20162017学年人教版高中数学必修一23《幂函数》课标分析

合集下载

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。

二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。

2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。

3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。

4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。

5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。

四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。

五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。

六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。

七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。

高中数学必修一(人教版)《3.3 幂函数》课件

高中数学必修一(人教版)《3.3 幂函数》课件

()
(2)幂函数的图象都不过第二、四象限.
()
(3)当幂指数 α 取 1,3,12时,幂函数 y=xα 是增函数.
()
(4)若幂函数 y=xα 的图象关于原点对称,则 y=xα 在定义域内 y 随 x 的增大
而增大.
()
答案:(1)× (2)× (3)√ (4)×
2.已知幂函数的图象过点(2,4),则其解析式为
(1)幂函数在第一象限内指数的变化规律:在第一象限内直线x=1的右侧,图 象从上到下,相应的指数由大变小;在直线x=1的左侧,图象从下到上,相应的 指数由大变小.
(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至 于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时 出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点.
[典例 2] 若点( 2,2)在幂函数 f(x)的图象上,点-2,14在幂函数 g(x)的 图象上,问:当 x 为何值时,(1)f(x)>g(x)?(2)f(x)=g(x)?(3)f(x)<g(x)?
[解] 设 f(x)=xα,因为点( 2,2)在幂函数 f(x)的图 象上,所以将点( 2,2)代入 f(x)=xα 中,得 2=( 2)α, 解得 α=2,则 f(x)=x2.同理可求得 g(x)=x-2.
解得 1≤a<32.
故 m 的值为 1,满足条件 f(2-a)>f(a-1)的实数 a 的取值范围为1,32.
[方法技巧] 解决幂函数的综合问题,应注意以下两点
(1)充分利用幂函数的图象、性质解题,如图象所过定点、单调性、奇 偶性等.
(2)注意运用常见的思想方法解题,如分类讨论思想、数形结合思想.
(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函 数图象越靠近x轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远 离x轴(简记为指大图高).

人教版高中数学必修一2.3幂函数教案

人教版高中数学必修一2.3幂函数教案

《2.3幂函数》教学案例1.教学设计1.1教材的地位和作用《2.3幂函数》是继指数函数和对数函数后学习的另一个基本函数。

幂函数出现在必修一第二章第三节,是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,进入高中以来遇到的第三种特殊函数,是对函数概念及性质的应用,能培养学生应用性质(定义域,值域,图象,单调性,奇偶性)研究一个函数的意识。

本节课从概念到图象,通过探究归纳出幂函数的性质,让学生再次体会利用信息技术来探索函数的图象和性质,从教材整体安排上来看,学习幂函数是为了让学生进一步了解研究函数的方法,学会利用这种方法去研究其他函数。

因而本节课更是对学生研究函数方法和能力的一个综合提升。

1.2教学目标1.2.1基础知识目标(1)理解幂函数的概念,会画幂函数21132,,,,x y x y x y x y x y =====-的图象,结合这几个幂函数的图象,掌握幂函数的图象变化和性质;(2)能应用幂函数性质解决简单问题。

1.2.2能力训练目标(1)通过观察总结幂函数性质,培养学生抽象概括、逻辑推理和识图能力;(2)使学生进一步体会数形结合思想。

1.3教学重、难点重点:本节的教学重点是从五个具体幂函数中认识幂函数的一些性质。

难点:画五个幂函数的图象并由图象概括其性质是教学中可能遇到的困难。

突破难点:引导学生观察图象,从图象特点入手,观察单调性奇偶性。

1.4学情分析学生学过了一次函数,二次函数,正、反比例函数,指数函数和对数函数,知道了他们的图象和性质,用性质解决一些简单问题也有了一定的基础,为学习幂函数做好了准备,但由于幂函数性质较复杂,学生需要一定的综合分析能力,所以在教学中重视学生自己动手操作、观察分析发现的过程。

