年产12万吨乙醇-水精馏装置的设计毕业设计论文
乙醇及水的精馏塔设计

乙醇及水的精馏塔设计
首先,需要确定乙醇和水的混合物的物理性质。
乙醇和水的沸点非常
接近,因此在设计精馏塔时,必须考虑适当的操作条件,以便有效地分离
乙醇和水。
在精馏塔的设计过程中,首先需要选择适当的塔型。
常见的乙醇和水
的分离塔包括简单塔和精馏塔。
简单塔由一个塔板组成,可用于低温分离,而精馏塔则包含多个塔板,可以提供更高的分离效率。
其次,需要考虑精馏塔的高度。
精馏塔的高度决定了分离的效率。
通
常情况下,精馏塔的高度越高,分离效率越高。
然而,高塔会增加成本和
能耗,因此需要在效率和经济性之间做权衡。
此外,需要选择适当的回流比。
回流比是指流经塔板上部的液体返回
到塔底的比例。
适当的回流比可以提高分离效率,但过高的回流比可能导
致能耗过高。
还需要考虑乙醇和水的进料浓度。
通常情况下,浓度较高的进料可以
提高分离效果,但也会增加能耗。
因此,需要找到一个经济和效率之间的
平衡点。
在设计乙醇和水的精馏塔时,还需要考虑传热和传质方面的问题。
特
别是在塔内的塔板上,需要考虑适当的传热和传质设备,以确保有效的分离。
最后,需要进行塔的热力学计算和模拟,以评估设计的可行性和最佳
性能。
这可以通过使用软件模拟工具,如Aspen Plus、CHEMCAD等来完成。
综上所述,乙醇及水的精馏塔设计需要考虑塔的类型、高度、回流比、进料浓度等因素。
通过综合考虑这些关键参数,可以设计出经济、高效的
乙醇和水精馏塔,满足工业生产的需求。
乙醇-水精馏塔设计

课程设计说明书题目:乙醇-水连续精馏塔设计人: sunrainbaby序言这次课程设计应该说做的很艰辛,因为一直以来我们都在学一些理论性的知识,确切的可以说是“纸上谈兵”,但这次课程设计是需要多方面的知识的集合以及运用,不仅用了理论,同时也联系了实际,真的很锻炼人!说到艰辛,也许是因为我们一直都没有完整的完成过一个设计而且自己一个人,做的过程中有时真的做到头晕脑胀的,只能停下,第二天再做,从开始到现在做了将近一个月了,需要毅力!这个课程设计不仅锻炼了我的毅力,而且也让我认识到和学习到了很多东西!这是从别处得不到的!通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解。
通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实。
在老师和同学的帮助下,及时的按要求完成了设计任务,通过这次课程设计,使我获得了很多重要的知识,同时也提高了自己的实际动手和知识的灵活运用能力。
终于做完了,很开心、很幸福!还有很多不足的地方,希望老师提出批评!Sunrainbaby2010年11月于大连目录序言 (2)设计任务书 (5)第一章概述 (6)1.1精馏操作对塔设备的要求 (6)1.2 板式塔的类型 (7)1.2.1 泡罩塔 (7)1.2.2 筛板塔 (8)1.2.3 浮阀塔 (8)1.3 精馏塔的设计任务及要求 (9)1.3.1 精馏塔设计的内容 (9)1.3.2 绘图要求 (9)2.1塔形的选择 (10)2.2 操作条件的确定 (10)2.2.1操作压力 (10)2.2.2 进料状态 (10)2.2.3 加热方式 (10)2.2.4 冷却剂与出口温度 (10)2.2.5 热能的利用 (11)2.3 确定设计方案的原则 (11)2.4精馏流程的确定 (12)第三章板式精馏塔的工艺计算 (13)3.1物料衡算 (13)3.1.1 料液及塔顶、塔底产品含乙醇摩尔分数 (13)3.1.2平均摩尔质量 (13)3.1.3物料衡算 (13)3.2回流比的确定 (14)3.3塔板数的确定 (14)3.3.1精馏塔的气、液相负荷 (14)3.3.2回收率 (15)3.3.3操作线方程 (15)3.3.4图解法理论板层数 (15)3.3.5实际板层数的初步求取 (16)3.3.6塔板总效率估计 (17)3.4精馏塔有关物性计算 (18)3.4.1精馏段的平均密度 (18)3.4.2 液体平均表面张力计算 (19)本章符号意义 (20)第四章板式塔主要尺寸计算 (21)4.1精馏塔的塔体工艺尺寸计 (21)4.1.1塔径的计算 (21)4.1.2精馏塔有效高度计算 (22)4.2 塔板主要工艺尺寸的计算 (22)34.2.1 溢流装置计算 (22)4.2.2 塔板布置及浮阀数目与排列 (23)4.3 塔板的流体力学验算 (24)4.3.1 气象通过浮阀塔板的压降 (24)4.3.2 淹塔 (25)4.3.3 雾沫夹带 (25)4.4塔板负荷性能图 (26)4.4.1雾沫夹带线 (26)4.4.2 液泛线 (27)4.4.3液相负荷上限线 (27)4.4.4漏液线 (28)4.4.5液相负荷下限线 (28)4.4.6塔板负荷性能图 (28)计算结果汇总 (30)本章符号说明 (31)5.1 回流冷凝器 (32)5.1.1 冷凝器的介绍 (32)5.1.2 冷凝器的选择 (33)5.1.3冷凝器的传热面积和冷却水的消耗量 (33)5.2 再沸器 (33)5.2.1 再沸器的介绍 (33)5.2.2 再沸器的选择 (35)附录 (36)附录 1 常压下乙醇—水系统t—x—y数据 (36)附录 2 乙醇的物性 (36)附录 3 物性系数 (36)Key words (37)参考文献 (38)主体设备图(见二号图纸) (38)设计任务书[1]一.设计题目乙醇—水连续精馏塔的温计.二.设计任务及操作条件(1)进精馏塔的料液含乙醇35%(质量).其余为水。
乙醇水溶液提纯精馏塔设计

编号:( )字 号本科生毕业设计(论文)题目:姓名: 学号:班级:二〇一二年六月乙醇水溶液 提纯精馏(120kt/a )设计 张飞飞 06082927 过程装备与控制工程2008-2班中国矿业大学毕业设计任务书学院化工学院专业年级过控08- 2班学生姓名张飞飞院长签字:指导教师签字:指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:指导教师签字:年月日评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:评阅教师签字:年月日中国矿业大学毕业设计答辩及综合成绩摘要乙醇-水是工业上最常见的溶剂,也是非常重要的化工原料之一,是无色、无毒、无致癌性、污染性和腐蚀性小的液体混合物。
