智能建筑中火灾探测系统的发展

合集下载

火灾监控系统在智能建筑中的应用分析

火灾监控系统在智能建筑中的应用分析
介 : , 6 年生 , 工程师 , 男 17 9 高级 张家 口市 , 50 0 00 7
维普资讯
lo o
河 北 建 筑 工 程 学 院 学 报
第2 5卷
求 , 考 虑建筑 物 的规模性 质 、 灾 载荷 、 综合 火 火灾危 险 性 、 散 和 扑救 的难 易 程 度 、 灾 事 故 的可 能 后果 疏 火
分 区声 光报 警 .
() 4 分布智能系统结构. 分布智能系统结构是在集中智能系统优势基础上形成 的, 它将火灾探测信 息的基本处理 、 环境补偿 、 探头污染监测和故障判断等功能由火灾报警控制器返 还给现场火灾探测器 , 免去控制器大量 的信号处理负担 , 之能从容 实现火灾模式识别 、 使 系统巡检 、 设备监控 、 数据通信等功
能, 提高了系统巡检速度 、 稳定性和可靠性. () 5 网络通信系统结构. 网络通信系统结构可在集中智能或分布智 能系统基础上形成, 特殊之处是
将计算机数据通信技术应用于火灾报警控制器 , 使控 制器之 间能够通过 Ehme 及 T knRn 、oe t e t oe i T kn g
Bs u 等通信协议 , 以及专用通信线 或总线 ( S3 、 2 R 22 4 总线 、 5总线 ) 2 4 8 交换数据信息 , 实现火灾监控 系 统层次功能设定 、 远程数据调用管理 和网络通信服务等功能.
() 3 集中智能系统结构. 集中智能系统结构一般采用总线制和大容量通用火灾报警控制器 , 其特点
是火灾探测器主要完成火灾参数 的采集和传输 , 火灾报警控制器采用计算机技术实现火灾信号识别 、 数 据集 中处理储存 、 系统巡检 、 报警灵敏度调整 、 火灾判定和消防设备联动等功能 , 并配以区域显示器完成

