八年级数学上册 全等三角形之辅助线(习题及答案)(人教版)

合集下载

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案) (57)

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案) (57)

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案)如图,BD、CE分别是△ABC的边AC和边AB上的高,如果BD=CE,试证明BE=CD.【答案】见详解.【解析】【分析】由BD、CE分别是△ABC的边AC和边AB上的高得出∠BDC=∠CEB=90°,再根据“HL”证△BDC≌△CEB得BE=CD.【详解】证明:∵BD、CE分别是△ABC的边AC和边AB上的高,∴∠BDC=∠CEB=90°,在Rt△BDC和Rt△CEB中,∵BD CE BC CB=⎧⎨=⎩,∴△BDC≌△CEB(HL),∴BE=CD.【点睛】本题主要考查全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.62.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和CBE全等吗?请说明理由.【答案】全等,理由见详解.【解析】【分析】由AD∥BC可得∠A=∠C,由AE=CF可得AF=CE,已知AD=CB,从而由“SAS”可证得△ADF≌△CBE.【详解】解:全等∵AD∥BC∴∠A=∠C∵AE=CF∴AF=CE在△ADF和△CBE中,∵AD CBA CAF CE=⎧⎪∠=∠⎨⎪=⎩∴△ADF≌△CBE(SAS).【点睛】本题考查三角形全等的判定方法,考查三角形全等的判定,注意条件不同判定也不同,由已知条件得出判定全等所需要的条件是比较关键的.63.(1)(问题情境)课外兴趣小组活动时,老师提出了如下问题:如图①,在①ABC中,AD是△ABC的中线,若AB=10,AC=8,求AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:①.由已知和作图能得到①ADC①①EDB,依据是________.A.SSS B.SAS C.AAS D.ASA①.由“三角形的三边关系”可求得AD的取值范围是________.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)(学会运用)如图①,AD是△ABC的中线,点E在BC的延长线上,CE=AB,∠BAC=∠BCA, 求证:AE=2AD.【答案】(1)Ⅰ.B;Ⅱ. 1<AD<9;(2)证明见解析.【解析】【分析】(1)Ⅰ.根据全等三角形的判定定理解答;Ⅱ.根据三角形的三边关系定理可得AB−BE<AE<AB+BE,结合BE=AC可确定AE的取值范围,易得AD的取值范围;(2)首先延长AD至M,使DM=AD,先证明△ABD≌△MCD,进而得出MC=AB,∠B=∠MCD,即可得出∠ACM=∠ACE,再证明△ACM≌△ACE,即可证明结论.【详解】解:(1)Ⅰ.在△ADC和△EDB中,BD CDBDE CDA DE AD⎧⎪∠∠⎨⎪⎩===,∴△ADC≌△EDB(SAS),故选:B;Ⅱ.∵△ADC≌△EDB,∴BE=AC,∵AB−BE<AE<AB+BE,∴AB− AC<AE<AB+AC,即2<AE<18,∴1<AD<9,故答案为:1<AD<9;(2)延长AD至M,使DM=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△MCD中,BD CDADB MDC AD DM⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△MCD(SAS),∴MC=AB,∠B=∠MCD,∵AB=CE,∴CM=CE,∵∠BAC=∠BCA,∴∠B+∠BAC=∠ACB+∠MCD,即∠ACE=∠ACM,在△ACE和△ACM中,AC ACACE ACM CM CE⎧⎪∠∠⎨⎪⎩===,∴△ACM≌△ACE(SAS),∴AE=AM,∵AM=2AD,∴AE=2AD.【点睛】本题考查的是三角形三边关系以及全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理利用倍长中线得出辅助线是解题关键.64.如图,已知AE⊥BC,DF⊥BC,E、F是垂足,AE=DF,AB=DC.求证:AC=DB.【答案】见解析.【解析】【分析】根据垂直的定义得到∠AEB=∠AEC=∠DFB=∠DFC=90°,推出Rt△ABE≌Rt△DCF,根据全等三角形的性质得到BE=CF,推出BF=CE,证得△AEC≌△DFB,根据全等三角形的性质即可得结论.【详解】证明:∵AE⊥BC,DF⊥BC,∴∠AEB=∠AEC=∠DFB=∠DFC=90°,在Rt△ABE和Rt△DCF中,AB DC AE DF⎧⎨⎩==,∴Rt△ABE≌Rt△DCF(HL),∴BE=CF,∴BF=CE,在△AEC 和△DFB 中,AEC DFB CE BF ⎪∠∠⎨⎪⎩==, ∴△AEC ≌△DFB (SAS ),∴AC =DB .【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.65.如图,B 、D 、E 在一条直线上,AB=AC ,AD=AE ,∠BAC=∠DAE ,(1)求证:BD=CE(2)猜想∠1、∠2、∠3的数量关系,并说明理由.【答案】(1)见解析;(2)∠3=∠1+∠2,理由见解析.【解析】【分析】(1)首先求出∠BAD =∠CAE ,然后利用SAS 证明△BAD ≌△CAE 可得BD=CE ;(2)根据全等三角形对应角相等求出∠ABD=∠2,由三角形外角的性质可得∠3=∠1+∠2.【详解】(1)∵∠BAC=∠DAE ,∴∠BAC -∠DAC=∠DAE -∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,BAD CAE AD AE ⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE (SAS ),∴BD=CE ;(2)∠3=∠1+∠2,理由:∵△BAD ≌△CAE ,∴∠ABD=∠2,∵∠3=∠1+∠ABD ,∴∠3=∠1+∠2.【点睛】本题考查了全等三角形的性质和判定,三角形外角性质的应用,能证明△BAD ≌△CAE 是解此题的关键.66.已知:如图,AB=DE ,BE=CF ,∠B=∠DEF .求证:∠A=∠D证明:∵BE=CF ( )∴BE+EC=CF+EC即(________)在△ABC 和△DEF 中,()(?)(? )AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩已知 ∴∆ABC DFE ≅( )∴∠A=∠D ( )【答案】见解析.【解析】【分析】首先求出BC=EF ,然后根据SAS 证明ABC DFE ≅即可得到∠A=∠D.【详解】证明:∵BE=CF (已知),∴BE+EC=CF+EC ,即(BC=EF) ,在△ABC 和△DEF 中,()()()AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩已知已知已证, ∴∆ABC DFE ≅(SAS ),∴∠A=∠D (全等三角形,对应角相等).【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题关键.67.如图,,..C D CE DE AE BE ∠=∠==求证:【答案】见解析.【解析】【分析】根据ASA 直接证明△AEC ≌△BED 即可得到AE=BE.【详解】证明:在△AEC 和△BED 中,∵C D CE DE CEA DEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEC ≌△BED (ASA ),∴AE=BE.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题关键.68.如图①,Rt ABC ∆中,90C =∠,D 是AB 的中点,过点D 作DE AC ⊥于点E ;过点B 作BF ED ⊥,交ED 的延长线于点F .(1)求证:DFB DEA ∆≅∆;(2)某数学兴趣小组解答(1)后发现,在图中只需将AED ∆剪下来拼到BFD ∆处,就可得到一个与ABC ∆等面积的矩形EFBC 继续讨论后又发现,任意三角形也可以剪拼成一个等面积的矩形,请你在图②中画出一种剪拼示意图,并简要说明作法(不需要证明)【答案】(1)见解析;(2)如图见解析.【解析】【分析】(1)利用AAS 即可证明DFB DEA ∆≅∆;(2)找AC 、BC 的中点,构造以AB 为边的矩形即可.找AC 、AB 的中点,构造以BC 为边的矩形即可.找AB 、BC 的中点,构造以AC 为边的矩形即可.【详解】(1)证明:∵DE AC ⊥,BF ED ⊥,D 是AB 的中点,∴90AED BFD ∠=∠=,AD BD =,∵ADE BDF ∠=∠,即DFB DEA ∆≅∆.(2)如图:方法比较多作法① :找AC 、BC 的中点,作垂线,构造以AB 为边的矩形即可. 作法②:找AC 、AB 的中点,作垂线,构造以BC 为边的矩形即可.作法③:找AB、BC的中点,作垂线,构造以AC为边的矩形即可.【点睛】本题考点涉及三角形全等,(2)难度较大,根据题意分析,找出方法是解答本题的关键.69.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。