我所教的班级是遵义四中高一(23)班,总体学习程度在中等,根据学生的学情,本节课我重在基础,难度上适当适中。

1.5教学用具本节课使用三角板,PPT ,学生准备白纸,格尺。

人教版2017高中数学(必修一)2.3幂函数PPT课件

人教版2017高中数学(必修一)2.3幂函数PPT课件

2 导学号 69174842 ____.
[ 解析] 符合题意.
1 当 α=-1 或2时,y=xα 的定义域不为 R;α=1 为奇函数,故 α=2
互动探究学案
命题方向1 ⇨幂函数的概念
已知函数 f(x)=(m +2m)· x
2 m2+m-1
,m 为何值时,f(x)是:(1)正比例函
数;(2)反比例函数;(3)二次函数;(4)幂函数. 导学号 69174843
新课标导学
数 学
必修① ·人教A版
第二章
基本初等函数(Ⅰ)
2.3 幂函数
1
自主预习学案
2
3
互动探究学案
课时作业学案
自主预习学案
数学史上很早就借用“幂”字,起先用于表示面积,后来扩 充为表示平方或立方.1859年中国清末大数学家李善兰(1811~ 1882)译成《代微积拾级》一书,创设了不少数学专有名词,如 函数、极限、微分、积分等,并把“Power”这个词译为 “幂”.这样“幂”就转译为若干个相同数之积. 大约到15世纪,人们才意识到要用一个缩写的方式来表示若 干个相同数的乘积.直到17世纪才开始出现在幂的符号中将指 数与底数分开来表示的趋势.

1636年苏格兰人休姆(Hume)引进了一种较好的记法,他 用罗马数字表示指数,写在底数的右上角,如“A4”写作 “AⅣ”,这种记法与现在相比较,除了数字采用罗马数字外, 其余完全一样.一年以后,法国数学家笛卡儿将其进行了改 进,把罗马数字改用阿拉伯数字,成了今天的样子。此后由 英国数学家渥里斯(Wallis,1616~1703)、牛顿等人分别引入 负指数幂和分数指数幂的概念及符号,从而使幂的概念及符 号发展得更完备了。那么,什么是幂?幂与an又有什么关系 呢?

人教版高中数学必修一2.3《幂函数》ppt课件

人教版高中数学必修一2.3《幂函数》ppt课件

奇函数 偶函数 奇函数 非奇非偶 奇函数
R上 增函数
(, 0)减 (0, ) 增
R上 增函数
[0, ) 增
(, 0) 减 (0, ) 减
(1,1)
幂函数性质
y y x3 y x2
4
1
yx
(1)函数 y x, y x2 , y x3, y x 2
3
1
y x1在(0,+∞)上都有定义,
培养学生数形结合、分类讨论的思想,以及分析归纳的 能力,培养学生合作交流的意识.
学习重点
从具体函数归纳认识幂函数的一些性质并简单应用.
学习难点
概括幂函数的性质.
问题情境
问题1:如果张红购买了每千克1元的水果w千克,
a 那么她需要付的钱数p= w 元,这里p是w的函数 y x
S 问题2:如果正方形的边长为a,那么正方形的面积
S= a 2 , 这里S是a的函数
y x2
问题3:如果正方体的边长为a,那么正方体的体积
V
aa
S
V= a3 ,这里V是a的函数
y x3
问题4:如果正方形场地面积为S,那么正方形的边 1 1
长a= S 2 ,这里a是S的函数
y x2
问题5:如果某人ts内骑车行进了1km,那么他骑车
的速度 v = t 1 km/s. 这里v是t的函数
y y x3
4
y x2
(2,4)
yx
1
y x2 , y x3
3
1
2
y x2
1
-4
-3
-2
-1
o
(1,1)
1
2
y x1