智能化技术在现代建筑设计中的应用与探索

智能化技术在现代建筑设计中的应用与探索

智能化技术在现代建筑设计中的应用与探索摘要:随着科技的不断发展,智能化技术已经渗透到我们生活的方方面面,现代建筑设计也不例外。

智能化技术在建筑设计中的应用不仅提高了建筑物的功能性、舒适性和安全性,还为节能减排、绿色建筑等方面提供了有力支持。

本文将对智能化技术在现代建筑设计中的应用与探索进行简要分析。

关键词:智能化技术;现代建筑设计;应用1、引言随着科技的飞速发展,智能化已逐渐渗透到各个领域。

在建筑设计中,技术革新不仅带来了新的形式和空间体验,更在深层次上重塑了人与建筑、环境之间的关系。

智能化建筑作为这一变革的产物,正引领着现代建筑设计的新风潮。

1.1 技术革新与建筑设计的关系技术革新是推动建筑设计不断向前发展的核心动力。

从传统的建筑材料到现代的节能技术,从结构力学到数字化模拟,每一次技术的飞跃都为建筑设计提供了更多的可能性和创新空间。

智能化技术的引入更是如此,它使得建筑不再仅仅是静态的空间存在,而是能够与人互动、自我调节的智能环境。

1.2 智能化建筑的定义及其发展背景智能化建筑是指通过综合布线、系统集成、自动控制等技术手段,实现建筑设备自动化、信息管理科学化和通信网络化的建筑。

它不仅涵盖了建筑物理空间的智能化,还包括了与之相关的信息服务和管理系统。

随着信息技术的迅猛发展、人们生活水平的提高以及对绿色、舒适环境的追求,智能化建筑应运而生并迅速崛起。

1.3 智能化技术对现代建筑设计的重要性智能化技术对现代建筑设计的重要性体现在多个方面。

首先,智能化技术大大提高了建筑的能效水平,实现了节能减排,符合可持续发展的时代要求。

其次,智能化建筑提供了更加便捷、舒适的生活和工作环境,满足了人们日益增长的高品质生活需求。

此外,通过智能化管理,建筑物的运营和维护也变得更加高效和经济。

最后,智能化技术在建筑设计中的运用还有助于推动行业的创新和进步,激发设计师们的创造潜能。

智能化建筑作为技术革新的重要成果,正在深刻影响着现代建筑设计的发展趋向。

火灾自动报警技术的应用现状及其发展趋势

火灾自动报警技术的应用现状及其发展趋势

在 我 国 , 火 灾 自动 报 警 系统 的 研 究 、生产 、应 用相 对美 、英 等 发达 国家 起 步较晚 ,安 装范 围 主要是 “ 高层 民用
充分 采用模糊逻辑 和人工神经网络技 术等 进行 计算 处理 ,对 各项 环境 数据 进行 对 比判 断 ,从 而 准 确 地预 报 和 探 测 火 灾 , 避免 误 报和 漏报 现象 。 发生 火灾 时 ,能
12 能 化程 度低 .智
火势 的大 小 、烟 的浓 度 以及 火的 蔓延 方 向等 给 出详 细的 描述 ,甚至 可 配合 电子 地 图进行 形 象提 示 、对 出动 力量 和扑 救 方法 等给 出 合理 化建 议 ,以 实现 各 方面 快速 准确 反应 联 动 ,最 大限 度地 降低 人 员伤 亡和 财 产损 失 ,而 且火 灾 中探测 到 的 各种 数 据 可 作 为 准 确判 定 起 火 原 因 、 调 查火 灾事 故 责 任 的 科学 依 据 。 此 外 , 规模庞大的建筑使用全智能型火灾 自动报 警 系 统 , 即 探 测 器 和 控 制 器均 为 智 能 型 ,分 别承 担不 同的 职 能 ,可提 高 系统 巡检 速 度 、稳 定性 和 可 靠 性 。
警中心 等通过一定的网络协议进 行相互连 接 ,实现远 程数 据 的调用 ,对 火 灾 自动 报 警 系统 实行 网络监 控管 理 ,使 各 个独 立 的 系统组 成一 个 大的 网络 , 实现 网络 内部 各 系统 之 间的 资源和 信息 共享 ,使 城 市 “ l ”报警 中心 的人 员能及时 、准 l9 确掌 握各 单位 的有 关信 息 ,对 各系统 进
依 据探 测 到 的 各种 信 息对 火 场 的 范 围 、
成 不必 要 的损失 。 此外 ,还造 成一 些硬 建筑 设计 防 火规 范 》 建 筑 设 计 防 火 件 的重 复投资和 人 力投 资浪 费。 、“ 规 范 规 定 的场所 和部 位 ,如 大型 电子 14 . 组件连接方式有待改善 计 算机 中心 、高 层建筑 、高级旅 馆 、重 要 仓库和 大 公共 建筑等 ,而 在易造 成 群死群伤的中小 型公 众聚集场所和礼区居 民家庭甚至部分 高层住宅都没有规定安装 火 灾 自动 报警 系统 ,适用 范 围过小 ,防 范措 施 不到 位 。

智能控制在火灾报警系统中的研究及应用

智能控制在火灾报警系统中的研究及应用

人 员经济损失 扑救难度 比较大的建筑物 , 火灾 自动报警消防系统均可 以 达到要求_ 1 1 。
2 火灾 自动报警 系统
( 1 ) 火灾探测器的设置。大楼地下汽车库的火灾探 测器 选择感湍探 测器 , 其他 场所 选择智能型光 电感烟探测器 。封 闭的楼梯 问单独划 分 ‘
入式。 一般来说, 审核人员对消火栓暗装设置重视程度不够。 若在 防火分 隔墙中设置有 暗装 , 那 么极易使降低墙 体耐火极 限, 与此 同时, 消火栓暗 装设置对墙 体防火 分隔能力也会产 生一 定的破坏 ,这是在审核过程 中, 审核人员极易忽视 的地方 。因此 , 关于墙体消火栓暗装设计, 首先要对对 消火栓暗装法和墙体设置要求是否完全相符, 检查是否满足耐火极限。
6 - 3 健全技术复合制度
现如今 , 因建筑 设计消防审核工作专业性较 强 , 而且所 承担的责任 较大 , 因此, 提高审核质量 关键在 于审核人 员业 务水平与责任 t 3的高低 。 为进一 步减 少审核 中, 防火设计 出制度是非常有必要的,在按照专业分工进行审核之后 , 需要多名业务技术水平较高的复合人员来协调个专业间的配合工作。
l 火灾 报警 系统 的构 成
在对火灾报警系统进行系统的设计安装时, 设计人员要对系统的控 制区域进 行详细的划分, 对其的每个控制区域都要 由一个控制器 来进行 控制 , 这个控制 器的控制系统包括很 多个探 测系统, 它是通过这些探 测 器在对火灾信 号的进行探测后 , 在 由报警控制器来发 出警报信号最后传
引 言
随着城镇化建设的不断发展和现代 计算机 信息技术的不断提高, 世
到火灾报警系统的 中央控制器中 , 这样火灾防范部门的人员就能在第 一 时间收到出现火灾 的地点后通过 中央控制器对烟 、 光、 热等信 号的分析 ,