因其良好的理化性能,广泛地应用于国民经济的许多部门,近些年来,由于燃料价格的上涨,乙醇燃料越来越有取代传统燃料的趋势。
但是由于乙醇-水体系有共沸现象,普通的精馏难于得到高纯度的乙醇。
因此,研究和改进乙醇-水体系的精馏设备是非常必要的。
本设计基于精馏的原理,查阅乙醇-水体系的相关物性参数,对精馏装置进行设计.而这一设计过程中的主要内容有:物料衡算,热量衡算,塔体工艺设计,塔板工艺设计,塔附属设备设计以及部分机械设计。
关键词:乙醇-水;精馏塔设计;附属设备设计;机械设计ABSTRACTEthanol-water is one of the most common industrial solvents and important chemical raw materials,which is colorless,non-toxic, non-pollution,non-carcinogenic,and little corrosive. Due to its good physical and chemical properties ,Ethanol-water is widely used in many national economic sectors. In recent years, because of the rising prices of fuels, ethanol fuel issaid to replace traditional fuels in future. but due to the ethanol - water system azeotropicphenomenon, it is difficult to produce high purity ethanol through common distillation .Therefore, It is essential to research and improve the distillation equipment of ethanol- water system.This article is based on the principle of Distillation, Access to some related physical parameters of ethanol - water system, This process of designing the main content Material balance, energy balance, the tower of design, ancillary equipment design as well as some mechanical design.Key words: ethanol-water ;distillation tower design; Ancillary equipment design;mechanical design总目录第一部分:设计说明书第二部分:专题论文第三部分:专英翻译第四部分:致谢第一部分:设计说明书目录1.绪论 (1)1.1.设计背景 (1)1.2.设计意义 (1)1.3.设计步骤 (1)2.精馏塔设计计算 (2)2.1.精馏流程的确定 (2)2.2.塔的物料衡算 (2)2.2.1.查阅文献,整理有关物性数据 (2)2.2.2.料液及塔顶、塔底产品的摩尔分数 (3)2.2.3. 平均摩尔质量 (3)2.2.4. 物料衡算 (3)2.3. 塔板数的确定 (3)2.3.1. 乙醇—水物系的气液平衡数据 (4)2.3.2. 求最小回流比及操作回流比 (4)2.3.3. 求精馏塔的气液相负荷 (4)2.3.4. 求操作线方程 (4)2.3.5. 图解法求理论塔板层数 (4)2.3.6. 求实际塔板数 (5)2.4 塔的工艺条件及物性数据计算 (6)2.4.1. 操作压力 (6)2.4.2. 平均摩尔质量 (7)2.4.3. 平均密度 (7)2.4.3.1 气相密度 (7)2.4.3.2 液相平均密度 (7)2.4.4. 液体表面张力 (8)2.5 精馏塔的塔体工艺尺寸计算 (9)2.5.1. 塔径的计算 (9)2.5.2. 精馏塔有效高度的计算 (9)2.6 塔板主要工艺尺寸的计算 (9)2.6.1. 堰长 (9)2.6.2. 溢流堰高度 (10)2.6.3. 弓形降液管宽度和截面积 (10)2.6.4. 降液管底隙高度 (11)2.7 塔板布置 (11)2.7.1. 塔板的分块 (12)2.7.2. 边缘区宽度确定 (12)2.7.3. 开孔区面积计算 (13)2.8 塔版流体力学验算 (13)2.8.1. 气相通过浮阀塔板的压强降 (13)2.8.2. 液沫夹带 (14)2.8.4. 液泛 (14)2.9 塔板负荷性能图 (14)2.9.1. 漏液线 (15)2.9.2. 液沫夹带线 (15)2.9.3. 液相负荷下限线 (16)2.9.4. 液相负荷上限线 (16)2.9.5. 液泛线 (16)2.9.6. 漏液线 (16)3. 塔盘的结构设计 (19)3.1 塔板结构 (19)3.1.1. 矩形板 (19)3.1.2. 通道板 (22)3.1.3. 弧形板 (22)3.2 受液盘 (23)3.2.1. 凹形受液盘 (23)3.2.2. 液封盘 (24)3.3 降液板 (24)3.4 支持板和支持圈 (25)3.5 紧固件结构 (25)3.6 塔盘机械计算 (26)3.6.1. 塔盘的载荷 (26)3.6.2. 塔盘板的允许挠度 (27)3.6.3. 矩形板稳定性校核 (27)3.6.1. 塔盘重量估算 (27)3.6.2. 不同载荷下的稳定性校核 (27)3.7 本章小结 (30)4 辅助装置及附件设计 (30)4.1 接管设计 (30)4.1.1. 进料管 (31)4.1.2. 回流管 (31)4.1.3. 塔釜出料管 (31)4.1.4. 塔顶蒸气出料管 (33)4.1.5. 塔釜进气管 (33)4.1.6. 法兰 (33)4.2 塔顶回流冷凝器 (34)4.2.1. 整体式 (34)4.2.2. 