.此时可以将重力场与电场“合二为一”,用一个全新的“复合场”来代替,可形象称之为“等效重力场”.2.等效重力场的相关知识点及解释等效重力场⇔重力场、电场叠加而成的复合场等效重力⇔重力、电场力的合力等效重力加速度⇔等效重力与物体质量的比值等效“最低点”⇔物体自由时能处于稳定平衡状态的位置等效“最高点”⇔物体做圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能⇔等效重力大小与物体沿等效重力场方向“高度”的乘积3.举例研透高考明确方向7.[多选]如图所示,空间存在一竖直向下的匀强电场,电场强度为E.该空间有一带电小球用绝缘细线悬挂在O点,可在竖直平面内做完整的变速圆周运动,且小球运动到最高点时,细线受到的拉力最大.已知带电小球的质量为m,带电荷量为q,细线长为l,重力加速度为g,则(BD)A.小球带正电B.电场力大于重力C.小球运动到最低点时速度最大D.小球运动过程的最小速度为√(qE-mg)lm解析因为小球运动到最高点时,细线受到的拉力最大,可知重力和电场力的合力(等效重力)方向向上,则电场力方向向上,且电场力大于重力,小球带负电,故A错误,B正确;因重力和电场力的合力方向向上,可知小球运动到最高点时速度最大,故C 错误;由于等效重力竖直向上,所以小球运动到最低点时速度最小,最小速度满足qE -mg =m v min 2l,即v min =√(qE −mg )lm,故D 正确.8.如图所示,空间有一水平向右的匀强电场,半径为r 的绝缘光滑圆环固定在竖直平面内,O 是圆心,AB 是竖直方向的直径.一质量为m 、电荷量为+q (q >0)的小球套在圆环上,并静止在P 点,OP 与竖直方向的夹角θ=37°.不计空气阻力,已知重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)电场强度E 的大小;(2)若要使小球从P 点出发能做完整的圆周运动,小球初速度的大小应满足的条件.答案 (1)3mg 4q(2)不小于√5gr解析 (1)当小球静止在P 点时,小球的受力情况如图所示, 则有qEmg =tan θ,所以E =3mg 4q(2)小球所受重力与电场力的合力F =√(mg )2+(qE )2=54mg .当小球做圆周运动时,可以等效为在一个“重力加速度”为54g 的“重力场”中运动.若要使小球能做完整的圆周运动,则小球必须能通过图中的Q 点.设当小球从P 点出发的速度为v min 时,小球到达Q 点时速度为零,在小球从P 运动到Q 的过程中,根据动能定理有-54mg ·2r =0-12m v min 2,所以v min =√5gr ,即小球的初速度应不小于√5gr .方法点拨等效法求解电场中圆周运动问题的解题思路1.求出重力与电场力的合力F 合,将这个合力视为一个“等效重力”. 2.将a =F 合m视为“等效重力加速度”. 3.找出等效“最低点”和等效“最高点”.4.将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解.。