八年级上册几何辅助线专题讲解和练习

八年级上册几何辅助线专题讲解和练习

八上数学辅助线的添加浅谈一、添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线;2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”这样可防止乱添线,添辅助线也有规律可循;举例如下:1平行线是个基本图形:当几何中出现平行线时添辅助线的关键,是添与二条平行线都相交的等第三条直线2等腰三角形是个简单的基本图形:出现一点发出的二条相等线段时,往往要连结已知点补完整等腰三角形;3等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点,添底边上的中线;4直角三角形斜边上中线基本图形出现直角三角形斜边上的中点,往往添斜边上的中线;出现线段倍半关系且倍线段是直角三角形的斜边,要添直角三角形斜边上的中线;5全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个相等角关于某一直线成轴对称,就可以添加辅助线构造轴对称形全等三角形;或添对称轴,对应点连线的中垂线即为对称轴;当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加辅助线构造中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线6特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明二、基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:倍长中线法;有关三角形中线的题目,常将中线倍长构造全等三角形;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质定理和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用角平分线、垂直平分线的性质定理进行转换;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法进行转换,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.三、作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、角平分线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;四、三角形中作辅助线的常用方法举例一、在证明三角形中多条线段的不等量关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:法一将DE 两边延长分别交AB 、AC 于M 、N,在△AMN 中,AM +AN > MD +DE +NE;1 在△BDM 中,MB +MD >BD ; 2 在△CEN 中,CN +NE >CE ; 3 由1+2+3得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC法二:如图1-2, 延长BD 交 AC 于F,延长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF 三角形两边之和大于第三边1 GF +FC >GE +CE 同上………………………………2 DG +GE >DE 同上……………………………………3 由1+2+3得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +EC;二、在证明三角形中某些角的不等量关系时,如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC;BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角,A BCDEN M 11-图ABCDEF G21-图AD E G∴∠BDC >∠DEC,同理∠DEC >∠BAC,∴∠BDC >∠BAC 证法二:连接AD,并延长交BC 于F ∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD,同理,∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF;分析:要证BE +CF >EF ,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同一个三角形中;证明:在DA 上截取DN =DB,连接NE,NF,则DN =DC, 在△DBE 和△DNE 中:∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法ED ED DB DN ∴△DBE ≌△DNE SAS∴BE =NE 全等三角形对应边相等 同理可得:CF =NF在△EFN 中EN +FN >EF 三角形两边之和大于第三边 ∴BE +CF >EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等;四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形; 例如:如图4-1:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 证明:延长ED 至M,使DM=DE,连接 CM,MF;在△BDE 和△CDM 中,AB CD E FN13-图1234ACE F1234∵⎪⎩⎪⎨⎧=∠=∠=)()(1)(辅助线的作法对顶角相等中点的定义MD ED CDM CD BD ∴△BDE ≌△CDM SAS又∵∠1=∠2,∠3=∠4 已知 ∠1+∠2+∠3+∠4=180°平角的定义 ∴∠3+∠2=90°,即:∠EDF =90° ∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中∵⎪⎩⎪⎨⎧=∠=∠=)()()(公共边已证辅助线的作法DF DF FDM EDF MD ED∴△EDF ≌△MDF SAS∴EF =MF 全等三角形对应边相等∵在△CMF 中,CF +CM >MF 三角形两边之和大于第三边 ∴BE +CF >EF注:上题也可加倍FD,证法同上;注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中;五、有三角形中线时,常延长加倍中线,构造全等三角形; 例如:如图5-1:AD 为 △ABC 的中线,求证:AB +AC >2AD;分析:要证AB +AC >2AD,由图想到: AB +BD >AD,AC +CD >AD,所以有AB +AC + BD +CD >AD +AD =2AD,左边比要证结论多BD +CD,故不能直接证出此题,而由2AD 想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去;证明:延长AD 至E,使DE=AD,连接BE,则AE =2AD ∵AD 为△ABC 的中线 已知 ∴BD =CD 中线定义 在△ACD 和△EBD 中⎪⎩⎪⎨⎧=∠=∠=)()()(辅助线的作法对顶角相等已证ED AD EDB ADC CD BD∴△ACD ≌△EBD SAS∴BE =CA 全等三角形对应边相等∵在△ABE 中有:AB +BE >AE 三角形两边之和大于第三边ABCDE15-图AEF∴AB +AC >2AD;练习:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD;六、截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任一点;求证:AB -AC >PB -PC;分析:要证:AB -AC >PB -PC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB -AC,故可在AB 上截取AN 等于AC,得AB -AC =BN, 再连接PN,则PC =PN,又在△PNB 中,PB -PN <BN,即:AB -AC >PB -PC;证明:截长法在AB 上截取AN =AC 连接PN , 在△APN 和△APC 中∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AC AN ∴△APN ≌△APC SAS∴PC =PN 全等三角形对应边相等∵在△BPN 中,有 PB -PN <BN 三角形两边之差小于第三边 ∴BP -PC <AB -AC证明:补短法 延长AC 至M,使AM =AB,连接PM, 在△ABP 和△AMP 中∵ ⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AM AB∴△ABP ≌△AMP SAS∴PB =PM 全等三角形对应边相等又∵在△PCM 中有:CM >PM -PC 三角形两边之差小于第三边 ∴AB -AC >PB -PC;七、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BCA BCDNMP 16-图12分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知 ∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等九、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长;证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知DAEFA BCD 18-图1234ABCDE17-图O∴∠BEF =∠BEC =90° 垂直的定义 在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE十、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D;证明:连接BC,在△ABC 和△DCB 中 ∵ ⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等十一、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中DCBA110-图ODAN∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;五、巧求三角形中线段的比值例1. 如图1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC;解:过点D作DG如图2,BC=CD,AF=FC,求EF:FD解:过点C作CG如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD;解:过点B作BG如图4,BD:DC=1:3,AF=FD,求EF:FC;解:过点D作DG如图5,BD=DC,AE:ED=1:5,求AF:FB;2. 如图6,AD:DB=1:3,AE:EC=3:1,求BF:FC;答案:1、1:10; 2. 9:1六、辅助线总结一、 由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边; 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍;如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件;如图1-2,ABAC;3.已知:如图2-5, ∠BAC=∠CAD,AB>AD,CE ⊥AB,AE=21AB+AD.求证:∠D+∠B=180 ;4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE;求证:AF=AD+CF;图1-1BDBC已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB,垂足为D,AE 平分∠CAB 交CD 于F,过F 作FH 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,于M;求证:AM=ME;分析:由AD 、AE 是∠BAC AF,从而BF2121图4-2图4-1ABBG已知,如图,∠C=2∠A,AC=2BC;求证:△ABC 是直角三角形;2.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC ⊥ACCABA 图2-6ECD图3-2CE3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD 4.已知:如图在△ABC 中,∠A=90°,AB=AC,BD 是∠ABC 的平分线,求证:BC=AB+AD二、由线段和差想到的辅助线 口诀:线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去; 遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法: 1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段;对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明;在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:已知如图1-1:D 、E 为△ABC 内两点,求证:AB+AC>BD+DE+CE. 证明:法一将DE 两边延长分别交AB 、AC 于M 、N, 在△AMN 中,AM+AN>MD+DE+NE;1 在△BDM 中,MB+MD>BD ;2 在△CEN 中,CN+NE>CE ;3 由1+2+3得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+ECA BC D AEB D CABCD EN M 11-图AF法二:图1-2延长BD 交AC 于F,廷长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有: AB+AF>BD+DG+GF 三角形两边之和大于第三边…1 GF+FC>GE+CE 同上2 DG+GE>DE 同上3 由1+2+3得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC;在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC;BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接AD,并廷长交BC 于F,这时∠BDF 是△ABD 的 外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+ ∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF;BE+CF>EF,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同个三角形中;证明:在DN 上截取DN=DB,连接NE,NF,则DN=DC, 在△DBE 和△NDE 中: DN=DB 辅助线作法 ∠1=∠2已知 ED=ED 公共边AB CD E F G12-图ABCD E FN13-图1234∴△DBE ≌△NDESAS∴BE=NE 全等三角形对应边相等 同理可得:CF=NF在△EFN 中EN+FN>EF 三角形两边之和大于第三边 ∴BE+CF>EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素;截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB>AC,∠1=∠2,P 为AD 上任一点求证:AB-AC>PB-PC;要证:AB-AC>PB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB 上截取AN 等于AC,得AB-AC=BN,再连接PN,则PC=PN,又在△PNB 中,PB-PN<BN,即:AB-AC>PB-PC;证明:截长法在AB 上截取AN=AC 连接PN,在△APN 和△APC 中 AN=AC 辅助线作法 ∠1=∠2已知 AP=AP 公共边∴△APN ≌△APCSAS,∴PC=PN 全等三角形对应边相等 ∵在△BPN 中,有PB-PN<BN 三角形两边之差小于第三边∴BP-PC<AB-AC 证明:补短法延长AC 至M,使AM=AB,连接PM,在△ABP 和△AMP 中ABCDNMP 16 图12AB=AM 辅助线作法 ∠1=∠2已知 AP=AP 公共边 ∴△ABP ≌△AMPSAS∴PB=PM 全等三角形对应边相等又∵在△PCM 中有:CM>PM-PC 三角形两边之差小于第三边 ∴AB-AC>PB-PC;例1.如图,AC 平分∠BAD,CE ⊥AB,且∠B+∠D=180°,求证:AE=AD+BE;例2如图,在四边形ABCD 中,AC 平分∠BAD,CE ⊥AB 于E,AD+AB=2AE,求证:∠ADC+∠B=180º例3已知:如图,等腰三角形ABC 中,AB=AC,∠A=108°,BD 平分∠ABC;求证:BC=AB+DC;例4如图,已知Rt △ABC 中,∠ACB=90°,AD 是∠CAB 的平分线,DM ⊥AB 于M,且AM=MB;求证:CD=21DB;1.如图,AB ∥CD,AE 、DE 分别平分∠BAD 各∠ADE,求证:AD=AB+CD;DECB AE BCDCM BDCA2.如图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧,BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE三、由中点想到的辅助线 口诀:三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质直角三角形斜边中线性质、等腰三角形底边中线性质,然后通过探索,找到解决问题的方法;一中线把原三角形分成两个面积相等的小三角形即如图1,AD 是ΔABC 的中线,则S ΔABD =S ΔACD =S ΔABC 因为ΔABD 与ΔACD 是等底同高的;例1.如图2,ΔABC 中,AD 是中线,延长AD 到E,使DE=AD,DF 是ΔDCE 的中线;已知ΔABC 的面积为2,求:ΔCDF 的面积;解:因为AD 是ΔABC 的中线,所以S ΔACD =S ΔABC =×2=1,又因CD 是ΔACE 的中线,故S ΔCDE =S ΔACD =1,因DF 是ΔCDE 的中线,所以S ΔCDF =S ΔCDE =×1=;∴ΔCDF 的面积为;二由中点应想到利用三角形的中位线ED CB A例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD的中点为M,连结ME、MF,∵ME是ΔBCD的中位线,∴ME CD,∴∠MEF=∠CHE,∵MF是ΔABD的中位线,∴MF AB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,从而∠BGE=∠CHE;三由中线应想到延长中线例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长;解:延长AD到E,使DE=AD,则AE=2AD=2×2=4;在ΔACD和ΔEBD中,∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,从而BE=AC=3;在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线;求证:ΔABC是等腰三角形;证明:延长AD到E,使DE=AD;仿例3可证:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形;D CB A EDF CBA四直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.EDCB A中考应用09崇文二模以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变 并说明理由.14-图A B CD EFM1234A BCDE 15-图DMCE AB BA D C86B E CDA ABCD EF25-图 AB DC EFDAEDCBAP QCBA二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD3:如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠的角平分线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD =CD,BD 平分ABC ∠,求证:0180=∠+∠C ACDBAP 21DCBA5:如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC中考应用 08海淀一模三、平移变换为△ABC 的角平分线,直线MN ⊥AD 于为MN 上一点,△ABC 周长记为AP ,△EBC 周长记为BP .求证BP >AP .2:如图,在△ABC 的边上取两点D 、E,且BD=CE,求证:AB+AC>AD+AE.ED CB A四、借助角平分线造全等CBAFED CBA 1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD ∠BAC,DG ⊥BC 且平分BC,DE ⊥AB 于E,DF ⊥AC 于明BE=CF 的理由;2如果AB=a ,AC=b ,求AE 、BE 的长.中考应用06北京中考如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立 若成立,请证明;若不成立,请说明理由;五、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;当MDN ∠绕点D 转动时,求证DE=DF; 若AB=2,求四边形DECF 的面积;EDGFCBA第23题OPAMN EB CD FACEFBD图图图3.如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆的周长为 ;BCNM中考应用 07佳木斯已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立 若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系 请写出你的猜想,不需证明.西城09年一模已知2,PB=4,以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1如图,当∠APB=45°时,求AB 及PD 的长;2当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.图1A BC D E FMN 图2 A BC D E FMN 图3ABC D EF M N。