强制循环式 (34)4.3 塔底再沸器 (34)4.4 除沫器设计 (35)4.4.1. 设计气速的选取 (35)4.4.2. 除沫器直径计算 (36)4.5 吊柱 (36)4.5.2 吊柱的结构 (36)4.6 人孔 (37)4.7 裙座 (38)4.7.1 裙座选材 (38)4.7.2 裙座的结构 (38)4.7.2.1 座体 (38)4.7.2.2 座体厚度 (38)4.7.2.3 裙座与塔体的连接 (38)4.7.2.4 裙座缺口 (40)4.7.2.5 检查孔 (40)4.7.2.6 排气管 (40)4.7.2.7 引出管通道 (40)4.7.2.8 防火层与保温层 (40)4.8操作平台和扶梯 (40)4.9本章小结 (40)5塔的强度设计和稳定性校核 (41)5.1设计条件 (41)5.1.1 塔总体高度 (41)5.1.11 塔顶空间高度 (41)5.1.12塔底部空间高度 (41)5.1.13开有人孔的板间距 (41)5.1.14 裙座高度 (41)5.1.1. 塔进料板高度 (41)5.1.1. 塔总体高度 (41)5.1.2 按计算压力计算塔体和封头的厚度 (41)5.111 塔体厚度计算 (41)5.112 封头厚度计算 (41)5.2 已知条件 (42)5.3 塔设备质量载荷计算 (42)5.4 自振周期计算 (44)5.5 地震载荷与地震弯矩计算 (44)5.6 风载荷与风弯矩计算 (46)5.7 偏心弯矩及最大弯矩 (49)5.8 圆筒轴向应力校核和圆筒稳定校核 (49)5.9 塔设备压力实验时的应力校核 (50)5.10 裙座轴向应力校核 (51)5.11 基础环设计 (53)5.12 地脚螺栓计算 (54)5.13 校核结果 (54)5.15 塔设备质量载荷计算 (54)5.14 本章小结 (55)6塔设备的制造、安装及运输 (55)6.1.1 制造上的要求 (55)6.1.1.1 材料检验 (55)6.1.1.2 冷热成形 (55)6.1.2 制造与组装 (55)6.1.3 焊接及其特点 (56)6.1.4 热处理 (56)6.2 大型塔设备的安装 (57)6.2.1 安装上的考虑 (57)6.2.2 塔盘的安装 (57)6.3 塔设备的运输 (57)6.3.1 运输上的考虑 (57)6.3.2 铁路运输 (58)7 总结 (58)参考文献 (61)附录1:专题论文 (62)附录2:翻译部分 (69)英文原文 (70)中文译文 (75)致谢 (83)1 绪论1.1设计背景精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。
乙醇—水体系精馏装置设计方案

乙醇—水体系精馏装置设计方案、绪论1.1课程设计的目的课程设计是“化工原理”课程的一个总结性教学环节,是培养学生综合运用本门课程及有关先修课程的基础知识去解决某以设计任务的一次训练,在整个教学计划中起着培养学生独立工作能力的重要作用,通过课程设计就以下几方面要求学生加强训练。
(1)查阅资料选用公式和收集数据的能力。
(2)树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作上的劳动条件和环境保护的正确设计思路,在这种设计思路的指导下去分析和解决实际问题的能力。
(3)迅速准确的进行工程计算和计算机绘图的能力。
1.2设计依据课程设计方案选定所涉及的主要容有:操作压力、进料状况、加热方式及其热能的利用。
(1)操作压力精馏常在常压,加压或减压下进行,确定操作压力主要是根据处理物料的性质,技术上的可行性和经济上的合理性来考虑的。
一般来说,常压精馏最为简单经济,若无聊无特殊要求,应尽量在常压下操作。
加压操作可提高平衡温度,有利于塔顶蒸汽冷凝热的利用,或可以使用较便宜的冷却剂,减少冷凝,冷却费用。
在相同的塔径下,适当提操作压力还可以提高塔德处理能力。
所以我们采用塔顶压力为1.04atm 进行操作。
(2)进料状况进料状态有多种,但一般都是将料液预热到泡点或接近泡点才送入塔中,这样,进料温度不受季节,气温变化和前道工序波动的影响,塔的操作也比较好控制。
此外,泡点进料时,精馏段和提馏的塔径相同,设计制造比较方便。
(3)加热方式精馏塔通常设置再沸器,采用间接蒸汽加热,以提供足够的能量,若待分离的物系为某种轻组分和水的混合物,往往可采用直接蒸汽加热方式,但在塔顶轻组分回收率一定时,由于蒸汽冷凝水的稀释作用,使残液轻组分浓度降低,所需塔板数略有增加。
(4)热能的利用精馏过程的原理是多次进行部分汽化和冷凝,因此热效率很低,通常进入再沸器的能量仅有5% 左右被利用。
塔顶蒸汽冷凝放出的热量是大量的。
但其位能较低,不可能直接用来做塔釜的热源,但可用作低温热源,供别处使用。
年产12万吨酒精

目录目录1第一节概述21.1 精馏操作对塔设备的要求21.2板式塔类型21.2.1筛板塔31.2.2浮阀塔31.3精馏塔的设计步骤4第二节设计方案的确定42.1 工艺流程和工艺操作要点42.1.1工艺流程42.1.2各工艺过程的操作要点52.2操作条件的确定62.2.1操作压力62.2.2进料状态62.2.3加热方式62.2.4冷却剂与出口温度72.2.5热能的利用72.3确定设计方案的原则8第三节板式精馏塔的工艺计算93.1精馏塔的物料衡算93.2塔板数的确定103.3精馏塔的工艺条件极有关物性数据的计算113.4精馏塔的塔体工艺尺寸计算143.5塔板主要工艺尺寸的计算15第四节板式塔结构17174.1塔顶空间HD4.2人孔数目17174.3塔底空间HB4.4塔高的计算17第五节精馏装置的附属设备185.1塔顶回流冷凝器185.2再沸器195.3离心泵的选择20第六节总结21参考文献22致谢23第一节概述1.1 精馏操作对塔设备的要求精馏操作所进行的是气液两相之间的传质,而作为气液两相传质的塔设备,首先必须要能使气液两相得到充分的接触,以达到较高的传质效率。
没有这一条则失去了其存在的基础。
但是,为了满足工业生产的要求,塔设备还得具备各种基本要求。
1.气液处理量大。
即生产能力大时,仍不致发生大量雾沫夹杂、拦液或液泛等破坏操作现象。
2.操作稳定,弹性大。
即当塔设备的气液负荷有较大X围的变动时,仍能再较高的传质效率下进行稳定的操作,并应保证长期连续操作必须具有的可靠性。