等效重力场一个题弄清所有知识点公开课获奖课件

等效重力场一个题弄清所有知识点公开课获奖课件
等效重力场
第1页
等效重力场 等效重力 等效重力加速度 等效“最低点” 等效“最高点” 等效重力势能
第2页
匀强电场水平向右,大小E= 3mg,长为
3q
L绝缘轻细绳一段固定在O点,另一端连接一
种质量为m,电量为q带正电小球。
1.小球静止时绳和竖直方向夹角?
O
2.绳伸直,将小球在最低点静止释放,能摆过最
大角度?
3.使绳在O点右侧水平伸直,静止释放小球,
求小球在最低点速度大小和此位置时绳拉力?
4.使绳在O点左侧水平伸直,静止释放小 球,求小球在最低点速度大小?
5. 在最低点给小球至少多大速度,小 球能做圆周运动?
第3页
匀强电场水平向右,大小E= 3mg,长为
3q
L绝缘轻细绳一段固定在O点,另一端连接一
E
O
R
300
第6页
练习3
水平放置带电两平行金属板,相距d,质量为m 微粒由板中间以某一初速平行于板方向进入, 若微粒不带电,因重力作用在离开电场时,向 下偏转d/4,若微粒带正电,电量为q,仍以相 似初速度进入电场,微粒恰好不再射出电场, 则两板电势差应为多少?
第7页
向上,则油滴在何时速度最小且求Fra bibliotek最小速度?v
E
A
第5页
练习2
如图所示,绝缘光滑轨道AB部分为倾角为
30°斜面,AC部分为竖直平面上半径为R 圆
轨道,斜面与圆轨道相切。整个装置处在场强
为E、方向水平向右匀强电场中。既有一质量
为m带正电,电量为
小球,要使小球能q 安3mg
全通过圆轨道,在O点初速度应为多大? 3E
种质量为m,电量为q带正电小球。
O

高考物理二轮复习等效法处理电场中的圆周运动专题测试

高考物理二轮复习等效法处理电场中的圆周运动专题测试

班级姓名座号“等效重力场”中的部分概念与复合之前的相关概念之间关系及其规律。

具体如下:等效重力场⇔重力场、电场叠加而成的复合场等效重力⇔重力、电场力的合力等效重力加速度⇔等效重力与物体质量的比值等效“最低点”⇔物体自由时能处于稳定平衡状态的位置等效“最高点”⇔物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能⇔等效重力大小与物体沿等效重力场方向“高度”的乘积绳拉物体在竖直平面内做圆周运动规律:一、在重力场中:1、临界最高点:2mvmgl=得:v gl=特点: mg 与绳的拉力在同一直线上,且方向相同2、最低点: 物体速度最大,绳的拉力最大特点: mg 与绳的拉力在同一直线上,且方向相反注意:不论最高点还是最低点,速度与合力必垂直,电场中带电粒子在竖直平面内做圆周运动:二、复合场中:1、临界状态在等效“最高点”:2'mvmgl=得:'v g l=等效“最高点”:物体速度最小,绳的拉力最小。

特点: mg 和qE的合力与绳的拉力在同一直线上,且方向相同2、等效“最低点”: 物体速度最大,绳的拉力最大特点: mg 和qE 的合力与绳的拉力在同一直线上,且方向相反注意:不论最高点还是最低点,速度与合力必垂直例1、光滑绝缘的圆形轨道竖直放置,半径为R,在其最低点A处放一质量为m的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为mg 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求0v .例2如图所示,半径R = 0.8m 的光滑绝缘导轨固定于竖直平面内,加上某一方向的匀强电场时,带正电的小球沿轨道内侧做圆周运动.圆心O 与A 点的连线与竖直成一角度θ,在A 点时小球对轨道的压力N = 120N ,此时小球的动能最大.若小球的最大动能比最小动能多32J ,且小球能够到达轨道上的任意一点(不计空气阻力).则:(1)小球的最小动能是多少?(2)小球受到重力和电场力的合力是多少?(3)现小球在动能最小的位置突然撤去轨道,并保持其他量都不变,若小球在0.04s后的动能与它在A 点时的动能相等,求小球的质量.练习:1、如图1所示,细线拴一带负电的小球,球处在竖直向下的匀强电场中,使小球在竖直平面内做圆周运动,则()A.小球不可能做匀速圆周运动B.当小球运动到最高点B时绳的张力一定最小C.小球运动到最低点A时,球的线速度一定最大D.小球运动到最低点A时,电势能一定最大图1 图22、如图2所示,一个绝缘光滑半圆轨道放在竖直向下的匀强电场中,场强为E,在其上端与圆心等高处有一个质量为m,带电荷量为+q的小球由静止开始下滑,则()A.小球运动过程中机械能守恒 B.小球经过最低点时速度最大C.小球在最低点对环的压力大小为(mg+qE) D.小球在最低点对环的压力大小为4(mg+qE)3、如图所示,一半径为R的绝缘圆形轨道竖直放置,圆轨道最低点与一条水平轨道相连,轨道都是光滑的。