(完整版)人教版八年级数学上册第12章全等三角形证明50题(含答案),推荐文档

(完整版)人教版八年级数学上册第12章全等三角形证明50题(含答案),推荐文档

D1. 已知:AB=4,AC=2,D 是 BC 中点,111749AD 是整数,求 ADAB CD 解:延长 AD 到 E,使 AD=DE∵D 是 BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即 4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是 AB 中点,∠ACB=90°,求证: CD 1AB 2AC B延长 CD 与 P ,使 D 为 CP 中点。

连接 AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是 CD 中点,求证:∠1=∠2A 12BE CF D证明:连接BF 和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED。

∴ ∠ABE=∠AEB。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2) 。

4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD➴△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD 平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB 取点E,使AE=AC,连接DE∵AD 平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC 平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC 平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE7.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求ADAB CD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCDBD=DC∴△ACD ➴△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是 AB 中点,∠ACB=90°,求证: CD 1AB 2AC B解:延长 AD 到 E,使 AD=DE∵D 是 BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ➴△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=29. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是 CD 中点,求证:∠1=∠2A12B EC F D证明:连接BF 和EF。

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题(含答案) (44)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题(含答案) (44)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题(含答案)如图,在四边形ABCD 中,AB AD =,BC CD =,90ABC ADC ∠=∠=︒,12MAN BAD ∠=∠.(1)如图(1),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明;(2)如图(2),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 的延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?并证明你的结论;(3)如图(3),将MAN ∠绕着A 点旋转,它的两边分别交边BC 、CD 的反向延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明.【答案】(1)详见解析;(2)MN BM DN =-,证明见解析;(3)MN DN BM =-.【解析】 【分析】(1)延长MB 到G ,使BG DN =,连接AG ,易证ABG ≌ADN △,可得AG AN =,BG DN =,∠=∠NAD BAG ,再根据12MAN BAD ∠=∠,可得∠=∠MAG MAN ,易证AMG ≌AMN ,等量代换可得MN BM DN =+.(2)在BM 上截取BG ,使BG DN =,连接AG ,易证ADN △≌ABG ,可得AN AG =,NAD GAB ∠=∠,所以12MAN NAD BAM DAB ∠=∠+∠=∠,可得MAN MAG ∠=∠,易证MAN △≌MAG △,等量代换即可得出MN BM DN =-.(3)在DC 上截取DF=BM ,易证△ABM ≌△ANF ,可得AF AM =,∠=∠DAF MAB ,根据12∠=∠+∠=∠MAN NAB BAM DAB ,等量代换可得12∠+∠=∠NAB DAF DAB ,可得∠=∠FAN MAN ,即可证明△FAN ≌△MAN ,得到=FN MN ,等量代换可得MN BM DN =-. 【详解】(1)如图(1),延长MB 到G ,使BG DN =,连接AG . ∵90ABG ABC ADC ∠=∠=∠=︒,AB AD =, 在△ABG 与△AND 中,BG DN NDA GBA AG AD =⎧⎪∠=∠⎨⎪=⎩∴ABG ≌ADN △(SAS ).∴AG AN =,BG DN =,∠=∠NAD BAG .∵12MAN BAD ∠=∠, ∴12∠+∠=∠-∠=∠NAD MAB BAD MAN BAD∴12∠+∠=∠+∠=∠=∠NAD MAB BAG MAB GAM BAD .∴GAM MAN ∠=∠.又AM AM =,∴在△AMG 与△AMN 中,AG AN MAG NAM AM AM =⎧⎪∠=∠⎨⎪=⎩AMG ≌AMN (SAS ). ∴MG MN =.∵MG BM BG =+.∴MN BM DN =+.(1) (2) (3) (2)MN BM DN =-.证明:如图(2),在BM 上截取BG ,使BG DN =,连接AG . ∵90ABC ADC ∠=∠=︒,AD AB =, ∴在△ABG 与△AND 中,BG DN NDA GBA AG AD =⎧⎪∠=∠⎨⎪=⎩∴ABG ≌ADN △(SAS ). ∴AN AG =,NAD GAB ∠=∠,∴12MAN NAD BAM DAB ∠=∠+∠=∠.∴12MAG BAD ∠=∠.∴MAN MAG ∠=∠. ∴在△AMG 与△AMN 中,AG AN MAG NAM AM AM =⎧⎪∠=∠⎨⎪=⎩∴AMG ≌AMN (SAS ). ∴MN MG =. ∴MN BM DN =-. (3)MN DN BM =-.证明:如图(3),在DC 上截取DF=BM , ∵90ABC ADC ∠=∠=︒,AD AB =, ∴在△ABM 与△ANF 中,BM DF ABM ADF AB AD =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ANF (SAS ). ∴AF AM =,∠=∠DAF MAB ,∴12∠=∠+∠=∠MAN NAB BAM DAB ,∴12∠+∠=∠NAB DAF DAB ,∴()12∠=∠-∠+∠=∠FAN DAB NAB DAF DAB∴∠=∠FAN MAN . ∴在△FAN 与△MAN 中,AF AM FAN NAM AN AN =⎧⎪∠=∠⎨⎪=⎩∴△FAN ≌△MAN (SAS ), ∴=FN MN . ∵=-FN DN DF ∴MN BM DN =-. 【点睛】本题考查截长补短的辅助线的做法,并且这道题属于类比探究题型,只要把第一问做出来,那么后面几问跟第一问的辅助线,证明思路都比较相似,如果实在没有思路的话可类比第一问证得哪两个三角形全等,在第二问中也找到这样的三角形即可.32.如图,在正方形ABCD 中,点E 、F 分别在AD 、CD 边上,且AE DF =,联结BE 、AF .求证:AF BE =.【答案】详见解析 【解析】 【分析】根据正方形的性质可得AB=AD ,∠BAE=∠D=90°,再根据已知条件AE DF =可证ABE △≌DAF △,即可得出AF BE =.【详解】解:∵四边形ABCD 是正方形, ∴AB DA =,90BAE ADF ∠=∠=︒. 在ABE △与DAF △中,AB DA BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩, ∴ABE △≌DAF △(SAS ). ∴AF BE =. 【点睛】本题考查正方形的性质,熟练掌握正方形四边相等,四角相等都等于90°是解题关键.33.如图,已知ABC △.(1)请你在BC 边上分别取两点D ,E (BC 的中点 除外),联结AD 、AE ,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(l )成立的相应条件,证明AB AC AD AE +>+. 【答案】(1)详见解析;(2)详见解析. 【解析】 【分析】(1)根据图中只存在两对面积相等的三角形,可得出在BC 上选取的点不能使三等分点,只能是BD CE DE =≠,这样的话就存在△ABD 和△AEC面积相等,两个三角形再加上一个公共的三角形也就是△ADE 就可以得到△ABE 和△ABE 面积相等,即满足条件.(2)分别过点D 、B 作CA 、EA 的平行线,两线相交于F 点,DF 与AB 交于点G .可得到ACE FDB ∠=∠,AEC FBD ∠=∠,易证AEC ≌FBD ,可得到AC FD =,AE FB =;在AGD △中根据三角形三边关系可得AG DG AD +>,在BFG 中根据三边关系可得,BG FG FB +>,两个式子合并可得AB FD AD FB +>+,即可得到AB AC AD AE +>+.【详解】(1)如图(1),相应的条件就应该是BD CE DE =≠, 设点A 到直线BC 的距离是h ,则可得到12ABDSBD h =,12ACES EC h =, ∵BD=CE ∴ABDACESS=;又∵ABEABDADES SS=+,ADCAECADESSS=+,∴ABEADCSS=;此时此图中只存在两对面积相等的三角形,分别是:△ABD 和△AEC 面积相等,△ABE 和△ADC 面积相等.(1) (2)(2)如图(2),分别过点D 、B 作CA 、EA 的平行线,两线相交于F 点,DF 与AB 交于点G .∴ACE FDB ∠=∠,AEC FBD ∠=∠. 在AEC 和FBD 中,又CE BD =,∴AEC ≌FBD .∴AC FD =,AE FB =. 在AGD △中,AG DG AD +>,在BFG 中,BG FG FB +>,即AB FD AD FB +>+. ∴AB AC AD AE +>+. 【点睛】本题考查了(1)两个三角形等底同高面积相等的情况,如果在一个较大的三角形一边上选取两条相等的线段,再与另一个顶点组成的两个三角形面积一定相等;(2)通过作已知直线的平行线构造全等三角形,将要证明的线段间的关系进行等量代换,可证出结论.34.已知AE AB ⊥,DA AC ⊥,AE AB =,AD AC =.直线MN 过点A ,交DE 、BC 于点M 、N .(1)若AM 是EAD 中线,求证:AN BC ⊥; (2)若AN BC ⊥,求证:EM DM =. 【答案】(1)详见解析;(2)详见解析. 