火灾报警技术的国内外应用案例和典型工程介绍

火灾报警技术的国内外应用案例和典型工程介绍

火灾报警技术的国内外应用案例和典型工程介绍随着科技的不断发展,火灾报警技术在国内外得到了广泛的应用。

这项技术的出现为我们的生活和工作带来了极大的便利和安全保障。

本文将介绍一些国内外的火灾报警技术应用案例和典型工程,以展示其重要性和实用性。

1. 商业建筑的火灾报警系统商业建筑是人员密集、火灾风险较高的场所之一。

因此,在商业建筑中安装火灾报警系统显得尤为重要。

例如,位于纽约的帝国大厦就采用了先进的火灾报警技术。

该系统通过多种传感器和探测器,能够实时监测建筑内的温度、烟雾和气体浓度等指标,并在发现异常情况时立即发出警报。

这种智能化的火灾报警系统大大提高了帝国大厦的火灾安全性。

2. 工业厂房的火灾报警系统工业厂房通常存在着大量的易燃物质和高温设备,因此火灾风险较高。

为了确保工业厂房的安全运营,许多企业在厂房内部安装了先进的火灾报警系统。

例如,位于中国广东的某化工厂就采用了先进的光纤火灾报警系统。

该系统通过光纤传感器实时监测厂房内的温度和烟雾情况,并能够精确定位火灾发生的位置,从而及时采取应对措施,有效减少火灾造成的损失。

3. 住宅小区的火灾报警系统为了保障居民的生命财产安全,越来越多的住宅小区开始引入火灾报警技术。

例如,位于日本东京的某住宅小区就安装了智能化的火灾报警系统。

该系统通过红外线传感器和摄像头监测小区内的火源,并能够自动识别火灾发生的位置和范围。

一旦发现火灾,系统会立即启动喷水装置,并通过语音警报和手机短信通知居民,提醒他们尽快撤离。

这种智能化的火灾报警系统大大提高了住宅小区的火灾安全性。

4. 地铁和轨道交通的火灾报警系统地铁和轨道交通是人员密集、火灾风险较高的场所之一。

为了确保乘客的安全,许多地铁和轨道交通系统都安装了先进的火灾报警技术。

例如,位于伦敦的地铁系统就采用了高度智能化的火灾报警系统。

该系统通过红外线传感器和视频监控设备实时监测地铁车厢内的温度和烟雾情况,并能够自动识别火灾发生的位置和范围。

浅谈建筑物火灾监控系统的智能化发展

浅谈建筑物火灾监控系统的智能化发展
和新 方 法. 关 键 词 : 灾监 控 系统 ; 能 化 ; 火 智 网络 化
中 图 分 类 号 : 7 . l O1 5 1 l
文 献 标 识 码 : B
文 章 编 号 : 0 9 1 3 ( 0 7 0 —0 7 —0 10 — 4 2 2 0 ) 2 0 0 2
探 测 式 ) 大 类 . 了 提 高 报警 准确 性 减 少 误 报 . 此 基 础 三 为 在 上 出 现 了 感 烟 、 温 和 感 光 相 结 合 的 复 合 式 探 测 器 . 此 感 除 之 外 , 年 来 还 出现 了 图 象 式 和 空 气 采 样 式 火 灾 探 测 器 , 近 为 我们 进 行 火 灾 探 测 提 供 了新 的技 术 手 段 和 思 路 . 象 式 图 探 测 器 通 过 摄 像 采 集 监控 区域 的光 辐 射 图 象 , 后 通 过 图 然 象 识 别 技 术 判 断 火 灾 的 发 生 , 有 较 强 的 识 别 和 抗 干 扰 能 具 力 . 气 采 样 式 探 测 器 则 通 过 对 空 气 粒 子 的 采 集 . 析 特 空 分 定 半 径 粒 子 的 浓 度 来 判 断 火灾 的发 生 , 大 提 高 了 探 测 器 大 的 灵 敏 度 , 别 是 为 解 决 早 期 火 灾 预 报 提 供 了 新 的 方 法. 特 任 何 火 灾 探 测 方 式 , 测 器 采 集 的 数 据 或信 息 都 不 可 探 避 免 地 受 到 不 确 定 因 素 的影 响 . 些 影 响 有 些 可 以 进 行 近 这
火 灾 监 控 系 统 通 常 由火 灾 探 测 器 、 警 控 制 器 、 动 报 联
N — S÷ K A
控 制 装 置 以及 信 号 传 输 线 路 等 组 成 . 灾 监 控 系 统 的发 展 火 主要 表 现 在 : 灾 探 测 与 报 警 的 智 能 化 、 灾 监 控 系 统 的 火 火

关于智能建筑火灾自动报警系统的探讨


21 智能 系统 的子 系统分 类 .
目前 , 人们 一 般 把 现 代 智 能 建 筑 称 作“ A ” 即 由建 筑 自动 3S, 化 系 统 、 公 自动化 系 统 、 信 自动 化 系 统 三大 系 统 组 成 。而 把 办 通 火 灾 自动报 警 系 统 (A ) 作 为智 能建 筑 中 的建 筑 自动 化 系 统 F S仅 (A ) 子系 统 进 行 归类 。 笔 者 看 , 灾 自动报 警 系 统 的技 术 B S的 依 火 综 合 性 很 强 , 上 其 在 智 能 建 筑 中 具 有 重 要 的 防 灾 功 能 , 于 加 鉴 其 特 殊 性 , 应 当 把 它 视 为 智 能 建筑 中 的一 个 子 系 统 进 行 研 究 。
l 1 工艺与设备
关 于 智能 建 筑火 灾 自动 报警 系统 的探讨
贾 斌
( 门泉 厦科 技 有 限公 司 ) 厦

要: 主要针对智 能建筑及其火灾 自动报警系统进行分析, 进而探讨火灾 自动报警 系统 的设计要点及相关技术 , 并提 出了一些建议。
关键词 : 智能建筑; 火灾 自动报警系统; 消防 自动化 ; 智能型
机 电设 备 , 且 测 控 点 多 而 分 散 , 布 建 筑 物 的 各 个 角 落 。 同 而 遍
22 智 能建筑火 灾 自动报 警 系统 概念 .
近年来 , 随着智 能建 筑的发展 火灾 自动 报警系统 通过现 代 通 讯 、 息集 成 、 件 操 作 、 信 软 自动 控 制 等 技 术 与 智 能 建 筑 的各
3 智能型火灾探测器 的信 息采集及分 类
31 探 测器 的工作原 理 .
火 灾探 测 器是 火 灾 自动 报 警 系 统 的重 要 组 成 部 分 , 系 统 是 的“ 觉 器 官 ” 测 器 对 报 警 区 域 内 的现 场 环 境 进 行 监视 。出 感 。探 现 火 情 时 , 间 内必 然 会 产 生 烟 雾 、 焰 和 热 量 , 测 器 对 这 些 空 火 探 火 灾 的特 征 物 理 量 十 分 敏 感 , 内部 感 应 元 件 与 它 们 接 触 后 , 引 起 电流 、 压值 变化 或金 属 器 件 发 生形 变 。将 火 灾 参 数 转 换 成 电 电信 号 后 , 这 些 微 弱 电信 号 进 行 放 大 , 迅 速 向火 灾 报 警 控 把 并 制 器 发 送 报 警 信 号 。对火 灾早 期 产 生 的 烟 、 、 、 焰辐 射 、 温 光 火 气 体 浓 度 等 参 数进 行 报 警 的探 测器 , 分类 大致 如 下 : 其