[教案精品]新课标高中数学人教A版必修一全册教案2.3幂函数

[教案精品]新课标高中数学人教A版必修一全册教案2.3幂函数

[教案精品]新课标高中数学人教A版必修一全册教案2.3幂函数(2.3 幂函数(一)教学目标1.知识与技能(1)理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x21的图象.(2)结合这几个幂函数的图象,理解幂函数图象的变化情况和性质.2.过程与方法(1)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.(2)使学生进一步体会数形结合的思想.3. 情感、态度、价值观(1)通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣.(2)利用计算机,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望.(二)教学重点、难点重点:常见幂函数的概念、图象和性质.难点:幂函数的单调性及比较两个幂值的大小.(三)教学方法采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性.利用实物投影仪及计算机辅助教学.(四)教学过程教学环节教学内容师生互动设计意图复习(多媒体显示以下5个问题,同时附注学生阅读、思考、交流、口答,教培养引入相关图象,每个问题的结论由学生说出,然后再在多面体屏幕上弹出)问题1:如果张红购买了每千克1元的蔬菜w千克,那么她需要付的钱数p=w元,这里p是w的函数.问题2:如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.问题3:如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.问题4:如果正方师板演.师:观察上述例子中函数模型,这几个函数表达式有什么共同特征?生:解析式的右边都是指数式,且底数都是变量. 变量在底数位置,解析式右边又都是幂的形式,我们把这种函数叫做幂函数.(引入新课,书写课题)学生的观察、归纳、概括能力,形场地的面积为S,那么正方形的边长a=S21,这里a是S的函数.问题5:如果某人t s内骑车行进了 1 km,那么他骑车的平均速度v=t-1 km/s,这里v是t的函数.形成概念幂函数的定义一般地,形如y xα=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.师:请同学们举出几个具体的幂函数.生:如11234,,y x y x y x-===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.理解幂函数的定义.深化概念1.研究幂函数的图像(1)y x=(2)12y x=(3)2y x=(4)1y x-=(5)3y x=2.通过观察图像,填P86探究中的表格y x=2y x=定义域R R奇偶性奇奇引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.42-2-4-6-8-10-551015让学生通过观察图像,分组讨论,探究幂函数的性质和图像探究幂函数的性质和图像y x=12y x=y=xy=x-1在第Ⅰ象限单调增减性 在第Ⅰ象限单调递增在第Ⅰ象限单调递增定点 (1,1)(1,1) 3y x=12y x=1y x -=R {}|0x x ≥ {}|0x x ≠奇非奇非偶奇在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减(1,(1,(1,的变化规律,教师注意引导学生用类比研究指数函数,对函数的方法研究幂函数的性质.的变化规律,1)1)1)3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=);(2)x>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).特别地,当x>1,x>1时,x∈(0,1),2=的图象都在y x=图y x象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)当0<α<1时,x∈(0,1),y xα=的图象都在y x=的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一家限内,当x向原点靠近时,图象在y轴的右方无限逼近y轴正半轴,当x慢慢地变大时,图象在x轴上方并无限逼近x轴的正半轴.应用举例例1 求下列幂函数的定义域,并指出其奇偶性、单调性.(1)y=x52;(2)y=x43 ;(3)y=x-2.例1分析:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式(组),解不等式(组)即可得到所求函数的定义域.①若函数解析式中含有分母,分母不能为0;②若函数解析式中含有根号,要注意偶次根号下非负;③0的0次幂没有意义;④若函数解析掌握幂函数知识的应用.A.幂函数的图象一定过(0,0)和(1,1) B.当α<0时,幂函数y =x α是减函数C.当α>0时,幂函数y =x α是增函数D.函数y =x 2既是二次函数,也是幂函数3.函数y =x 53的图象大致是4.幂函数f (x )=axmm 82-(m ∈Z )的图(-710)32=(107)32-,1.134-=[(1.1)2]32-=1.2132-.∵幂函数y =x32-在(0,+∞)上单调递减,且107<22<1.21, ∴(107)32->(22)32->1.2132-, 即(-710)32>(-22)32->1.134-. (3)利用幂函数和指数函数的单调性可以发现0<3.832-<1,3.952>1,备选例题例 1 已知221(22)23m y mm x n -=+-+-是幂函数,求m ,n 的值.【解析】由题意得⎪⎪⎩⎪⎪⎨⎧=-≠-=-+0320112222n m m m ,解得⎪⎩⎪⎨⎧=-=233n m , 所以23,3=-=n m . 【小结】做本题时,常常忽视m 2 + 2m – 2 = 1且2n – 3 = 0这些条件.表达式y =αx (x ∈R)的要求比较严格,系数为1,底数是x ,α∈R 为常数,如221-==x x y ,y = 1 = x 0为幂函数,而如y = 2x 2,y = (x – 1)3等都不是幂函数.例2 比例下列各组数的大小. (1)8787)91(8---和;(2)(–2)–3和(–2.5)–3; (3)(1.1)–0.1和(1.2)–0.1; (4)533252)9.1()8.3(,)1.4(--和.【解析】(1)8787)81(8-=--,函数87x y =在(0, +∞)上为增函数,又9181>,则8787)91()81(>,从而8787)91(8-<--.(2)幂函数y = x –3在(–∞, 0)和(0, +∞)上为减函数,又∵–2>–2.5,∴(–2)–3<(–2.5)–3.(3)幂函数y = x –0.1在(0, +∞)上为减函数, 又∵1.1<1.2,∴1.1–0.1>1.2–0.1. (4)52)1.4(>521= 1;0<32)8.3(-<321-= 1;53)9.1(-<0,∴53)9.1(-<32)8.3(-<52)1.4(.【小结】比较大小题,要综合考虑函数的性质,特别是单调性的应用,更善于用“搭桥”法进行分组,常数0和1是常用的“桥梁”.。