【解析】 【分析】(1)延长AM 至F ,使MF AM =,易证EMF △≌DMA △,可得DAM F ∠=∠,EF AD =,再根据AD AC =可得EF AC =,再利用∠BAC 、∠BAE 、∠EAD 和∠DAC 四个角和为360°,可得180BAC DAE ∠=︒-∠,利用△AEF 的内角和可得180AEF DAE ∠=︒-,可得BAC AEF ∠=∠,即可证明ABC △≌EAF △,最后利用等角的余角相等的等量代换以及△ABN 的内角和为180°可得出结论.(2)过点E 作EF AD ∥交AM 的延长线于F ,则F DAM ∠=∠,根据DA AC ⊥,可得90DAM CAN ∠+∠=︒;AN BC ⊥,可得90CAN C ∠+∠=︒,等量代换得出F DAM C ∠=∠=∠.根据周角等于360°,可得180BAC DAE ∠=︒-∠;根据三角形内角和可得180∠=︒-∠AEF DAE ,可得BAC AEF ∠=∠,则可证明ABC △≌EAF △(AAS ),得到EF AC =;易证EFM △≌DAM △,即可得到EM DM =.【详解】解:(1)如图,延长AM 至F ,使MF AM =,∵AM 是EAD 中线,∴EM DM =.在EMF △和DMA △中,EM DMEMF AMD MF AM =⎧⎪∠=∠⎨⎪=⎩,∴EMF △≌DMA △(SAS ).∴DAM F ∠=∠,EF AD =. ∵AD AC =,∴EF AC =.∵AE AB ⊥,DA AC ⊥,∴360902180BAC DAE DAE ∠=︒-︒⨯-∠=︒-∠. ∵180180180AEF F EAM DAM EAM DAE ∠=︒-∠-∠=︒-∠-∠=︒-, ∴BAC AEF ∠=∠.在ABC △和EAF △中,EF ACBAC AEF AB AE =⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌EAF △(SAS ).∴EAF B ∠=∠.∵AE AB ⊥,∴90EAF BAN ∠+∠=︒.∴90B BAN ∠+∠=︒.在ABN 中,()1801809090ANB B BAN ∠=︒-∠+∠=︒-︒=︒,∴AN BC ⊥. (2)如图,过点E 作EF AD ∥交AM 的延长线于F ,则F DAM ∠=∠,∵DA AC ⊥,∴90DAM CAN ∠+∠=︒.∵AN BC ⊥,∴90CAN C ∠+∠=︒.∴F DAM C ∠=∠=∠.∵AE AB ⊥,DA AC ⊥,∴360902180BAC DAE DAE ∠=︒-︒⨯-∠=︒-∠. ∵180180180AEF F EAM DAM EAM DAE ∠=︒-∠-∠=︒-∠-∠=︒-∠, ∴BAC AEF ∠=∠.在ABC △和EAF △中,BAC AEFF C AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌EAF △(AAS ).∴EF AC =. ∵AD AC =,∴EF AD =.在EFM △和DAM △中,F DAM EMF DMA EF AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴EFM △≌DAM △(AAS ).∴EM DM =.【点睛】本题考查三角形全等以及角度之间的等量代换,第(1)题通过“倍长中线”这一辅助线做法,构造全等三角形,从而得出角相等,在遇到有中线的题目,并且题中没有全等三角形,那么我们就可以通过延长中线,或者经过中点的线段,构造全等三角形;第(2)题是通过构造平行线,进而得到角相等,构造全等三角形,然后再根据角之间的等量代换,常见的就是等角的余角相等、等角的补角相等,当直角比较多的地方都可以想到这种方法.35.如图,在ABC △中,AC BC =,90ACB ∠=︒,D 是AC 上的一点,且AE BD ⊥的延长线交于E ,又BD 平分ABC ∠,求证:12AE BD =.【答案】详见解析【解析】【分析】延长AE ,BC 交于点F ,根据在Rt △BEF 中,∠EBF+∠F=90°,在Rt △ACF中∠FAC+∠F=90°,可得∠EBF=∠FAC ,进而可证ACF ≌BCD,可得AF BD =,易证ABE △≌FBE ,可得AE EF =,即12AE AF =,所以12AE BD =. 【详解】解:延长AE ,BC 交于点F ,∵90EAD ADE ∠+∠=︒,90BDC CBD ∠+∠=︒,ADE BDC ∠=∠,∴EAD CBD ∠=∠.∵在ACF 和BCD 中,90EAD CBD AC BC ACF BCD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ACF ≌BCD (ASA ).∴AF BD =.∵在ABE △和FBE 中,90ABE FBE BE BE AEB FEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ABE △≌FBE (ASA ).∴AE EF =,即12AE AF =. ∴12AE BD =. 【点睛】本题考查全等三角形证明中与等腰三角形三线合一相关的辅助线,如果一个题目中一条线段既是高线又是角平分线,那么我们可以将这个高线和角平分线所在的三角形补全,即可证得等腰三角形,就可以利用这些条件构造全等.36.如图,AD BC ∥,12∠=∠,34∠=∠,直线DC 过点E 交AD 于D ,交BC 于点C .求证:AD BC AB +=.【答案】详见解析【解析】【分析】在线段AB 上取AF AD =,连接EF ,易证ADE ≌AFE △,可得D AFE ∠=∠,因为AD BC ∥得,∠D+∠C=180°,再根据邻补角∠AFE+∠BFE=180°,可得∠BFE=∠C ,可证CBE △≌FBE ,可得BC=BF ,再进行等量代换即可得出答案.【详解】解:在线段AB 上取AF AD =,连接EF ,在ADE 与AFE △中,12AF AD AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴ADE ≌AFE △(SAS ).∴D AFE ∠=∠.由AD CB 又可得180C D ∠+∠=︒,∴180AFE C ∠+∠=︒.又180BFE AFE ∠+∠=︒,∴C BFE ∠=∠.在CBE △与FBE 中,34C BFE BE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CBE △≌FBE (AAS ).∴BF BC =.∵AB BF AF =+,∴AB AD BC =+.【点睛】本题考查全等三角形证明中辅助线其中一种截长补短的方法,在遇到两条线段和等于第三条线段的时候可用截长补短构造全等三角形,即在较长的线段上截取某条较短线段长度,或者延长一条较短线段长度使之等于另一条线段长度.37.如图,在ABC △和A B C '''中,AC A C ''=,'AB A B '=,D 、D 分别为BC 、B C ''的中点,且AD A D ''=,求证:ABC △≌A B C '''.【答案】详见解析【解析】【分析】分别延长AD 、A D ''到E ,E ',使得AD DE =,A D D E ''''=,连接BE 、B E '', 易证ACD ≌EBD △,ACD '''△≌E B D '''△,可得到AC EB =,A C EB ''''=. 易证ABE △≌A B E '''△,可得BAD B A D '''∠=∠.再证明ABD △≌A B D '''△.可得BD B D ''=,BC B C ''=,即可证得ABC △≌A B C '''.【详解】解:如图,分别延长AD 、A D ''到E ,E ',使得AD DE =,A D D E ''''=, 连接BE 、B E '',在△ACD 与△EDB 中AD DE ADC BDE CD BD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△EDB (SAS )同理可证A C D E B D ≅'''''',∴AC=EB ,A C E B ='''';在△ABE 与A B E '''中,AB A B BE B E AE A E '''''=⎧'⎪=⎨⎪=⎩∴△ABE A B E '≅''(SSS )∴BAD B A D '''∠=∠,'E E ∠=∠∴'''DAC D A C ∠=∠,∵∠BAC=∠BAD+∠DAC ,B A C B A D D'A'C'∠∠∠'''''+'=,∴BAC B A C ∠∠'''=;在△ABC 与A'B'C'中B AC AB A B BAC AC A C '''''''=⎧⎪∠=∠⎨⎪=⎩∴△ABC A'B'C'≅(SAS )【点睛】本题考查全等三角形的证明,在证明全等但条件不够的时候可以考虑做辅助线,并且本题有中点,所以考虑倍长中线的辅助线做法是本题的解题关键.38.如图,在ABC △中,CD 是C ∠的角平分线,2A B ∠=∠,求证:BC AC AD =+.【答案】详见解析【解析】【分析】在BC 上取一点E 使得CE AC =,易证ACD ≌ECD ,可得2DEC A B ∠=∠=∠,再根据三角形的外角可得2B BDE DEC B ∠+∠=∠=∠,所以B BDE ∠=∠,可得DE BE =,通过等量代换可得出BC AC AD =+.【详解】解:如图,在BC 上找到E 点,使得CE AC =,在ACD 和ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩, ∴ACD ≌ECD (SAS ).∴DE AD =.∵2A B ∠=∠,B BDE DEC A ∠+∠=∠=∠,∴B BDE ∠=∠.∴DE BE =.∵BC BE CE =+,∴BC DE AC AD AC =+=+【点睛】本题考查利用截长补短的辅助线结合全等解题;本题的解题关键是看到三条线段之间和或者差的关系,要利用截长方法在较长线段上截取与其中一条较短线段相等的线段,构造全等三角形,或者利用补短的方法,将其中一条较短线段延长,构造全等三角形.39.如图,已知ABC △,AC BC <,请用尺规作图在BA 上取一点P ,使得PA PC BA +=.【答案】详见解析.【解析】【分析】作线段BC 的垂直平分线MN ,直线MN 交AB 于点P ,连接PC ,点P 即为所求.【详解】解:如图点P 即为所求.理由:MN 垂直平分线段BC ,PC PB ∴=,PC PA PB PA AB ∴+=+=.【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质等知识,解题的关键在于灵活运用所学知识解决问题,属于中考常考题型.40.如图,AB BC ⊥,AB BC =,点D 在BC 上.以D 为直角顶点作等腰直角三角形ADE ,则当D 从B 运动到C 的过程中,探求点E 的运动轨迹.【答案】线段.【解析】【分析】过点E 作EF BC ⊥交直线BC 于点F ,根据D 点在B 点,BC 中点以及C 点时,得出E 点所在位置,进而得出E 点在一条直线上,进而得出答案.【详解】如图所示:过点E 作EF BC ⊥交直线BC 于点F ,当点D 与点B 重合时,点E 与点C 重合,当点D 在BC 中点时,∵90ADB EDF ∠+∠=︒,90ADB DAB ∠+∠=︒,∴DAB EDF ∠=∠.∵在ADB △和DEF 中,90B F BAD FDE AD DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ADB △≌DEF (AAS ).∴BD EF =,AB DF =.∵AB BC =,BD CD =,∴FC CD EF ==.∴45ECF FEC ∠=∠=︒.∵∠ACB=45°,∴∠ECA=90°,当点D 与点C 重合时,∠ECA=90°,∴点E 与另两个点E 都在过点C 且垂直于AC 的一条直线上.综上所述:当D从B运动到C的过程中,点E的运动轨迹是线段.【点睛】此题主要考查了点的轨迹问题,根据已知得出D点在不同位置时E点位置是解题关键.。