城市智能建筑群火灾自动报警监控网络系统的初步探索


消防控制设备主要包括 自 动喷淋 系统 、 消火栓系统 、 防烟排娴系统 、 空调通风 系统 、防火门、防火卷帘 、电梯 回降的控制装 置,以及应急广 播 、消防通信设备 、应急照明的控制装置等控制装置中的部分或全部 。
2 . 4 电源
储存火灾 自动报警 系统的各类事件 ,如开机、关机 、探测器故 障、主备 电源故 障、火警等 ; 可设定不同的报警优先级别 ; 语音提示各类火警信
中图分类号:X9 2 4 文献标识码 :B 文章编号:1 0 0 9 — 4 0 6 7 ( 2 0 1 3 ) 1 1 - 8 0 — 0 1
1 .智能建筑与火灾 自动报警 系统
智 能建筑是指以建筑物为平台 ,兼备信息设施系统、信息化应用系 统、 建筑设备管理系统、公共安全系统等 ,集结构 、系统 、服务 、管理
处理 。
4 .智能建筑群火灾 自动报警 系统 网络化监控的探索
城市火 灾 自动 报警监控 网络系统通过 通过公共 电话 网 ( P S T N) 、 I n t e me t和无线 ( 联通的 C D M A 、移动的 G P R S ) 等方式实时监控整个城
及其优化组合为一体 ,向人们提供安全 、高效 、便捷 、 节 能、环保 、健
和现代化建设 的推进 ,各类 大型公共建筑的智能化 已经进入普及 阶段。 根据国家行业标准 ,火灾 自动报警系统 ( F i r e A l a r m S y s t e m) 在智 能建筑 中起着及其重要 的安全保障作用 ,它属于智能建筑系统的一个子系统 ,
但其又在完全脱离其他系统的情况下独立正常运行和操作 , 完成 自 身所 具有的防灾 、报警 、 灭火等功能,具有绝对的优先权 。
式城市内多台火灾报警控制器联网并接人城市监控网络 系统 ,实现网络

消防工程技术的发展趋势和前景展望

消防工程技术的发展趋势和前景展望随着社会的不断发展和科技的迅猛进步,消防工程技术在保护人民生命财产安全方面发挥着越来越重要的作用。

本文将从技术、设备、管理和教育等方面来分析消防工程技术的发展趋势和前景展望。

一、技术方面的发展趋势消防工程技术在技术方面的发展趋势主要体现在以下几个方面:1. 智能化技术的应用:随着人工智能、云计算和大数据等技术的快速发展,消防系统也趋向于智能化,能够实现对火灾的自动监测、预警和报警。