人教版2017高中数学(必修一)2.3 幂函数PPT课件


首页 探究一 探究二 探究三 思维辨析
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIAN
分析:利用幂函数在第一象限内的图象特征和性质,结合所给图 象分析并判断a,b,c的大小关系. 解析:由幂函数的图象特征知,c<0,a>1,0<b<1.故c<b<a. 答案:A
∴幂函数 y=������ 的图象经过区域 ①;
当 x>1 时,x-√������ >0,即 x>√������ >1.
1 2
∴幂函数 y=������ 的图象经过区域 ⑤.
答案:D
1 2
首页 探究一 探究二 探究三 思维辨析
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
A.④⑦ C.③⑧
B.④⑧ D.①⑤
首页 探究一 探究二 探究三 思维辨析
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIAN
解析:∵x-√������ = √������ (√������ -1), 当 0<x<1 时 ,x-√������ <0,即 x<√������ <1,
首页 探究一 探究二 探究三 思维辨析
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIAN
探究一幂函数的概念 【例1】 函数f(x)=(m2-m-5)xm-1是幂函数,且当x∈(0,+∞)时,f(x)是增 函数,试确定m的值. 分析:由已知f(x)=(m2-m-5)· xm-1是幂函数,且当x>0时是增函数,可 先利用幂函数的定义求出m的值,再利用单调性确定m的值. 解:根据幂函数的定义,得m2-m-5=1, 解得m=3或m=-2. 当m=3时,f(x)=x2在(0,+∞)上是增函数; 当m=-2时,f(x)=x-3在(0,+∞)上是减函数,不符合要求.故m=3.

《幂函数》教案范文

《幂函数》教案目标:1.使学生理解幂函数的概念,能够通过图象研究幂函数的性质;2.在作幂函数的图象及研究幂函数的性质过程中,培养学生的观察能力,概括总结的能力;3.通过对幂函数的研究,培养学生分析问题的能力.重点:常见幂函数的概念、图象和性质;教学难点:幂函数的单调性及其应用.教学方法:采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性,教师利用实物投影仪及计算机辅助教学.教学过程:一、问题情境情境:我们以前学过这样的函数:=x,=x2,=x1,试作出它们的图象,并观察其性质.问题:这些函数有什么共同特征?它们是指数函数吗?二、数学建构1.幂函数的定义:一般的我们把形如=x(R)的'函数称为幂函数,其中底数x是变量,指数是常数.2.幂函数=x 图象的分布与的关系:对任意的 R,=x在第I象限中必有图象;若=x为偶函数,则=x在第II象限中必有图象;若=x为奇函数,则=x在第III象限中必有图象;对任意的 R,=x的图象都不会出现在第VI象限中.3.幂函数的性质(仅限于在第一象限内的图象):(1)定点:>0时,图象过(0,0)和(1,1)两个定点;≤0时,图象过只过定点(1,1).(2)单调性:>0时,在区间[0,+)上是单调递增;<0时,在区间(0,+)上是单调递减.三、数学运用例1 写出下列函数的定义域,并判断它们的奇偶性(1)=;(2)=;(3)=;(4)=.例2 比较下列各题中两个值的大小.(1)1.50.5与1.70.5 (2)3.141与π1(3)(-1.25)3与(-1.26)3(4)3 与2例3 幂函数=x;=xn;=x1与=x在第一象限内图象的排列顺序如图所示,试判断实数,n与常数-1,0,1的大小关系.练习:(1)下列函数:①=0.2x;②=x0.2;③=x3;④=3x2.其中是幂函数的有(写出所有幂函数的序号).(2)函数的定义域是.(3)已知函数,当a=时,f(x)为正比例函数;当a=时,f(x)为反比例函数;当a=时,f(x)为二次函数;当a=时,f(x)为幂函数.(4)若a=,b=,c=,则a,b,c三个数按从小到大的顺序排列为.四、要点归纳与方法小结1.幂函数的概念、图象和性质;2.幂值的大小比较方法.五、作业课本P90-2,4,6.高中数学幂函数教案设计篇二教学目标1. 知识目标:(1)了解幂函数的概念;(2)会画简单幂函数的图象,并能根据图象得出这些函数的性质;(3)了解幂函数随幂指数改变的性质变化情况。

高中数学 §23幂函数教学设计 新人教A版必修1 教案

§2.3幂函数教学设计一、 三维目标:⑴ 通过实例,了解幂函数的概念;结合函数x y =,2x y =, 3x y =, 21x y =,1-=x y 的图像,了解幂函数的图象和性质它们的变化情况。