新人教版数学八年级上册第12章第7课时证全等的辅助线作法(教师版)

新人教版数学八年级上册第12章第7课时证全等的辅助线作法(教师版)

新人教版八年级数学上册证全等的辅助线作法导学案一、学习目标1.掌握全等三角形中常见辅助线的添加方法;2.提高解决实际问题的能力.二、知识回顾找全等三角形的方法(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能相等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可以从条件和结论综合考虑,看他们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形.三、新知讲解三角形中常见辅助线的作法:(1)连接两点构造全等三角形例如:已知,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D.分析:要证∠A=∠D,可证它们所在的三角形△ABD和△DCO全等,而只有AB=DC和对顶角.两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB=DC,AC=BD,如连接BC,则△ABD和△DCO全等,所以,证得∠A=∠D.(2)作倍长中线构造全等三角形若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形.利用的思维模式是全等变换中的“旋转”.例如:如下图:AD为△ABC的中线,求证:AB+AC>2AD.分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+ BD+CD> AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去.因此,可作辅助线:延长AD至E,使DE=AD,连接BE,CE.(3)截长补短构造全等三角形在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.例如:如图,△ABC中,AB=2AC,AD平分∠BAC,且AD=BD,求证:CD⊥AC.解析:(截长法)在AB上取中点F,连FD.△ADB是等腰三角形,F是底AB中点,由三线合一知:DF⊥AB,故∠AFD=90°△ADF≌△ADC(SAS)∠ACD=∠AFD=90°,即:CD⊥AC.(4)平移法过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”.例如:如图,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于点D,若EB=CF.求证:DE=DF.分析:因为DE,DF所在的两个三角形△DEB与△DFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换,过点E作EG∥CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决.四、典例探究扫一扫,有惊喜哦!1.连接两点证全等(连公共边构造全等)【例1】如图,在四边形ABCD中,AB∥CD,AD∥BC,求证:DC=AB,AD=BC.总结:四边形问题通常要转化成三角形问题求解,常作辅助线是连接对角线.练1.已知:如图,AC、BD相交于O点,且AB=CD,AC=BD,求证:∠A=∠D.2.倍长中线证全等(利用中点、中线构造全等)【例2】如图,在△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.D CBA总结:“倍长中线”的实质是用“SAS”构造全等,其中延长中线得到相等的边和对顶角.在遇到中点或中线时,通常用这种方法.练2.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.E DF C B A 3.截长法或补短法证全等【例3】如图,已知在△ABC 内,∠BAC=60°,∠C=40°,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是∠BAC ,∠ABC 的角平分线.求证:BQ+AQ=AB+BP .P QC BA总结:1.截长法:①在长边上截取一条与某一短边相同的线段;②证剩下的线段与另一短边相等. 2. 补短法:①延长短边;②通过旋转等方式使两短边拼合在一起.练3.如图,AD ∥BC ,EA ,EB 分别平分∠DAB ,∠CBA ,CD 过点E ,求证:AB =AD+BC . EDC B A五、课后小测 一、解答题1.如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE .ED CBA2.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.DCBA3.如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证:AB-AC>PB-PC.P2 1D CBA4.如图2,AD为△ABC的角平分线,AB>AC,求证:AB-AC>BD-DC.图221 ED CBA5.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点做一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.典例探究答案:【例1】【解析】可连接BD ,证明△ADB ≌△CBD ,进而获得结论. 证明:如图,连接BD .∵AB ∥CD , AD ∥BC ,∴∠1=∠2,∠3=∠4.在△ADB 和△CBD 中,12,,34,BD DB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADEB ≌△CBD (ASA ).∴DC=AB ,AD=BC .练1.【解析】根据已知条件证不出全等三角形,也证不出∠A=∠D . 连接BC ,在△ABC 和△DBC 中,AB=CD (已知),AC=BD (已知),BC=BC (公共边),∴△ABC ≌△DBC .∴∠A=∠D .【例2】【解析】延长AD 至E 使AE =2AD ,连接BE ,CE .AD=DE(作图)∠ADC=∠EDB(对顶角)CD=BD(D是中点)∴△ADC≌△EDB(SAS)∴BE=AC=3由三角形三边关系知:AB-BE <2AD<AB+BE ,即2<2AD<8,故AD的取值范围是1<AD<4.练2.【解析】(倍长中线)延长FD至G使FG=2DF,连BG,EG;由SAS可证:△FCD≌△GBD,∴FD=GD,在△EFD和△EGD中,ED=ED(公共边)∠EDF=∠EDG=90°(DE⊥DF)FD=GD(已证)∴△EFD≌△EGD∴EG=EF在△BEG中,由三角形性质知EG<BG+BE,故:EF<BE+FC .【例3】【解析】证明:(补短法)延长AB 至D ,使BD=BP ,连接DP ,在等腰三角形BPD 中,可得∠BDP=40°,从而∠BDP=40°=∠ACP ,在△ADP 和△ACP 中,D C DAP CAP AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩△ADP ≌△ACP(AAS).∴AD=AC ,又∠QBC=40°=∠QCB ,故BQ=QC .∵BD=BP ,∴BQ+AQ=AB+BP .练3.【解析】证明:(截长法)在AB 上取点F ,使AF =AD ,连FE ,△ADE ≌△AFE (SAS )∠ADE =∠AFE ,∠ADE+∠BCE =180°∠AFE+∠BFE =180°故∠ECB=∠EFB△FBE≌△CBE(AAS)故有BF=BC从而:AB=AD+BC.课后小测答案:一、解答题1.【解析】证明:延长AE至G使AG=2AE,连BG,DG,显然DG=AC,∠GDC=∠ACD,由于DC=AC,故∠ADC=∠DAC在△ADB与△ADG中,BD=AC=DG,AD=AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG,故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE.2.【解析】(补短法)延长BA至F,使BF=BC,连FD,△BDF≌△BDC(SAS)故∠DFB=∠DCB,FD=DC又AD=CD故在等腰△BFD 中∠DFB =∠DAF故有∠BAD+∠BCD =180°.3.【解析】(补短法)延长AC 至F ,使AF =AB ,连PD ,△ABP ≌△AFP (SAS )故BP =PF ,由三角形性质知:PB -PC =PF -PC < CF =AF -AC =AB -AC .4.【解析】可在AB 上截取AE=AC ,易得△ADE ≌△ADC ,从而将AB-AC 转化为AB-AE ,BD-DC 转化为BD-DE ,在△BDE 中即可解决问题.证明:在AB 上截取AE=AC ,连接DE ,则BE=AB-AC .在△ADE 和△ADC 中,,12,,AE AC AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC (SAS ).∴ DE=DC .又∵BE>BD-DE ,∴AB-AC>BD-DC .点评:本题借助角平分线,在角的两边截取相同的线段构造“SAS”形式的全等三角形,使得问题顺利得解.对线段和差问题,常用截长补短法.5.【解析】(图形补全法, “截长法”或“补短法”, 计算数值法) AC 的延长线与BD 的延长线交于点F ,在线段CF 上取点E ,使CE =BM∵△ABC 为等边三角形,△BCD 为等腰三角形,且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°-∠ACD=180°-∠ABD=90°,又∵BM=CE,BD=CD,∴△CDE≌△BDM,∴∠CDE=∠BDM,DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,∵在△DMN和△DEN中,DM=DE∠MDN=∠EDN=60°DN=DN∴△DMN≌△DEN,∴MN=NE∵在△DMA和△DEF中,DM=DE∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF (∠CDE=∠BDM)∠DAM=∠DFE=30°∴△DMN≌△DEN (AAS),∴MA=FE△AMN的周长为AN+MN+AM=AN+NE+EF=AF=6.。

专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)