同时,智能消防设备还可以实现自动灭火和人员疏散的指引,大大提高了火灾事故的应对效果。

2. 新型材料的应用:新型材料的不断涌现为消防工程技术带来了全新的解决方案。

高温耐火材料、隔热材料和抗震材料等的应用,可以提高建筑物的耐火性能和抗震能力,降低火灾发生的概率和损失。

3. 无人机技术的应用:无人机技术在消防领域的应用日益广泛,可以实现对火灾现场的全方位监控和灭火救援。

无人机可以在火灾发生后的短时间内到达火灾现场,进行实时监测和灭火作业,有效减少人员伤亡和财产损失。

4. 虚拟现实技术的应用:虚拟现实技术可以实现对火灾事故的模拟演练,提高消防人员的应对能力和反应速度。

通过虚拟现实技术,消防人员可以在真实场景中模拟进行灭火和疏散演练,提高应对火灾事故的效果。

二、设备方面的发展趋势随着消防工程技术的不断发展,消防设备也在不断更新和改进,提高了其性能和功能。

设备方面的发展趋势主要包括以下几个方面:1. 物联网技术的应用:物联网技术可以实现设备之间的互联互通,将所有消防设备连接在一起,形成一个完整的消防监控系统。

通过物联网技术,消防设备可以实现自动灭火和火灾报警,提高火灾事故的应对效果。

2. 高效灭火设备的研发:高效灭火设备的研发对于提高火灾灭火效果至关重要。

目前,各种高效灭火设备如高压水雾灭火系统、气体灭火系统和粉尘灭火系统等正在得到越来越广泛的应用。

3. 高精度火灾探测器的应用:高精度火灾探测器可以实现对火灾的早期发现和预警。

智慧消防技术发展研究课件ppt

1、突出精准防控 2、突出协同共治 3、突出服务实战 4、突出服务民生
5、突出警地融合
主要内容

智慧消防概述

智慧消防建设重点项目

智慧消防发展趋势
二、智慧消防建 设 重智慧点消防项技术目架构
五大应用系统
城市物联网消防远程监控系统 基于“大数据”“一张图”的实战指挥平台 高层住宅智能消防预警系统 数字化预案编制和管理应用平台 “智慧”社会消防安全管理系统
1990-2005 (上世纪九十年代至本世纪初)
上世纪80年代,公安部沈阳消 防研究所依托公安部重点科研项 目《城市火灾自动报警系统研 究》,研发了火灾自动报警系统
2006-2010 (十一五)
“十一五”期间,开展了城市建 筑消防设施远程监控技术研究, 针对建筑内有源类消防设施的运 行状态进行实时的数据采集与数 据传输,并制定了《城市消防远 程监控系统技术规范》系列标准
计算、移动互联网、地理信息等技术,依托公安网(消防信息网及指挥调度网)、边 界接入平台和公安PGIS地图,实现灭火救援的一张图指挥、一张图调度、一张图分析、 一张图决策。
二、智慧消防建设重2、点“大项数据目”“一张图”的实战指挥平台
实战指挥平台建设目标
二、智慧消防建设重3、点高层项住目宅智能消防预警系统
其他设备
基本功能
报警联动
设施巡检
单位管理
消防监管
信息化技术
大数据
云计算
无线传感
RFID
视频监控 移动APP
二、智慧消防建设重1、点城项市物目联网消防远程监控系统
城市物联网消防远程监控系统运营模式转变
智慧城市
二、智慧消防建设重2、点“大项数据目”“一张图”的实战指挥平台
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要Fire detection and the corresponding security system is the key part of intelligent building. This paper expound development trend of fire detection and alarm system in intelligent building.The new conception and technology have been developing in intelligent building, such as advanced multifunctionalsensor ,computer vision systems and wireless sensor complete real-time control by Internet, it also trigger some discussion on the construction of integrated service system at the same time.These new technologies and concepts will improve the fire detection system ability to distinguish the fire threat and non-fire threat ,it also will increase effective time for life and property protection.However, it still needs a lot of efforts to eliminate obstacles to develop of these new technologies .Development of Fire Detection Systems in the Intelligent BuildingZ. Liu, J. Makar and A. K. KimInstitute for Research in ConstructionNational Research Council of Canada, Ottawa, Canada, Email: zhigang.liu@nrc.caAbstractFire detection and its corresponding safety systems are crucial parts of an intelligentbuilding. This paper reviews the current state of development of fire detection and alarm systems in the intelligent building. New technologies and concepts developed in intelligent buildings, such as advanced multi-function sensors, computer vision systems and wireless sensors, real-time control via the Internet, and integrated building service systems, havealso been reviewed and discussed. These new technologies and concepts will improve the capability of fire detection systems to discriminate between fire and non-fire threats andwill increase the time available for property and life protection. However, much effort isstill needed to remove barriers to the further development of these new technologies. IntroductionAn intelligent building can be defined as one that combines the best available concepts, designs, materials, systems and technologies to provide a responsive, effective andsupportive intelligent environment for achieving the occupantsí objectives over the fulllife-span of the building [1-6]. Compared with traditional buildings, intelligent buildings should be able to reduce energy consumption, reduce maintenance and service operation costs, provide improved security services, improve ease of layout planning and re-planning,and increase the satisfaction of building occupants [4-7]. Other benefits should include its adaptability to changing uses and technology and its environmental performance inproviding safer, healthier and more comfortable working conditions. Intelligent building proponents also believe that these buildings will improve worker productivity through improved work environments. Over the last two decades, the intelligent building concept has become an important consideration in the planning of many new or upgraded officebuildings [3-6]. It has also been further developed to embrace other types of living and working environments such as homes, factories and education facilities.Fire detection and the corresponding safety systems are crucial parts of an intelligent building. Billions of dollars are spent annually to install and maintain fire detectionsystems in buildings to assure safety from unwanted fires [8]. Intelligent systemsdeveloped in the intelligent building offer opportunities to meet this task more effectively, efficiently and economically. New sensors will produce earlier and more reliable fire detection. Wireless systems will eliminate the need for cabling and offer opportunities forfire fighters to work out fire fighting strategies before arrival at the fire scene. Integrated building systems hold the potential for reducing false alarms, speeding buildingevacuation and assisting in fire fighting. These changes will create new ways to providefire safety and new markets for fire detection, alarm and fighting systems [9]. As these technologies mature, changes to building practices may also result.This paper reviews the current state of the art for fire detection and alarm systems in intelligent buildings. It identifies new technologies and concepts developed for intelligent buildings that could be used to improve the capability of fire safety systems. The potential effects of integrated building service systems and barriers to the development of firedetection and alarm systems in intelligent buildings are discussed. The paper concludesby examining how these new systems may be combined to provide the next generation of intelligent fire safety systems.Emerging Sensor TechnologiesNew sensor technologies will be key components in the next generation of intelligent buildings. Current intelligent buildings often have embedded processors and dedicated information networks. The new generation is expected to add the capability to learn aboutthe buildingís circumstances and its occupantsí needs and change the behaviour of itscontrol systems accordingly [10]. The employment of a large number of sensors within the building will allow it to operate in a responsive manner, rather than using preprogrammed control models as are employed in the first two generations of intelligentbuilding. The information provided by sensors includes changes in both internal andexternal environments of a building, such as smoke, temperature and humidity, air quality,air movement, and the number of building occupants as well as a host of other properties.The system will use sensors to identify how a particular person tends to react to particular circumstances and to learn different behaviours for different people.The number of sensors required to obtain this type of functionality is quite high, especially since one of the major goals of intelligent buildings is to allow individualized control of an environment. This need will increase the cost of intelligent buildings and make it difficultto manage