⑵ 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.并能进行简单的应用.⑶ 体会幂函数的变化规律及蕴含其中的对称性.二、教学重难点:重点 从五个具体幂函数中认识幂函数的一些性质.难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.三、设计思路:四、教具:多媒体五、学法指导:数形结合,从特殊到一般六、教学过程:环节教学内容设计设计意图创设情境阅读教材P 77的具体实例(1)~(5),思考下列问题: 1.它们的对应法则分别是什么? 2.以上问题中的函数有什么共同特征?答案: 1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).2.上述问题中涉及到的函数,都是形如αx y =的函数,其中x 是自变量,是α常数. 生:独立思考完成引例.师:引导学生分析归纳概括得出结论.师生:共同辨析这种新函数与指数函数的异同.组织 探究材料一:幂函数定义及其图象.一般地,形如αx y =的函数称为幂函数,其中x 为自变量,α为常数.下面我们举例学习这类函数的一些性质.画出下列函数的图象:(1)x y =;(2)21x y =;(3)2x y =;(4)1-=x y ;(5)3x y =. [解] ○1 列表(略) ○2 图象师:说明:幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析.生:利用所学知识和方法尝试画出五个具体幂函数的图象,观察图象,体会幂函数的变化规律.师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.师生共同分析,强调画图象易犯的错误.环节教学内容设计设计意图创设情境组织探究尝试练习作业回馈探究与发现问题引入.幂函数的图象和性质.幂函数性质的初步应用.幂函数性质的初步应用.七、教学反思:幂函数作为一类重要的函数模型,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。

人教A版高中数学必修第一册3.3幂函数【课件】


α


∴f(2)=,∴2 =,解得 α=-2,
∴f(x)=x-2.
f(x)的图象如图所示.
f(x)的定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递
增区间为(-∞,0).
反思感悟
1.幂函数的图象一定出现在第一象限内,一定不会出现在第四
象限内,图象最多只能同时出现在两个象限内,至于是否在第


(2)y= 的图象位于第一象限,因为函数为增函数,所以函数图




象是上升的,函数 y= -1 的图象可看作由 y= 的图象向下平


移 1 个单位长度得到(如选项 A 中的图象所示),将 y= -1 的图
象关于 x 轴对称后即为选项 B 中的图象.
答案:(1)B (2)B
探究二 幂函数的性质及其应用




对称,且在区间(0,+∞)内单调递减,求满足(2a-1) <(3-a) 的实
数 a 的取值范围.
解:∵函数 f(x)在区间(0,+∞)内单调递减,∴3m-9<0,解得 m<3.
又 m∈N*,∴m=1,2.
又函数图象关于 y 轴对称,∴3m-9 为偶数,故 m=1,Leabharlann -


-
-
∴有(2a-1) <(3-a) .∵y= 在区间(-∞,0),(0,+∞)内均单调递减,
【例2】 比较下列各组数的大小:
(1)1.13,1.23;
(2)4.8-3,4.9-3;
(3) -
-

, -
-

.
解:(1)设f(x)=x3,因为f(x)在区间(0,+∞)内单调递增,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年人教版高中数学必修一2.3《幂函数》word课标分析
2、3幂函数
课标分析
一、学习目标
知识与技能:
理解并掌握幂函数的图象与性质,能初步运用所学知识
解决有关问题,培养灵活思维能力、
过程与方法:
通过具体函数归纳与概括幂函数定义、图象与性质,体
验数学概念的形成过程,培养学生的抽象概括能力、
情感、态度与价值观:
培养学生数形结合、分类讨论的思想,以及分析归纳的
能力,培养学生合作交流的意识、
二、学习重点
从具体函数归纳认识幂函数的一些性质并简单应用、
三、学习难点
概括幂函数的性质、
课标分析
一、教学目标
1、知识技能:了解幂函数定义,掌握一些常见幂函数的图像及性质与一般幂函数第一象限内图像特点。

2、过程与方法:通过形式来定义幂函数,比较幂函数与指数函数得出其特有的形式特点,观察图像归纳总结出其函数性质,数形结合找规律。

3、情感、态度与价值观:函数图像直接反应函数性质,同样由函数性质也能大致画出其图像,对图像与性质之间的关系进行探索体会。

二、重难点
重点:幂函数的定义,常见幂函数的图像与性质,一般幂函数第一象限的大致图像再利用其性质得到整体图像。

难点:其一般的性质分析,再由性质得到一般图像。

相关文档
最新文档