3.流体流动的阻力小。
即流体流经塔设备的压力减小,这将大大减省动力消耗,从而降低操作费用。
对于减压精馏操作,过大的压力降还将使整个系统无法维持必要的真空度,最终破坏系统的操作。
4.结构简单,材料耗用量小,制造和安装容易。
5.耐腐蚀和不易堵塞,方便操作、调节和检修。
6.塔内的滞留量要小。
1.2板式塔类型板式塔为逐级接触型气液传质设备,在板式塔中塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质,两相的组分浓度沿塔高呈阶梯式变化。
毕业设计 分离乙醇—水板式精馏塔设计设计说明书

课程设计课程名称:化工原理题目名称:分离乙醇—水板式精馏塔设计学生学院:轻工化工学院专业班级:学生学号:学生姓名:指导教师:2010 年 6 月 20 日1.设计任务 (5)2.工艺流程图 (8)3.设计方案 (8)3.1.1塔型的选择 (8)3.1.2操作压力 (8)3.1.3进料方式 (9)3.1.4加热方式 (9)3.1.5热能的利用 (9)3.1.6回流方式 (10)3.2实验方案的说明 (10)4、板式塔的工艺计算 (11)4.1物料衡算 (11)4.2最小回流比RMIN和操作回流比R的确定 (12)4.3操作线的确定 (14)4.3.1精馏段操作曲线方程 (14)4.3.2提馏段操作曲线方程 (14)4.4确定理论板层数NT (15)4.5确定全塔效率ET和实际塔板层数NP (15)4.5.1相对挥发度 (15)4.5.2物系黏度 (16)4.5.3全塔效率和实际塔板数 (16)4.6操作压强的计算 (17)4.7平均分子量的计算 (18)4.8平均密度的计算 (18)4.9表面张力的计算 (20)4.10平均流量的计算 (21)5、塔体和塔板的工艺尺寸计算 (22)5.1塔径 (22)5.2溢流装置 (25)5.3塔板布置及筛板塔的主要结构参数 (30)5.4塔板流体力学验算 (32)5.4.1塔板阻力HP (32)5.4.2降液管泡沫层高度 (34)5.4.3液体在降液管内的停留时间 (35)5.4.5漏液点 (37)5.5操作负荷性能图 (38)5.6设计结果 (43)6、辅助设备的计算与选型 (45)6.1料液储罐的选型 (45)6.2换热器的选型 (46)6.2.1预热器 (47)6.2.2再沸器 (48)6.2.3全凝器热负荷及冷却水消耗量 (49)6.2.4产品冷却器 (50)6.3各接管尺寸的确定 (51)6.3.1进料管 (51)6.3.2釜残液出料管 (51)6.3.3回流液管 (51)6.3.4塔顶上升蒸汽管 (52)6.3.5水蒸汽进口管 (52)6.4塔高 (53)6.5法兰 (54)6.6人孔 (56)6.7视镜 (56)6.8塔顶吊柱 (56)6.9泵的计算及选型 (57)7、经济横算 (58)7.1成产成本 (58)7.2水蒸汽费用CS (58)7.3冷却水费用CW (58)7.4设备投资费CD (59)7.5总费用 (59)7.6利润 (59)8心得体会 (60)符号说明:英文字母Aa---- 塔板的开孔区面积,m2 Af---- 降液管的截面积, m2 Ao---- 筛孔区面积, m2A T ----塔的截面积 m2△PP----气体通过每层筛板的压降C----负荷因子无因次t----筛孔的中心距C20----表面张力为20mN/m的负荷因子do----筛孔直径u’o----液体通过降液管底隙的速度D----塔径 m Wc----边缘无效区宽度ev----液沫夹带量 kg液/kg气Wd----弓形降液管的宽度ET----总板效率Ws----破沫区宽度R----回流比Rmin----最小回流比M----平均摩尔质量 kg/kmoltm----平均温度℃g----重力加速度 9.81m/s2Z----板式塔的有效高度Fo----筛孔气相动能因子 kg1/2/(s.m1/2)hl----进口堰与降液管间的水平距离 m θ----液体在降液管内停留时间hc----与干板压降相当的液柱高度 mυ----粘度hd----与液体流过降液管的压降相当的液注高度 m ρ----密度hf----塔板上鼓层高度 m σ----表面张力hL----板上清液层高度 mΨ----液体密度校正系数h1----与板上液层阻力相当的液注高度 m 下标ho----降液管的义底隙高度 m max----最大的how----堰上液层高度 m min----最小的hW----出口堰高度 m L----液相的h’W----进口堰高度 m V----气相的hσ----与克服表面张力的压降相当的液注高度 mH----板式塔高度 mHB----塔底空间高度 mHd----降液管内清液层高度 mHD----塔顶空间高度 mHF----进料板处塔板间距 mHP----人孔处塔板间距 mHT----塔板间距 mH1----封头高度 mH2----裙座高度 mK----稳定系数lW----堰长 mLh----液体体积流量 m3/hLs----液体体积流量 m3/sn----筛孔数目P----操作压力 KPa△P---压力降 KPa△Pp---气体通过每层筛的压降 KPaT----理论板层数u----空塔气速 m/su0,min----漏夜点气速 m/suo’ ----液体通过降液管底隙的速度 m/sVh----气体体积流量 m3/hVs----气体体积流量 m3/sWc----边缘无效区宽度 mWd----弓形降液管宽度 mWs----破沫区宽度 mZ ---- 板式塔的有效高度 m希腊字母δ----筛板的厚度 mθ----液体在降液管内停留的时间 sυ----粘度 mPa.sρ----密度 kg/m3σ----表面张力N/mφ----开孔率无因次α----质量分率无因次下标Max---- 最大的Min ---- 最小的L---- 液相的V---- 气相的1.设计任务1.1题目:分离乙醇—水板式塔精馏塔设计1.2生产原始数据:1)原料:乙醇—水混合物,含乙醇35%(质量分数),温度35℃;2)产品:馏出液含乙醇93%(质量分数),温度38℃,残液中含酒精浓度≤0.5%;3)生产能力:原料液处理量55000t/年,每年实际生产天数330t,一年中有一个月检修;4)热源条件:加热蒸汽为饱和蒸汽,其表压为2.5Kgf/cm2;5)当地冷却水水温25℃;;6)操作压力:常压101.325kpa1.3设计任务及要求1)设计方案的选定,包括塔型的选择及操作条件确定等;2)确定该精馏的流程,绘出带控制点的生产工艺流程图,标明所需的设备、管线及其有关观测或控制所必需的仪表和装置;3)精馏塔的有关工艺计算计算产品量、釜残液量及其组成;最小回流比及操作回流比的确定;计算所需理论塔板层数及实际板层数;确定进料板位置。