the resulting large amount of data. Development of cost-effective sensors has consequently been identified as a key need for intelligent buildings [11]. Fortunately,many of the properties that need to be monitored can be used for multiple purposes.Security systems that can track the entry and exit of occupants from an office building canalso be used to ensure complete evacuation of a building during a fire or even, in more advanced forms, determine where occupants may be trapped and unable to escape. Similarly, parameters such as temperature and air movement are as relevant to firedetection as the maintenance of the indoor working environment. Dual use sensors and sensor systems that are flexible enough to interpret data from different events will be keyto making cost efficient intelligent buildings.Efforts are being made to develop multi-function sensors for simultaneously detecting fireand monitoring indoor air quality (IAQ). Multi-function sensors that combine inputs from several different chemicals or physical processes would be expected to reduce the rate offalse alarms and increase the speed of detection of real problems. They should therefore enhance fire safety while at the same time lowering total system costs. The chemical gas sensor has potential for this type of application. Chemical sensor techniques are now available for measuring almost any stable gaseous species emitted from materials andprior to or during combustion [12]. Chemical species can be sensed through a multitudeof interactions, including catalytic, electrochemical, mechanic-chemical, and optical processes. In one square inch, several hundred individual sensors can be placed in anarray. By coating each sensor with a different semi-conducting material, several hundred different readings for gas signatures can be made by an expert system [13]. Recently, one olfactory sensor array system has been developed for environmental monitoring and forfire and smoke detection [14]. Such a system consists of an array of broadly-selective chemical sensors coupled to microprocessor-based pattern-recognition algorithms so thatthe changes in environmental conditions, such as CO, CO2 and smoke, can be detected.A major issue in any sensor system is differentiating between different causes of the event being detected. Higher than expected levels of CO2, for example, may be the signs of afire, but may also be a sign of poor air circulation within a room. When separate sensors installed in the building for fire safety, thermal comfort control and environmentalmonitoring can be integrated, sensitivity to fires and false alarm immunity can besignificantly enhanced [15]. These sensors are located in different positions in thebuilding. Once a fire occurs, the system can take multiple fire signatures and the spatial relationship and status of adjacent detectors into account in making decisions. Separatefire sensitivity information produced by these sensors would be transmitted to a controlpanel where fire signal processing and alarm and fault determinations are made. The useof a powerful central processing unit (CPU) in the control panel would also allow thesystem to use complex algorithms and advanced signal processing for fire signature identification.The role of the control panel in improving fire detection capability has already been recognized, with a system using control panels for decision making being one of two main versions of intelligent fire detection systems [16]. Modern control panels are much more powerful and flexible because of the widespread use of integrated circuits and digital components that allow functions to be fully computer controlled. These control panelshave powerful signal processing capability and use artificial intelligent techniques, toimprove fire detection system reliability, response times to incipient fires, false alarm ratesand maintenance requirements. The Building and Fire Research Laboratory at NIST has recently initiated a project to further develop advanced fire detection and alarm panels [8].This project aims to use information provided by sensors and advanced models of firegrowth and smoke spread in buildings to discriminate between fire and non-fire threats, identify the exact location of a fire in a building, and provide continuous estimates on theshort and long term behavior of fire growth and smoke spread in the building. Such fire information will allow building operators and fire fighters to make a more accurate and responsive evaluation of any fire-related incident in the building, to control fires andsupervise the evacuation from the building.Computer vision systems can also be used as a type of multi-function sensor. Computervision applications have included building security, improving response rate and energysaving for HVAC systems by identifying occupant numbers and their locations [17],monitoring electrical power switchboards and control panels [18] and lighting level sensingand control [2]. Computer vision also has strong advantages for use in sensing andmonitoring a fire. Cameras and corresponding facilities required in the computer vision system are already standard features of many buildings for other applications. Additionalfire detection capability can therefore be added with minimal cost through changes insoftware and correlating results between the computer vision system and other sensors.One such application is the machine vision fire detection system (MVFDS), which uses a combination of video cameras, computers, and artificial intelligence techniques [19-22]. It processes multiple spectral images in real time to reliably detect a small fire at largedistances in a very short time. It can also identify the location of a fire, track its growth and monitor fire suppression. For some applications, the MVFDS is further combined with radiation sensors (UV and IR) to enhance its detection capabilities or a CCD camera to automatically evaluate the scene through identification of bright regions associated with thefire radiation and increase system reliability [21, 22]. The development of this computervision system is still ongoing and is viewed as being restricted due to the need forexpensive and sophisticated software and hardware components.Wireless sensors are another important emerging technology for intelligent buildings.Wireless fire detectors are already available in the market. An alarm signal is transmitted to the control panel by radio, infra red transmission, ultra sonic and microwaves whensmoke or rapid temperature changes are detected. Their significance comes not from their ability to measure new parameters, but because they do not require a hardwired connectionto the data acquisition system that will record their readings. This capability not onlyallows wireless sensors to be located anywhere inside a room, but also means that they canbe installed in the exterior envelope or other locations that would be too expensive or physically impossible to monitor in any other way [2]. Wireless technology may also be a necessity for retrofitting intelligent building technology in older buildings, where thedifficulty and cost of installation is a significant barrier. In many cases installing intelligent building systems in older buildings requires