专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)【典型例题】1、 阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC 中,AD 平分BAC ∠,2B C ∠=∠.求证:AB BD AC +=.李老师给出了如下简要分析:“要证AB BD AC +=就是要证线段的和差问题,所以有两个方法,方法一:‘截长法’如图2,在AC 上截取AE AB =,连接DE ,只要证BD =__________即可,这就将证明线段和差问题__________为证明线段相等问题,只要证出__________≌△__________,得出B AED ∠=∠及BD =_________,再证出∠__________=∠___________,进而得出ED EC =,则结论成立.此种证法的基础是‘已知AD 平分BAC ∠,将ABD △沿直线AD 对折,使点B 落在AC 边上的点E 处’成为可能.方法二:“补短法”如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可.此时先证∠__________C =∠,再证出_________≌△_________,则结论成立.”“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【答案】方法一:CE ;转化;ABD ;AED ;DE ;EDC ;C ;方法二:F ;AFD ;ACD【分析】方法一:在AC 上截取AE AB =,由SAS 可证ABD AED ∆≅∆可得B AED ∠=∠,BD=DE ,根据等角对等边得到CE=DE ,即可求证;方法二:延长AB 至点F ,使BF BD =,由AAS 可证AFD ACD ∆≅∆,可得AC=AF ,即可证明:方法一:在AC 上截取AE AB =,连接DE ,如图2∵AD 平分BAC ∠,∵BAD DAC ∠=∠,在ABD ∆和AED ∆中AE AB BAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩,∵ABD AED ∆≅∆,∵B AED ∠=∠,BD=DE ,∵2B C ∠=∠,∵2AED C ∠=∠而2AED C EDC C ∠=∠+∠=∠,∵EDC C ∠=∠,∵DE=CE ,∵AB+BD=AE+CE=AC ,故答案为:CE ;转化;ABD ;AED ;DE ;EDC ;C ;方法二:如图3,延长AB 至点F ,使BF BD =,∵F BDF ∠=∠∵2ABD F BDF F ∠=∠+∠=∠∵2ABD C ∠=∠∵F C ∠=∠在AFD ∆和ACD ∆中FAD CAD F CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∵AFD ACD ∆≅∆,∵AC=AF ,∵AC=AB+BF=AB+BD ,故答案为:F ;AFD ;ACD .【点拨】本题考查了全等三角形的判定和性质,属于截长补短类辅助线,核心思想为数学中的转化思想,此类题的关键是要找到最长边和最短边,然后确定截取辅助线的方式. 举一反三:【变式】 数学课上,小白遇到这样一个问题:如图1,在等腰Rt ABC ∆中,90BAC ∠=︒,AB AC =,AD AE =,求证ABE ACD ∠=∠;在此问题的基础上,老师补充:过点A 作AF BE ⊥于点G 交BC 于点F ,过F 作FP CD ⊥交BE 于点P ,交CD 于点H ,试探究线段BP ,FP ,AF 之间的数量关系,并说明理由.小白通过研究发现,AFB ∠与HFC ∠有某种数量关系;小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.阅读上面材料,请回答下面问题:(1)求证ABE ACD ∠=∠;(2)猜想AFB ∠与HFC ∠的数量关系,并证明;(3)探究线段BP ,FP ,AF 之间的数量关系,并证明.【答案】(1)见解析;(2)HFC BFA ∠=∠,证明见解析;(3)BP AF PF =+,证明见解析【分析】(1)利用SAS 证明ABE ACD ≅可得结论;(2)设ABE ACD x ∠=∠=,推出=45BFA x ∠︒+,=45HFC x ∠︒+,即可证明HFC BFA ∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,证明∵ABE∵∵CAM ,得出BE AM =和M BEA ∠=∠,从而证明∵NFC∵∵MFC ,得到FM FN =和M FNC ∠=∠,可得PN=PE ,从而得出BP=AF+PF.(1)证明:∵在∵ABE 和∵ACD 中,==AB AC A A AE AD ⎧⎪∠=∠⎨⎪⎩,ABE ACD ∴∆≅∆(SAS ), ABE ACD ∴∠=∠;(2)设ABE ACD x ∠=∠=,AF BE ⊥,90BAF x ∴∠=︒-,()=9045=45BFA x x ∴∠︒-︒-︒+,ACD x ∠=,45HCF x ∴∠=︒-,FP CD ⊥,()9045=45HFC x x ∴∠=︒-︒-︒+,HFC BFA ∴∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,90BAF FAC ∠+∠=︒,90BAF ABG ∠+∠=︒,FAC ABG ∴∠=∠,在∵ABE 和∵CAM 中,===BAE ACM AB AC ABE CAM ∠∠⎧⎪⎨⎪∠∠⎩, ABE CAM ∴∆≅∆(ASA ), BE AM ∴=,M BEA ∠=∠,BFA MFC NFC ∠=∠=∠,FC FC =,45ACB BCM ∠=∠=︒,NFC MFC∴∆≅∆(ASA),∴=,M FNCFM FN∠=∠,∴∠=∠,FNC BEA∴=,PN PE=+-=+.∵BP BE PE AM PE AF FM PE=-=-=+-AF FN PN AF PF【点拨】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及等角对等边等知识点,解题的关键是根据截长补短法添加适当的辅助线,构造全等三角形证明结论,有一定难度.2、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∵BAD=∵BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明∵BAE∵∵DAC,根据全等三角形的性质得AE=AC=2,∵EAB=∵CAD,则∵EAC=∵EAB+∵BAC=∵DAC+∵BAC=∵BAD=90°,得S四边形=S∵ABC+S∵ADC=S∵ABC+S∵ABE=S∵AEC,这样,四边形ABCD的面积就转化为等腰直角三ABCD角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∵G=∵N=90°,求五边形FGHMN 的面积.【答案】(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC 的面积即可;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,由(1)易证FGH FNK ≌,则有FK=FH ,因为HM=GH+MN 易证FMK FMH ≌,故可求解.【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S SS S S S =+=+==四边形, 故答案为2;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∵G=∵N=90°,∴∵FNK=∵FGH=90°,∴FGH FNK ≌, ∴FH=FK ,又FM=FM ,HM=KM=MN+GH=MN+NK ,∴FMK FMH ≌,∴MK=FN=2cm ,∴12=242FGH HFM MFN FMK FGHMN S SS S S MK FN =++=⨯⋅=五边形. 【点拨】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.举一反三:【变式】在∵ABC中,∵ACB=2∵B,(1)如图∵,当∵C=90°,AD为∵ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD;(2)∵如图∵,当∵C≠90°,AD为∵BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请直接写出你的结论,不要求证明;∵如图∵,当∵C≠90°,AD为∵ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明.【答案】(1)证明见解析;(2)∵AB=AC+CD;∵AC+AB=CD,证明见解析.【分析】(1)首先得出∵AED∵∵ACD(SAS),即可得出∵B=∵BDE=45°,求出BE=DE=CD,进而得出答案;(2)∵首先得出∵AED∵∵ACD(SAS),即可得出∵B=∵BDE,求出BE=DE=CD,进而得出答案;∵首先得出∵AED∵∵ACD(SAS),即可得出∵B=∵EDC,求出BE=DE=CD,进而得出答案.(1)证明:∵AD为∵ABC的角平分线,∵∵EAD=∵CAD,在∵AED和∵ACD中,∵AE=AC,∵EAD=∵CAD,AD=AD,∵∵AED∵∵ACD(SAS),∵ED=CD,∵C=∵AED=90°,∵∵ACB=2∵B,∵C=90°,∵∵B=45°,∵∵BDE=45°,∵BE=ED=CD,∵AB=AE+BE=AC+CD;∵AB=AC+CD.理由如下:在AB上截取AE=AC,连接DE,∵AD为∵ABC的角平分线,∵∵EAD=∵CAD,在∵AED和∵ACD中,∵AE=AC,∵EAD=∵CAD,AD=AD,∵∵AED∵∵ACD(SAS),∵ED=CD,∵C=∵AED,∵∵ACB=2∵B,∵∵AED=2∵B,∵∵B+∵BDE=∵AED,∵∵B=∵BDE,∵BE=ED=CD,∵AB=AE+BE=AC+CD;∵AC+AB=CD.理由如下:在射线BA上截取AE=AC,连接DE,∵AD为∵EAC的角平分线,∵∵EAD=∵CAD,在∵AED和∵ACD中,∵AE=AC,∵EAD=∵CAD,AD=AD,∵∵AED∵∵ACD(SAS),∵ED=CD,∵ACD=∵AED,∵∵ACB=2∵B,∵设∵B=x,则∵ACB=2x,∵∵EAC=3x,∵∵EAD=∵CAD=1.5x,∵∵ADC+∵CAD=∵ACB=2x,∵∵ADC=0.5x,∵∵EDC=x,∵∵B=∵EDC,∵BE=ED=CD,∵AB+AE=BE=AC+AB=CD.【点拨】此题主要考查了全等三角形的判定与性质以及三角形外角的性质等知识,利用已知得出∵AED∵∵ACD是解题关键.3、(初步探索)截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,∵ABC是等边三角形,点D是边BC下方一点,∵BDC=120°,探索线段DA、DB、DC之间的数量关系;(灵活运用)(2)如图2,∵ABC为等边三角形,直线a∵AB,D为BC边上一点,∵ADE交直线a 于点E,且∵ADE=60°.求证:CD+CE=CA;(延伸拓展)(3)如图3,在四边形ABCD中,∵ABC+∵ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请直接写出∵EAF与∵DAB的数量关系.【答案】(1)DA=DC+DB,证明见详解;(2)见详解;(3)∵EAF=11802DAB︒-∠,证明见详解.【分析】(1)由等边三角形知AB=AC,∵BAC=60°,结合∵BDC=120°知∵ABD+∵ACD=180°,由∵ACE+∵ACD=180°知∵ABD=∵ACE,证∵ABD∵∵ACE得AD=AE,∵BAD=∵CAE,再证∵ADE是等边三角形得DA=DE=DC+CE=DC+DB;(2)首先在AC上截取CM=CD,由∵ABC为等边三角形,易得∵CDM是等边三角形,继而可证得∵ADM∵∵EDC,即可得AM=EC,则可证得CD+CE=CA;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定∵ADG∵∵ABE,再判定∵AEF∵∵AGF,得出∵FAE=∵FAG,最后根据∵FAE+∵FAG+∵GAE=360°,进而推导得到2∵FAE+∵DAB=360°,即可得出结论.解答:DA=DC+DB,理由如下:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵∵ABC是等边三角形,∵AB=AC,∵BAC=60°,∵∵BDC=120°,∵∵ABD+∵ACD=180°,又∵∵ACE+∵ACD=180°,∵∵ABD=∵ACE,∵∵ABD∵∵ACE(SAS),∵AD=AE,∵BAD=∵CAE,∵∵BAC=60°,即∵BAD+∵DAC=60°,∵∵DAC+∵CAE═60°,即∵DAE=60°,∵∵ADE是等边三角形,∵DA=DE=DC+CE=DC+DB ,即DA=DC+DB ;(2)证明:在AC 上截取CM=CD ,∵∵ABC 是等边三角形,∵∵ACB=60°,∵∵CDM 是等边三角形,∵MD=CD=CM ,∵CMD=∵CDM=60°,∵∵AMD=120°,∵∵ADE=60°,∵∵ADE=∵MDC ,∵∵ADM=∵EDC ,∵直线a∵AB ,∵∵ACE=∵BAC=60°,∵∵DCE=120°=∵AMD ,在∵ADM 和∵EDC 中,ADM EDC MD CDAMD ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩∵∵ADM∵∵EDC(ASA),∵AM=EC ,∵CA=CM+AM=CD+CE ;即CD+CE=CA.(3)∵EAF=11802DAB ︒-∠; 证明:如图3,在DC 延长线上取一点G ,使得DG=BE ,连接AG ,∵∵ABC+∵ADC=180°,∵ABC+∵ABE=180°,∵∵ADC=∵ABE ,又∵AB=AD ,∵∵ADG∵∵ABE (SAS ),∵AG=AE ,∵DAG=∵BAE ,∵EF=BE+FD=DG+FD=GF ,AF=AF ,∵∵AEF∵∵AGF (SSS ),∵∵FAE=∵FAG ,∵∵FAE+∵FAG+∵GAE=360°,∵2∵FAE+(∵GAB+∵BAE )=360°,∵2∵FAE+(∵GAB+∵DAG )=360°,即2∵FAE+∵DAB=360°, ∵∵EAF=11802DAB ︒-∠. 【点拨】本题属于三角形综合题,主要考查了全等三角形的判定和性质,以及等边三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.举一反三:【变式1】 如图,AB CD ∥,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上,求证:BC AB CD =+.【分析】在BC 上取点F ,使BF=BA ,连接EF ,由角平分线的性质可以得出∵1=∵2,从而可以得出∵ABE∵∵FBE ,可以得出∵A=∵5,进而可以得出∵CDE∵∵CFE ,就可以得出CD=CF ,即可得出结论.证明:在BC 上取点F ,使BF=BA ,连接EF ,∵BE 、CE 分别是∵ABC 和∵BCD 的平分线,∵∵1=∵2,∵3=∵4,在∵ABE 和∵FBE 中,12AB FB BE BE =⎧⎪∠=∠⎨⎪=⎩,∵∵ABE∵∵FBE(SAS),∵∵A=∵5,∵AB∵CD ,∵∵A+∵D=180°,∵∵5+∵D=180,∵∵5+∵6=180°,∵∵6=∵D ,在∵CDE 和∵CFE 中,634D CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∵CDE∵∵CFE(AAS),∵CF=CD .∵BC=BF+CF ,∵BC=AB+CD .【点拨】本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,解答时运用截取法正确作辅助线是关键.【变式2】如图,在∵ABC 中,60BAC ∠=︒,40ACB ∠=︒,P 、Q 分别在BC 、CA上,并且AP 、BQ 分别是∵BAC 、∵ABC 的角平分线.求证:(1)BQ CQ =;(2)BQ AQ AB BP +=+.【答案】(1)见解析;(2)见解析【分析】(1)由三角形的内角和就可以得出∵ABC =80°,再由角平分线的性质就可以得出∵QBC =40°,就有∵QBC =∵C 而得出结论;(2)延长AB 至M ,使得BM =BP ,连结MP ,根据条件就可以得出∵M =∵C ,进而证明∵AMP∵∵ACP 就可以得出结论.(1)证明:∵BQ 是ABC ∠的角平分线, ∵12QBC ABC ∠=∠. ∵180ABC ACB BAC ∠+∠+∠=︒,且60BAC ∠=︒,40ACB ∠=︒,∵80ABC ∠=︒, ∵180402QBC ∠=⨯︒=︒, ∵QBC C ∠=∠,∵BQ CQ =;(2)证明:延长AB 至M ,使得BM BP =,连结MP .∵M BPM ∠=∠,∵∵ABC 中60BAC ∠=︒,40C ∠=︒,∵80ABC ∠=︒,∵BQ 平分ABC ∠,∵40QBC C ∠=︒=∠,∵BQ CQ =,∵ABC M BPM ∠=∠+∠,∵40M BPM C ∠=∠=︒=∠,∵AP 平分BAC ∠,∵MAP CAP ∠=∠,在∵AMP 和∵ACP 中,∵M C MAP CAP AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∵AMP∵∵ACP ,∵AM AC =,∵AM AB BM AB BP =+=+,AC AQ QC AQ BQ =+=+,∵AB BP AQ BQ +=+【点拨】本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。