专题1.30 等效场问题(解析版)

专题1.30 等效场问题(解析版)

2021年高考物理100考点最新模拟题千题精练(选修3-1)第七部分静电场专题1.30 等效场问题一.选择题1.(6分)(2019湖北黄冈三模)内壁光滑、由绝缘材料制成的半径R=m的圆轨道固定在倾角为θ=45°的斜面上,与斜面的切点是A,直径AB垂直于斜面,直径MN在竖直方向上,它们处在水平方向的匀强电场中。

质量为m,电荷量为q的小球(可视为点电荷)刚好能静止于圆轨道内的A点,现对在A点的该小球施加一沿圆环切线方向的速度,使其恰能绕圆环完成圆周运动。

g取10m/s2,下列对该小球运动的分析,正确的是()A.小球可能带负电B.小球运动到N 点时动能最大C.小球运动到B 点时对轨道的压力为0D.小球初速度大小为10m/s【参考答案】CD【名师解析】此题用“等效重力法”分析,受力如下图所示:小球能静止在A点,故电场力的大小与重力的大小相等,两者合力,方向垂直斜面向下;根据“等效重力法”:等效重力为F合、等效最高点为B点、等效最低点为A点;可将只受重力的竖直平面内的圆周运动规律完全迁移过来;小球能静止在A点,小球受到的电场力为水平向左方向,小球必然带正电,故A 错误;小球做圆周运动时,在等效最低点的动能最大,所以小球在A 点的动能最大,故B 错误;小球恰能绕圆环完成圆周运动,则小球在等效最高点B 点由等效重力充当向心力,小球对在 B 点对轨道的压力为 0,故C 正确;小球在等效最高点B 点由等效重力充当向心力,由向心力公式得:①,小球从A 点到B 点的过程中由动能定理得:②,联立①②代入数据得:v A =10m/s ,故D 正确。

2. (2019安徽江南十校二模)如图所示,竖直平面内有固定的半径为R 的光滑绝缘圆形轨道,水平匀强电场平行于轨道平面向左,P 、Q 分别为轨道上的最高点、最低点,M 、N 分别是轨道上与圆心等高的点。

质量为m 、电荷量为g 的带正电小球(可视为质点)在轨道内运动,已知重力加速度为g ,场强q mg E 43=,要使小球能沿轨道做完整的圆周运动,则下列说法正确的是A.小球在轨道上运动时,动能最小的位置,电勢能最大B 小球在轨道上运动时,机械能最大的位置一定在M 点C 小球过Q 、P 点受轨道弹力大小的差值为6mgD.小球过Q 、P 点受轨道弹力大小的差值为7.5mg【参考答案】BC【名师解析】电场力与重力的合力可视为等效场力mg’=()()22mg qE +=54mg ,则等效重力加速度g’=5g/4,如图所示,tan θ=qE/mg =3/4,θ=37°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 14 页 运用等效法巧解带电粒子在匀强电场中的运动 一、等效法 将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法。中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)

概念的全面类比 为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。具体对应如下: 等效重力场重力场、电场叠加而成的复合场 等效重力重力、电场力的合力 等效重力加速度等效重力与物体质量的比值 等效“最低点”物体自由时能处于稳定平衡状态的位置 等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积

二、题型归类 (1)单摆类问题(振动的对称性) 例1、如图2-1所示`,一条长为L的细线上端固定在O点,下端系一个质量为m的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为。求:当悬线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零?