[优秀毕业设计]乙醇——水筛板式精馏塔的设计
化工原理课程设计任务书设计题目:乙醇一一水筛板式精懈塔的设计设计条件:・常压:P=0. 92atm(绝压);•原料来自粗镭塔,为95°C〜96°C饱和蒸汽,由于沿途热损失,进精憾塔时,原料温度约为90°C;•塔顶浓度为含乙醇92.41% (质量分率)的酒精,产量为25吨/天;•塔釜为饱和蒸汽直接加热,从塔釜出来的残液中乙醇浓度要求不大于0. 034% (质量分率);•塔顶采用全凝器,泡点回流,回流比:R二(1. 1一2. 0)乂汰。
设计任務:1.完成该精憎塔工艺设计(包括塔顶冷凝器及进出口管路的设计与选型)。
2.画出带控制点的工艺流程图、塔板负荷性能图、精镭塔工艺条件图。
3.写出该精谓塔设计说明书,包括设计结果汇总及设计评价。
试针目感:W06耳吃R至2006年1月摘要 (1)引言 (2)第一章绪论 (3)§1」设计背景 (3)1.1.1发酵法. (3)1.1.2乙烯水合法. (4)1.1.3英他方法. (4)§1.2设计方案 (4)§ 1.3设计思路 (5)§1.4选塔依据 (6)第二章精馅塔的工艺设计 (7)§2.1全塔工艺设计计算 (7)2.1.1产品浓度的计算和进料组成确定 (7)2.1.2 q线方程的确定: (9)2.1.3平均相对挥发度的计算. (10)2.1.4最小回流比和适宜回流比的选取 (10)2.7.5物料衡算. (10)2.1.6精懈段和提懈段操作线 (11)2.1.7逐板法确泄理论板数. (11)2.1.8全塔效率、 (12)2.1.9实际塔板数及实际加料位置 (13)第三章板式塔主要工艺尺寸的设计计算 (14)§3.1塔的工艺条件及物性数据计算 (14)3丄1操作压强P (14)3丄2操作温度T. (14)3丄3塔内各段气、液两相组分的平均分子量 (14)3.1.4精懈段和提懈段各组分的密度. (15)3.1.5液体表而张力的计算. (16)3.L6液体粘度Pm (16)3.17气液负荷计算. (17)§ 3.2塔和塔板的主要工艺尺寸的计算 (17)3.2.1 塔径 D (17)322液流形式、降液管及溢流装宜等尺寸的确定 (19)3.1.4筛孔数n及开孔率<p (20)3.15塔有效高度乙 (21)3.1.6塔高的计算. (21)§3.3筛板塔的流体力学校核 (22)3.3.1板压降的校核. (22)3.3.2液沫夹带量e\,的校核. (23)3.3.3溢流液泛条件的校核. (24)3.3.4液体在降液管内停留时间的校核. (24)3.3.5漏液点的校核. (25)§3.4塔板负荷性能图 (26)3.4.1液相负荷下限线 (26)3.4.2液相负荷上限线 (26)343漏液线(气相负荷下限线) (26)3.4.4过量液沫夹带线(气相负荷上限线) (27)3.4.5溢流液泛线 (28)3.4.6塔气液负荷性能图. (30)第四章塔的附属设备的计算 (33)§4.1塔顶冷凝器设计计算 (33)4.1.1确定设计方案. (33)4.1.2确定物性数据. (33)4.1.3热负荷Q的计算. (33)4.1.4传热而积的计算. (33)4. 1. 5换热器工艺结构尺寸 (34)4.1.5核算总传热系数K。
乙醇—水精馏塔的工艺设计
目录(一)设计方案简介.................................................................................................................. - 1 - (二)工艺计算及主体设备设计计算...................................................................................... - 1 - 1.精馏流程的确定............................................................................................................ - 1 - 2.塔的物料恒算................................................................................................................ - 1 -2.1料液及塔顶、塔底产品的摩尔分数....................................................................... - 1 -2.2 料液及塔顶、塔底产品的平均摩尔质量.............................................................. - 2 -2.3 物料恒算.................................................................................................................. - 2 -3.