人教版八年级上册数学三角形全等的判定(SSS)课时小训练含答案

2021—2022学年度人教版初中八年级上册数学课时过关培优小训练班级姓名第十二章全等三角形12.2三角形全等的判定第1课时三角形全等的判定(SSS)1.在△ABC和△DEF中,如果AB=FD,BC=DE,CA=EF,那么()A.△ABC≌△DEF B.△ABC≌△EDFC.△ABC≌△DFE D.△ABC≌△FDE2.如图,AB=A1B1,BC=B1C1,AC=A1C1,且∠A=110°,∠B=40°,则∠C1=()A .110°B .40°C .30°D .20°3.如图,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不正确4. 如图,AB=CD,BC=DA,E、F是AC上的两点,且AE=CF,DE=BF,,那么图中全等三角形共有()对A.4对B.3对C.2对D.1对5 如图,AB=CD,BC=AD,则下列结论不一定正确的是().A. AB∥DCB. ∠B=∠DC. ∠A=∠CD. AB=BC6. 如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于()B.3 C.4 D.5 A.737.如图7,AB=AC,AD=AE,BE=CD,要判定△ABD≌△ACE,较为快捷的判定依据是.8如图,已知AC=DB,若要根据“SSS”判定得到△ABC≌△DCB,需添加的一个条件是9.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.①②作法:(1)如图12­2­8①,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)如图②,画一条射线O′A′,以点O′为圆心,OC的长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD的长为半径画弧,与第(2)步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据以上作图步骤,请你证明∠A′O′B′=∠AOB.10. 如图,AB=AD,CB=CD.求证:∠B=∠D.11.如图,在四边形ABCD中,AB=CD,CB=AD.求证:△ABC≌△CDA.12.如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.13.如图,已知点A,D,C,B在同一条直线上,AD=BC,AE=BF,CE=DF.求证:AE∥FB.14. 如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在直线l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.15. 如图,已知AB=DC,DB=AC.(1)求证:∠B=∠C;(注:证明过程要求给出每一步结论成立的依据)(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?16.如图,AB=AE,BC=ED,CF=DF,AC=AD.求证:∠BAF=∠EAF.参考答案1.D2.C 3. C 4. SSS 5. AB =DC 6. B 7. D 8. B9.证明:由作图步骤可知,在△C ′O ′D ′和△COD 中,⎩⎪⎨⎪⎧O ′C ′=OC ,O ′D ′=OD ,C ′D ′=CD ,∴△C ′O ′D ′≌△COD (SSS),∴∠C ′O ′D ′=∠COD ,即∠A ′O ′B ′=∠AOB . 10. 证明:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,AC =AC ,CB =CD ,∴△ABC ≌△ADC (SSS),∴∠B =∠D .11.证明:在△ABC 和△CDA 中,⎩⎪⎨⎪⎧AB =CD ,CB =AD ,AC =CA ,12. (1)证明:∵AD =CF , ∴AD +CD =CF +CD , 即AC =DF .在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).(2)解:∵在△ABC 中,∠A =55°,∠B =88°, ∴∠ACB =180°―∠A ―∠B =37°.又∵△ABC ≌△DEF ,∴∠F =∠ACB =37°. 13.证明:∵AD =BC , ∴AD +CD =BC +CD , 即AC =BD .又∵AE =BF ,CE =DF , ∴△ACE ≌△BDF (SSS), ∴∠A =∠B , ∴AE ∥FB .14. (1)证明:∵BF =EC , ∴BF +FC =EC +CF ,即BC =EF . 又∵AB =DE ,AC =DF ,(2)解:AB ∥DE ,AC ∥DF . 理由:∵△ABC ≌△DEF , ∴∠ABC =∠DEF ,∠ACB =∠DFE , ∴AB ∥DE ,AC ∥DF .15. (1)证明:连接AD , 在△BAD 和△CDA 中,⎩⎪⎨⎪⎧AB =DC (已知),DB =AC (已知),AD =DA (公共边),∴△BAD ≌△CDA (SSS).∴∠B =∠C (全等三角形的对应角相等).16.证明:在△ABC 和△AED 中, ⎩⎪⎨⎪⎧AB =AE ,BC =ED ,AC =AD ,∴△ABC ≌△AED (SSS), ∴∠BAC =∠EAD .在△ACF 和△ADF 中,⎩⎪⎨⎪⎧AC =AD ,CF =DF ,AF =AF ,∴△ACF ≌△ADF (SSS),∴∠CAF=∠DAF,∴∠BAC+∠CAF=∠EAD+∠DAF,即∠BAF=∠EAF.~ 11 ~。