major renovations. It can rarely, if ever, bedone without damage to existing walls, floors and ceilings. It is likely that wirelessnetworks will need to be developed to retrofit older buildings. Without such techniques, these older buildings will gradually become uncompetitive with new construction, reducingthe value of the existing built environment.In large buildings, wireless sensors communicate with other building systems throughwireless networks in the building. Intra-office data networks based on 10 GHz wireless networks are already becoming widely available [23]. Wireless networks are expected to become the dominant media for low to medium bit rates for many intelligent buildingnetwork applications. However, significant further development will be necessary for themto reach their full potential, and to overcome attenuation problems, such as absorption by office partitioning and reflection from wall, windows and other surfaces. Other major problems include the need to significantly lower the cost of wireless sensors, and the requirement for the development of suitable power supply systems that will allow the longterm operation of these sensors.Development of Remote Monitoring and Control TechniquesThere is increasing interest in remotely monitoring building service systems. Intelligent remote monitoring can significantly increase efficiency and reduce costs for building management operations. They may be especially important for small facilities where skilledtechnical supervision would otherwise be too expensive to consider. These systemscould let a single person supervise a number of buildings.Most commercial monitoring systems use a modem and remote dial-up to access thebuildingís operating system. Alarm messages from the building systems can also bedirectly sent to the equipmentís manufacturer without intervention from the buildingís operator. More recently, studies have been carried out using the Internet for real-timecontrol of a building automation system [24, 25]. Compared to ìvoice/touch-toneîinterface, the Internet is able to provide more information (text, images and sound clips). Researchers at the University of Essex in the United Kingdom are developing anembedded-internet within a building that will allow building users or manufacturers todirectly communicate with the building service systems [24]. The City University of HongKong has carried out an initial research project to use the Internet for real-time control of building automation systems [25]. Their studies have shown that the Internet has thepotential to extend the monitoring and control of a typical building automation system outof the building so that users can gain access to it at anytime and from anywhere. Theirwork also shows that one central 24-hour management office is able to manage a real estate portfolio with hundreds of buildings.Remote monitoring and control also has the potential to improve fire safety. It is estimated that 67 percent of all fires occur outside of office hours [26]. Remote monitoring of fire detection and alarm systems can reduce response time and improve response effectivenessby providing adequate fire information to the building supervisor, activating firesuppression systems and immediately summoning the appropriate fire brigade.Some current advanced fire control panels have already incorporated a modem for remote access control. With the development of real-time control via the Internet, fire detection systems will perform automatic fault detection and diagnosis with early warning of sensor contamination before the overall integrity of the system is affected. Human intervention atthe first sign of a warning should permit more efficient discrimination between fire andnon-fire threats. When a fire occurs, detailed and adequate local fire information could be directly sent to the appropriate fire department. Firefighters could also access information from the Internet to identify the locations of potentially hazardous materials or occupantswho will need special assistance to leave the fire location. Fully integrated remote access systems will allow planning for fighting fires to take place enroute to the fire, rather than atthe buildingís fire panel. Remote access systems should therefore provide valuable additional time for property and life protection.However, real-time control via the Internet, is still in its infancy [25]. Development ofthe advanced, Internet based remote access fire protection systems described above hasnot yet begun. In addition, significant issues, such as real-time control of security and safety, still need to be considered. Internet access to fire safety systems also creates itsown unique fire safety issues concerning computer and network security. The full implementation of Internet based monitoring systems will require strong assurances ofdata integrity and resistance to computer hacking. Without these protections, fire fighters may receive false information about the existence, location or size of fires.Integrated Building Service SystemsTodayís fire detection and alarm systems have been partially integrated with otherbuilding systems. Once a fire occurs in a building, fire detection and alarm systems insome buildings activate various fire safety systems, such as smoke control, and various pressurization and smoke exhaust system. They also activate elevator recall, the doorrelease system, flashing exit signs and fire suppression systems [27]. Currently, however,the level of integration of all the disparate building systems is still limited. Even thoughbuilding service systems that have similar functionality, such as fire safety systems andsecurity systems, or HVAC systems and lighting systems, have been integrated together[5, 6], there is a limited level of information-sharing among the systems. Systems on thesame cabling backbone are all provided by the same manufacturer. Various buildingservice systems involving HVAC, lighting, fire safety and security monitoring in thebuilding are not integrated together on the basis of a common communication protocol.This is mainly due to fragmentation of the building and communication industries, a reluctance to change established practices as well as the lack of standardized, broadlybased communication protocols that allow different types of building service systems tocommunicate with each other. Many tenants and developers also prefer to have a lesser degree of systemsí integration due to fears of excessive complexity, potential total system failure and possible slowdown of the central control [28, 29].Various methods and concepts have been developed to enhance integration of building systems and to increase reliability of the integrated systems [5, 6, 30]. Efforts are alsobeing made to develop communication protocols that enable different manufacturers toìinteroperateî together and allow the building systems to communicate with each otherover a network [8]. These protocols include BACnet, LonWorks, CAN, NEST, EHSA andCAB [10]. They prescribe a detailed set of rules and procedures that govern all aspects of communicating information from one cooperating machine to another. BACnet prefers a hierarchical model in which the whole system is divided into a number of subsystems, eachwith