塔板数的确定................................................................................................................ - 2 -3.1理论塔板数的求取................................................................................................... - 2 -3.1.1绘制相平衡图................................................................................................... - 2 -3.1.2 求最小回流比、操作回流比.......................................................................... - 3 -3.1.3 求理论塔板数.................................................................................................. - 3 -3.2全塔效率................................................................................................................... - 5 -3.3实际塔板数............................................................................................................... - 5 -4.塔的工艺条件及物性数据计算[2]................................................................................. - 5 -4.1操作压力................................................................................................................... - 5 -4.2温度[1] ....................................................................................................................... - 5 -4.3平均摩尔质量........................................................................................................... - 6 -4.4平均密度................................................................................................................... - 6 -4.5液体表面张力........................................................................................................... - 7 -4.6液体黏度................................................................................................................... - 7 -5.精馏段气液负荷计算[2]................................................................................................. - 7 - 6.塔和塔板主要工艺尺寸计算[3],[4] ............................................................................... - 8 -6.1塔径........................................................................................................................... - 8 -6.2溢流装置................................................................................................................... - 8 -6.3塔板布置................................................................................................................... - 9 -6.4筛孔数与开孔率..................................................................................................... - 10 -6.5塔的有效高度(精馏段)......................................................................................... - 10 -6.6塔高计算................................................................................................................. - 10 -7.筛板的流体力学验算[5]................................................................................................. - 10 -7.1塔板压降................................................................................................................. - 10 -7.2液面落差................................................................................................................. - 11 -7.3.