(2021年整理)八年级数学全等三角形练习题含答案

(完整)八年级数学全等三角形练习题含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)八年级数学全等三角形练习题含答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)八年级数学全等三角形练习题含答案的全部内容。

全等三角形复习练习题一、选择题1.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组2.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三 角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°, 则APD ∠等于( )A .42°B .48°C .52°D .58°3。

如图(四),点P 是AB 上任意一点,ABC ABD ∠=∠,还应补 充一个条件,才能推出APC APD △≌△.从下列条件中补充 一个条件,不一定能....推出APC APD △≌△的是( ) A .BC BD = B.AC AD = C.ACB ADB ∠=∠ D 。

CAB DAB ∠=∠ 4。

如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两 个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( ) (A)∠B=∠E ,BC=EF (B )BC=EF ,AC=DF (C )∠A=∠D,∠B=∠E (D )∠A=∠D,BC=EF5.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC的平分线, DE⊥AB 于E ,若AC = 10cm ,则△DBE 的周长约等于( )EDCBACADP B图(四)A .14cmB .10cmC .6cmD .9cm6. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的方法是( )A .带①去B .带②去C .带③去D .带①②③去 8.如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于 点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( ) A . 30 B . 40 C . 50 D . 609.如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20°B .30°C .35°D .40°10.如图,AC =AD ,BC =BD ,则有( )A .AB 垂直平分CD B .CD 垂直平分ABC .AB 与CD 互相垂直平分 D .CD 平分∠ACB11.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm ,BD=3cm ,则点D 到AB 的距离为( )A. 5cmB. 3cmC. 2cm D 。

人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析

人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析一、单选题(共10题;共30分)1.(3分)如图,△ABC△△ADE,△C=40°,则△E的度数为()A.80°B.75°C.40°D.70°2.(3分)如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于点E,若BC=6cm,BD=4cm.则DE的长是()A.5cm B.4cm C.3cm D.2cm3.(3分)用直尺和圆规作一个角等于已知角,如图,能得出△A′O′B′=△AOB的依据是().A.SAS B.AAS C.ASA D.SSS4.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,则△1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以5.(3分)如图,正方形纸片ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0),若h1=5,h2=2,则正方形ABCD的面积S等于()A.34B.89C.74D.1096.(3分)下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.(3分)如图,直线l1,l2,l3表示三条公路。

现要建造一个洗手台P,使P到三条公路的距离都相等,则洗手台P可选择的点有()A.一处B.二处C.三处D.四处8.(3分)如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去9.(3分)如图,若要用“HL”证明Rt△ABC△Rt△ABD,则还需补充的条件是()A.AC=AD或BC=BD B.AC=AD且BC=BDC.△BAC=△BAD D.以上都不对10.(3分)如图,边长为5的大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,连结AF并延长交CD于点M.若AH=GH,则CM的长为()A.12B.34C.1D.54二、填空题(共5题;共15分)11.(3分)如图所示,AB=AC,AD=AE,△BAC=△DAE,△1=25°,△2=30°,则△3=.12.(3分)如图,△ABC的三边AB、BC、CA的长分别为30、40、15,点P是三条角平分线的交点,将△ABC分成三个三角形,则SΔAPB︰SΔBPC︰SΔCPA等于13.(3分)如图,AB⊥BC,AD⊥DC,请你添加一个条件,利用“HL”,证明Rt△ABC≌Rt△ADC.14.(3分)如图,△AOB=30°,OP平分△AOB,PD△OB于D,PC△OB交OA于C,若PC=10,则PD=.15.(3分)如图,C 为线段AE 上一动点(不与A、E 重合),在AE 同侧分别作等边△ABC 和等边△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ△AE;③AP=BQ;④DE=DP;⑤△AOB=60°,其中正确的结论是(把你认为正确的结论的序号都填上).三、解答题(共11题;共75分)16.(5分)如图,点E,F在BC上,BE=CF,△A=△D ,△B=△C.求证:△ABF△△DCE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共8页
全等三角形之辅助线(习题)
 例题示范
例1:已知:如图,在△ABC中,∠C=90°,D是AB边上一点,AD=AC,过点D
作DE⊥AB,交BC于点E.
求证:CE=DE.
【思路分析】
① 读题标注:

E
D
B
C

A

② 梳理思路:
要证CE=DE,考虑把这两条线段放在两个三角形中证全等,利用全等三角形
对应边相等来证明.
观察图形,发现不存在全等的三角形.
结合条件,AC=AD,∠C=∠ADE=90°,考虑连接AE,证明△ACE≌△ADE.
【过程书写】
证明:如图,连接AE
∵DE⊥AB
∴∠ADE=90°
∵∠C=90°
∴∠C=∠ADE
在Rt△ACE和Rt△ADE中
AEAEACAD(公共边)
(已知)
∴Rt△ACE≌Rt△ADE(HL)
∴CE=DE(全等三角形对应边相等)

 巩固练习
1. 已知:如图,B,C,F,E在同一条直线上,AB,DE相交于点G,且BC=EF,
GB=GE,∠A=∠D.求证:DC=AF.

过程规划:
1.描述辅助线:连接AE
2.准备条件:
∠C=∠ADE=90°
3.证明△ACE≌△ADE
4.由全等性质得,CE=DE
E

D
B
C

A

E
D
B
C

A
第2页 共8页
2. 已知:如图,∠C=∠F,AB=DE,DC=AF,BC=EF.
求证:AB∥DE.

3. 已知:如图,AB∥CD,AD∥BC,E,F分别是AD,BC的中点.求证:BE=DF.

D
G

CABEF

过程规划:

F
EBAD
C

FEBADC
过程规划:
第3页 共8页

4. 已知:如图,在正方形ABCD中,AD=AB,∠DAB=∠B=90°,点E,F分别在
AB,BC上,且AE=BF,AF交DE于点G.
求证:DE⊥AF.

5. 已知:如图,在四边形ABCD中,AB∥CD,AD∥BC ,AC与BD相交于点O,
过O作EF交AD于点E,交BC于点F,则图中的全等三角形共有( )

G
F
E

D

C
B

A
第4页 共8页

F
CB
O
E
DA

A.5对 B.6对 C.7对 D.8对
6. 如图,C为线段AB上一点,△MAC和△NBC均是等边三角形,连接AN,交
CM于点E,连接BM,交CN于点F.有下列结论:①∠AMB=∠ANB;②△
ACE≌△MCF;③CE=CF;④EN=FB.其中正确结论的序号是
_________________.
N
M

E
B
A

F
C

 思考小结
1. 根据本章知识结构图回答下列问题:
第5页 共8页

对应边___________;
对应角___________.

性质

判定
一般三角形全等判定:
_________________________________

直角三角形全等判定:
_________________________________

应用全等三角形
全等图形

(1)补全知识结构图.
(2)要证明两条边相等或者两个角相等,可以考虑它们所在
的三角形________;如果所在的三角形不全等或者不在三角形中,则可以把
一条边转移或者重新整合条件去构造全等三角形.
(3)要证明两个三角形全等需要准备______组条件,这三组
条件里面必须有______;然后依据判定进行证明,其中AAA,SSA不能证明
两个三角形全等,请举出对应的反例.
(4)由全等三角形的性质可知:全等三角形__________相等,
__________相等,所以全等关系是转移边和角的有力工具.

【参考答案】
 巩固练习
1. 证明:如图,过点G作GH⊥BE于点H
第6页 共8页

HFEBAC
G
D
∵GH⊥BE
∴∠GHB=∠GHE=90°
在Rt△GHB和Rt△GHE中,

GBGEGHGH(已知)
(公共边)

∴Rt△GHB≌Rt△GHE(HL)
∴∠B=∠E(全等三角形对应角相等)
∵BC=EF
∴BC+CF=EF+CF
即BF=EC
在△ABF和△DEC中,

ADBEBFEC(已知)
(已证)
(已证)

∴△ABF≌△DEC(AAS)
∴DC=AF
2. 证明:如图,连接BE

C
DABE

F
在△AEF和△DBC中,
AFDCFCEFBC(已知)
(已知)
(已知)

∴△AEF≌△DBC(SAS)
∴AE=DB(全等三角形对应边相等)
在△ABE和△DEB中,
第7页 共8页

AEDBABDEEBBE(已证)
(已知)
(公共边)

∴△ABE≌△DEB(SSS)
∴∠ABE=∠DEB(全等三角形对应角相等)
∴AB∥DE
3. 证明:如图,连接BD

CDABEF
∵AB∥CD,AD∥BC
∴∠ABD=∠CDB,∠ADB=∠CBD
在△ABD和△CDB中,
ABDCDBBDDBADBCBD(已证)
(公共边)
(已证)

∴△ABD≌△CDB(ASA)
∴AD=CB(全等三角形对应边相等)
∵E,F分别是AD,BC的中点
∴DE=BF
在△BED和△DFB中,
DEBFADBCBDBDDB(已证)
(已证)
(公共边)

∴△BED≌△DFB(SAS)
∴BE=DF(全等三角形对应边相等)
4. 证明:如图,
A

B
C
D

E
F
G

第7题图

3
1
2

在△DAE和△ABF中
第8页 共8页

ADBADAEBAEBF(已知)
∠∠(已知)
(已知)
∴△DAE≌△ABF(SAS)
∴∠1=∠2(全等三角形对应角相等)
∵∠DAB=90°
∴∠2+∠3=90°
∴∠1+∠3=90°
∴∠AGD=90°
∴DE⊥AF
5. B
6. ②③④
 思考小结

1. (1)SAS,SSS,ASA,AAS
SAS,SSS,ASA,AAS,HL
相等;
相等.
(2)全等
(3)3,边;AAA反例:大小三角板;SSA反例:作图略
(4)对应边,对应角.

相关文档
最新文档