运动特点:小球在受重力、电场力两个恒力与不做功的细线拉力作用下的运动, 对应联想:在重力场只受重力与细线拉力作用下的运动的模型:单摆模型。 等效分析:对小球在B点时所受恒力力分析(如图2-2),将重力与电场力等效为一个恒力,将

其称为等效重力可得:cosmggm,小球就做只受“重力”mg′与绳拉力运动,可等效为单摆运动。 规律应用:如图2-3所示,根据单摆对称运动规律可得,B点为振动的平衡位置,竖直位置对应小球速度为零是最大位移处,另一最大位移在小球释放位置,根据振动对称性即可得出,

当悬线与竖直线的夹角满足2,小球从这一位置静止释放后至细线到竖直位置时,小球速度恰好为零。

针对训练: 1、如图所示,在水平方向的匀强电场中的O点,用长为l的轻、软绝

qE E B O α mg T gmβ B α O E 图2-3 E B O

α

图2-1 图2-2 第 2 页 共 14 页

缘细线悬挂一质量为m的带电小球,当小球位于B点时处于静止状态,此时细线与竖直方向(即OA方向)成θ角.现将小球拉至细线与竖直方向成2θ角的C点,由静止将小球释放.若重力加速度为g ,则对于此后小球的受力和运动情况,下列判断中正确的是 A.小球所受电场力的大小为mgtanθ B.小球到B点的速度最大 C.小球可能能够到达A点,且到A点时的速度不为零 D.小球运动到A点时所受绳的拉力最大 答案:AB 2、用长为l的细线悬挂一质量为m,带电荷量为+Q的小球,将其置于水平方向向右且大小为E的匀

强电场中,如下图所示。现将小球固定于悬点的正下方且OAl的位置A处,然后释放小球。已知电场力大于重力,求悬线受到的最大拉力。

解析:小球释放后受恒力mg、QE和变力FT的作用,在位置A、B之间做往复振动,电势能和重力势能、动能发生相互转化,则在点A、B之间必存在一个平衡位置(切向加速度为零),由运动的对称性可知,这个位置必然在点A、B中间,设为点C,与竖直方向的夹角为θ,则

tan/QEmg,等效重力加速度

ggQEmg'(/)/cos22。 设点C为等效重力势能的零势能面,则 lmvmgFmvlmgCTC/ 21)cos1( 22,,

FmgmgmgmgmgQEmgT''(cos)''cos()()21323222 3、如图2所示,一条长为L的细线上端固定,下端拴一个质量为m的带电小球,将它置于一方向水平向右,场强为正的匀强电场中,已知当细线离开竖直位置偏角α时,小球处于平衡状态。

图2 (1)若使细线的偏角由α增大到,然后将小球由静止释放。则应为多大,才能使细线到达竖直位置时小球的速度刚好为零?

A B C E O θ θ 第 3 页 共 14 页 (2)若α角很小,那么(1)问中带电小球由静止释放在到达竖直位置需多少时间?

解析:带电小球在空间同时受到重力和电场力的作用,这两个力都是恒力,故不妨将两个力合成,并称合力为“等效重力”,“等效重力”的大小为:

cos)()(22mgEqmg,令'cos

mgmg

这里的cos'gg可称为“等效重力加速度”,方向与竖直方向成α角,如图3所示。这样一个“等效重力场”可代替原来的重力场和静电场。

图3 (1)在“等效重力场”中,观察者认为从A点由静止开始摆至B点的速度为零。根据重力场中单摆摆动的特点,可知2。

(2)若α角很小,则在等效重力场中,单摆的摆动周期为gLgLTcos2'2,从A→B的时间为单摆做简谐运动的半周期。

即gLTtcos2。 4、在水平方向的匀强电场中,用长为3L的轻质绝缘细线悬挂一质量为m的带电小球,小球静止在A处,悬线与竖直方向成300角,现将小球拉至B点,使悬线水平,并由静止释放,求小球运动到最低点D时的速度大小。