a separate central processing unit [31]. The coordination of the subsystems isachieved by hardwired interconnection or software interconnection. This methodsimplifies installation and maintenance and the damage caused by the failure of the CPU to EMCS and the fire safety systems is only limited to the local level, instead of to the whole integrated system. BACnet is most suitable to the traditional processing and communications models used by current HVAC hardware. However, BACnet does notsupport dynamically structured networks, nor does it emphasize distributed processing.Efforts are being made to expand BACnet beyond the HVAC realm. The first commercial BACnet fire system products will be introduced within the next two years, and newfeatures are also being added to the protocol that will enhance the use of BACnet in lifesafety systems [8].Other communication protocols, such as LonWorks, on the other hand, prefer ìnetworking integrationî in which there is no central processing unit, just intelligent field cabinets.Each intelligent field cabinet is a ìnodeî on the network and has equal status to the other nodes. Each cabinet controls local or zoned all energy management functions, all firealarm functions and smoke control functions. It does not depend on any remote centralprocessing unit or another intelligent field cabinet. The microprocessors in the fieldcabinet can support advanced diagnostics and manage all the local building functions. The nodes in the network can communicate with each other and can be approached andmanaged through a central station or by a personal computer. This type of network further simplifies installation and maintenance, and increases the reliability of the system. Once afire damage or a fault occurs, only the immediate area is affected, and the fire command station or any other man/machine interface location could maintain communication withany other field cabinet on the network loop by transmission of data in two directions. Response of this type of network to a fire threat is very fast, because there is no need for aCPU to scan and process whole building systems. The intelligent field cabinet recognizesthe fire alarm within its own area and acts upon that event within the cabinet.ConclusionNew intelligent building technologies have strong potential to improve fire safety. Multifunction sensors (i.e., chemical gas sensors, integrated sensor systems and computer visionsystems) and wireless sensors will not only reduce expenditure on sensors, but also reducefalse alarms, speed response times and reduce fire-related losses. Real-time control via the Internet will extend the monitoring and control of building service systems and fire safety systems out of the building, which will increase the efficiency and reduce costs for building management operations, more efficiently discriminate between fire and non-fire threats,and increase the time available for property and life protection. The integration of fire detection and alarm systems with other building systems should also increase fire safety inthe building.However, the application of intelligent building technology may also create completelynew risks. Sensor technologies will need to be robust enough to prevent false alarms, accurately discriminate between fire and non-fire threats, and ensure that vital information such as the location of occupants is not lost due to data overload during a fire. Internetbased monitoring and control of building service systems will need to be completely secureto prevent false fire information being provided to building owners and fire brigades. Integrated building systems will need to be designed not only to give fire safety priorityover other building activities but also that fire emergencies do not crash the buildingservice system. A close examination of the concept of system integration will need to be conducted as intelligent building systems become more prevalent in order to determine whether a full integrated building system has sufficient redundancy to provide adequate fire safety.In addition to the need for further research in developing new fire safety systems andensuring that intelligent building systems do not hinder fire safety, additional work isneeded to overcome the problems that are common to all parts of the intelligent building industry. Fragmentation of the building and communication industries, a reluctance to change established practices, the complexity of intelligent building systems, and the lack of universal communication standards have all slowed intelligent building progress. Mucheffort is needed to remove these barriers.References1. McClelland, S., ìIntelligent Building,î An IFS Executive Briefing, IFSPublication/Springer Verlag, Blenheim Online, England, 1985.2. So, A. T. and Chan, W. L., ìIntelligent Building Systems,î Kluwer AcademicPublishers, Norwell, USA, 19993. Lafontaine, J., ìIntelligent Building Concept,î Public Works and GovernmentServices Canada, January, 19994. DEGW/Teknibank, ìThe Intelligent Building in Europe,î DEGW/Teknibank, 19925. Harrison, A, Loe, E. and Read, J., ìIntelligent Buildings in South East Asia,î E & FNSPON, 19986. DEGW, Ove Arup & Partners and Northcroft, ìIntelligent Buildings in LatinAmerica,î DEGW, Ove Arup & Partners and Northcroft, 19997. Read, J., ìTodayís Intelligent Buildings ñWhat can they really offer,î Conference Proceedings: Intelligent Buildings Realising the Benefits, Oct. 1998, Watford, UK 8. Chapman, R. E., ìBenefits and Costs of Research: A Case Study of CyberneticBuilding Systems,î NIST report, NISTIR 6303, 19999. Ennals, B., ìIntegrated Systems ñ An Evolution in Building Control,î Fire Safety,April, 199910. Sharples, S., Callaghan, V. and Clarke, G., ìA Multi-Agent Architecture forIntelligent Building Sensing and Control,î Sensor Review, Volume 19, No. 2,pp.135-140, 1999.11. ìCommercial Whole Building Road Map,î Commercial Whole Buildings Workshop,San Francisco, California, USA, 1999.12. Grosshangler, W. L., ìAn Assessment of Technologies for Advanced Fire Detection,îHeat and Mass Transfer in Fire and Combustion Systems, HTD-vol. 223, pp. 1-10,ASME, December 199213. McAvoy, T. J., ìUsing Multivariate Statistical Methods to Detect Fires,î FireTechnology, No.1, 199614. Byfield, M. P. and May, I. P., ìOlfactory Sensor Array System: The ElectronicNose,î GEC J. of Research, Vol. 13, No.1, 199615. Grosshangler, W. L., ì1995 Workshop on Fire Detection Research,î NISTIR 5700,June 199516. Tice, L., ìOptions within Intelligent Fire Detection Systems,î Fire Safety, June 199917. So, A. T. P., Chan, W. L. and Chow, T. T., ìA Computer Vision Based HVACControl Systems,î ASHRAE Transactions, Vol. 102, Pt. 1, p. 661, 1996.18. So, A. T. P. and Chan, W. L., ìA Computer Vision Based Power Plant MonitoringSystem,î Proc. IEE Int. Conf. Adv. In Power System Control, Operation andManagement, Hong Kong, November, 1991.19. So, A. T. P. and Chan, W. L., ìA Computer Vision Based Fuzzy Logic AidedSecurity and Fire Detection System,î Fire Technology, Vol. 30, No. 3, 1994.20. Lloyd, D., ìVideo Smoke Detection (VSD-8),î Fire Safety, p. 26, Jan. 2000.21. Meacham, B. J., ìInternational Developments in Fire Sensor Technology,î J. of Fire Protection Engineering, 6 (2), 1994, pp 89-98.。

相关文档
最新文档