液沫夹带................................................................................................................ - 11 -7.4漏液......................................................................................................................... - 11 -7.5液泛......................................................................................................................... - 11 -8.塔板负荷性能图[6]......................................................................................................... - 12 -8.1漏液线..................................................................................................................... - 12 -8.2液沫夹带线............................................................................................................. - 12 -8.3液相负荷下限线..................................................................................................... - 13 -8.4液相负荷上限线..................................................................................................... - 13 -8.5液泛线..................................................................................................................... - 14 -9.附图................................................................................................................................ - 16 -10.本设计的评价或有关问题的分析讨论...................................................................... - 18 - 附:参考文献符号说明.......................................................................................................... - 18 -(一)设计方案简介塔设备是炼油、化工、石油化工、生物化工和制药等生产中广泛应用的气液传质设备。
乙醇水精馏装置工艺设计概述
乙醇水精馏装置工艺设计概述摘要:设计一定量乙醇—水的分离精馏塔。
鉴于乙醇—水体系有共沸现象,待处理料液清洁的特点,设计宜选用筛板塔。
操作时,气体自下而上通过筛孔,与塔板上液层进行气液传质,脱离液层后进入上面一块塔板,液体上而下通过降液管进入下一块塔板。
且板式塔结构简单,制造和维修方便,生产能力大,塔板压降小,板效率较高等优点。
关键词:乙醇—水;精馏;筛板塔;设计;节能引言精馏是利用多次部分冷凝分离液体混合物的过程。
根据操作方式可分为连续精馏与间歇精馏。
由于间歇精馏操作不稳定,处理量小,纯度不高,设备利用率低。
而连续精馏操作稳定,塔内各部分的温度及组成可保持不变,容易控制,所以宜选用连续精馏。
精馏塔,是进行精馏操作的设备。
是精馏的一种塔式汽液接触装置。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
第1节乙醇水的性质和用途乙醇分子由烃基(—C2H5)和官能团羟基(—0H)两部分构成,其物理性质〔熔沸点、溶解性)与此有关。
乙醇是无色、透明、有香味、易挥发的液体,能与水及大多数有机溶剂以任意比混溶。
制取无水乙醇时,通常把工业酒精与新制生石灰混合,加热蒸馏才能得到。
水同其它物质一样,受热时体积增大,密度减小。
纯水在摄氏零度时密度为999.87千克/立方米,在沸点时水的密度为958.38千克/立方米,密度减小4%。
水的沸点与压力成直线变化关系。
沸点随压力的增加而升高。
第2节乙醇的生产方法乙醇的生产方法2.1 发酵法采用各种含糖(双糖)、淀粉(多糖)、纤维素(多缩己糖)的农产品,经过水解、发酵使双糖、多糖转化为单糖并进一步转化为乙醇。
淀粉质在微生物作用下,水解为葡萄糖,再进一步发酵生成乙醇。
乙醇—水混合溶液连续精馏塔设计
乙醇—水混合溶液连续精馏塔设计乙醇-水混合溶液连续精馏塔的设计引言:乙醇-水混合溶液的连续精馏塔在工业生产中有广泛的应用,尤其是在酒精生产、燃料乙醇的提纯等领域。
本文将以设计乙醇-水混合溶液连续精馏塔为主题,对连续操作的工艺参数、设备设计等方面进行详细的探讨。
一、乙醇-水混合溶液的特性乙醇-水混合溶液的特性是设计连续精馏塔的基础,其中最重要的是乙醇和水的气液平衡数据。
通过实验测得的气液平衡数据可以用于计算实际操作中的塔回流比、落液比等重要参数,以保证精馏塔的正常运行。