A处时对球受力分析如右图: 且F=mgtg300=33mg, mg

T F

C 300 A

O

D VCX

B

VCY 第 4 页 共 14 页

“等效”场力G’=22)(Fmg=332mg 与T反向 “等效”场加速度g’=332g 从B到C小球在等效场力作用下做初速度为零的匀加速直线运动, S=3L V C=sg'2=2gL 所以VCX=VC sin600=gL3 VCY在绳子拉力作用下,瞬时减小为零 从C到D运用动能定理: WG+WF=21m V D2--21m VCX2

V D=gL)132( 5、如图12,带正电的小球用细绳悬挂在两块无限大的平行板电容器间。小球悬点O,摆长为L,摆球质量为m,两板间距为d,两板间加电压为U。今向正极板方向将摆球拉到水平位置B然后无初速释放,小球在B、A间来回振动,OA为竖直线。 求:(1)小球所带电量为多少? (2)小球最大速率为多少? (3)若要使小球能做完整的圆周运动,在B点至少 需使小球具有多大的竖直向下的初速度?

解析:⑴由题意可知小球运动的等效最低点为AB弧的中点 且电场力qE水平向左、重力mg竖直向下,合力的方向由O指向AB弧中点,即O点左向下45° 则 qE=mg ,E=U/d 得 q=mgd/U

⑵从上一问分析可知小球将在AB弧中点达到最大速度Vm,电场力与重力的合力为2mg ,由B静止运动到AB弧中点的过程,根据动能定理得

212mmV=22(1)2mgL则Vm==(222)gL

⑶小球圆周运动的等效最高点为O点右向上45°距离为L处 在此处应具有的最小速度为2gL,设在B点时具有竖直向下的速度为VB,由动能定理得

211222BmgLmV=22()2mgLL

解得(322)BVgL 6、(12西城二模)如图所示,长度为l的轻绳上端固定在O点,下端系一质量为m,电荷量为+q的小球。整个装置处于水平向右,场强大小为qmg43的匀强电场中。

(1)求小球在电场中受到的电场力大小F;

+ - O B A 第 5 页 共 14 页

(2)当小球处于图中A位置时,保持静止状态。若剪断细绳,求剪断瞬间小球的加速度大小a; (3)现把小球置于图中位置B处,使OB沿着水平方向,轻绳处于拉直状态。小球从位置B无初速度释放。不计小球受到的空气阻力。求小球通过最低点时的速度大小v。

解析: (1)小球所受的电场力 EqF43 ················· 2分

mgEqF43··················2分 (2)根据平行四边形定则,小球受到的重力和电场力的的合力 mgEqF45)()mg22(合 · ················2分

根据牛顿第二定律 maF合 ·················2分

所以,小球的加速度 ga45 ············ ··2分 (3)根据动能定理有 : 0212mvEqlmgl·············4分

解 得: 22glv ·················2分 (2)类平抛运动 例1:水平放置带电的两平行金属板,相距d,质量为m的微粒由板中间以某一初速平行于板的方向进入,若微粒不带电,因重力作用在离开电场时,向下偏转d/4,若微粒带正电,电量为q,仍以相同的初速度进入电场,微粒恰好不再射出电场,则两板的电势差应为多少?并说明上下板间带电性? 解:当微粒不带电时,只受重力做平抛运动d/4=1/2gt2,带电后,应根据极板电性不同分两种情况讨论 (1)若上极板带正电,下极板带负电(如图a) 微粒水平方向仍作匀速直线运动时间为t,竖直方向受 重力和电场力均向下,竖直位移s=1/2(g+qU/md) t2 ,要使 微粒不再射出电场,则s>d/2,解得U>mgd/q. (2)若上极板带负电,下极板带正电(如图b) 分析方法上同,只是此时电场力向上,竖直位移 s=1/2(qU/md-g) t2,要使微粒不再射出电场,则s>d/2, 解得U>3mgd/q.由于微粒不带电时能射出电场,故当重 力大于电场力时,微粒一定能射出,满足条件。

+ _ (a)

+ _

(b)

G F

G F

EA

B

相关文档
最新文档