二、连续操作的工艺参数1.塔回流比:乙醇-水混合溶液的精馏塔中,塔回流比是一个关键的控制参数。
通过控制塔回流比,可以实现对塔内温度和浓度的调节,以保证乙醇和水的分离效果。
一般来说,较高的塔回流比可以提高塔底液的浓度,但会相应地降低塔顶的乙醇含量。
2.塔顶温度:塔顶温度是乙醇-水混合溶液精馏塔操作中另一个重要的工艺参数。
通过调节塔顶温度,可以控制乙醇的纯度,实现乙醇的提纯。
一般来说,较低的塔顶温度可以提高乙醇的纯度,但会增加底液的回流量。
3.塔底液的回流量:塔底液的回流量也是连续精馏塔操作中需要控制的参数之一、通过调节底液的回流量,可以实现对塔底温度和浓度的控制,从而保证乙醇和水的分离效果。
一般来说,增加底液的回流量可以提高底液的浓度,但会相应地降低塔顶温度。
三、设备设计1.乙醇-水混合溶液连续精馏塔的设备包括:塔体、填料、除沫器、塔底液泵、塔顶动力和塔口动力等。
塔体的设计需要考虑到溶液的物理特性,如压力、温度和粘度等。
2.填料是乙醇-水混合溶液连续精馏塔中的关键设备。
填料的选择应考虑到温度、浓度和性质等因素,以满足乙醇和水的分离要求。
3.除沫器在乙醇-水混合溶液连续精馏塔中起到除去塔顶产生的泡沫的作用。
合理的除沫器设计可以提高精馏效果,避免泡沫堵塞导致操作不稳定。
4.塔底液泵是用于控制底液回流量的设备,通过调节泵的转速来实现对回流量的调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)化工系)题目年产12万吨乙醇-水精馏装置的设计专业应用化工毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解XX大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:目录摘要 (1)第一章综述 (1)1.1精馏 (1)1.1.1 精馏的含义 (1)1.1.2 精馏的原理 (1)1.2相和相平衡 (2)1.3精馏的分类 (2)1.3.1 精馏的分类方式 (2)1.3.2 间歇精馏 (2)1.3.3 连续精馏 (3)1.3.4 减压精馏及其应用 (3)1.3.5 加压精馏及其应用 (3)1.3.6 常压精馏 (4)1.3.7 恒沸精馏 (4)1.3.8 萃取精馏 (4)1.4常用精馏塔的结构形式 (4)1.4.1 填料塔 (5)1.4.2 板式塔 (7)1.4.3 怎样合理地选择精馏塔的操作条件 (9)1.5乙醇的性质及作用 (9)1.5.1乙醇的物理性质 (10)1.5.2 乙醇的化学性质 (10)1.5.3 乙醇的危害 (12)1.5.4 乙醇的用途 (13)1.5.5 乙醇的工业制法 (14)第二章工艺计算 (15)2.1设计任务及要求 (15)2.2计算过程 (15)2.2.1塔形的选择 (15)2.2.2操作压力 (16)2.3有关工艺计算 (16)2.4最小回流比及操作回流比的确定 (17)2.5塔顶产品产量、釜残液量及加热蒸汽量的计算 (17)2.6理论塔板层数的确定 (18)2.7全塔效率的估算 (19)N (20)2.8、实际塔板数P第三章精馏塔主题尺寸的计算 (20)3.1精馏段与提馏段的体积流量 (21)3.1.1精馏段 (21)3.1.2提馏段 (22)3.2塔径的计算 (23)3.3塔高的计算 (25)结论 (25)致谢 (27)参考文献 (28)摘要人类与化工的关系十分密切,在现代生活中,几乎随时随地都离不开化工产品,从衣、食、住、行等物质生活,到文化艺术、娱乐等精神生活,都需要化工产品为之服务。
有些化工产品在人类发展历史中,起着划时代的重要作用。
它们的生产和应用,甚至代表着人类文明的一定历史阶段。
化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。
我们在生产中常用的精馏设备是板式塔和精馏塔。
然而乙醇已经同时也成为人们生活中不可缺少的东西了。
例如,乙醇可以做成不同浓度的消毒剂;乙醇是酒的主要组成部分;乙醇可以调入汽油,作为车用燃料……关键词:水、乙醇、精馏塔、第一章综述1.1 精馏1.1.1 精馏的含义一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。
把液体混合物进行多次部分气化,同时又把产生的蒸汽多次部分冷凝,使混合物分离成为所要求组分的操作过程称为精馏。
1.1.2 精馏的原理为什么把液体混合物进行多次部分气化同时又多次部分冷凝,就能分离为纯或比较纯的组分呢?由于液体混合物中所含组分的沸点不同,当其在一定温度下部分气化时,因低沸点物易于气化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高。
这就改变了汽液两相的组成。
当对部分气化所得的蒸汽进行部分冷凝时,因高沸点物易于冷凝,使冷凝液中高沸点物的浓度较气相高,而未冷凝气中低沸点物的浓度比冷凝液中要高。
这样多次地进行部分气化和部分冷凝,将最终在液相中留下基本上是高沸点,在气相中留下基本是低沸点组分。
由此可见,部分气化和部分冷凝,都使汽液相的组成发生了变化,多次部分气化和多次部分冷凝同时进行,就可以将混合物分离为纯的或比较纯的组分。
塔内所发生的传质、传热过程如下:(1)汽液两相进行热的交换--利用部分气化所得气体混合物中的热来加热部分冷凝所得的液体混合物;(2)气、液两相在热交换过程中同时进行质的交换。
温度较低的液体混合物被温度较高的气体混合物加热而部分汽化。
此时,因挥发能力的差异,低沸点组分比高沸点组分挥发的多,结果表现为低沸点组分从液相转入气相,气相中易挥发组分增浓;同理,温度较高的气体混合物,因加热了温度较低的液体混合物,而使自己部分冷凝,同样因为挥发能力的差异,使高沸点组分从气相转入液相,液相中难挥发组分增浓。
精馏塔是由若干塔板组成的,塔的最上部称为塔顶,塔的最下部称为塔釜。
一块塔板只进行一次部分气化和部分冷凝,塔板数越多,部分气化和部分冷凝的次数就越多,分离效果就越好。
通过整个精馏过程,最终由塔顶得到的易挥发组分(塔顶馏出物)。
塔釜得到的基本上是难挥发组分。
1.2 相和相平衡相就是指在系统中具有相同物理性质和化学性质的均匀部分,不同相之间,往往有一个相界面,把不同的相分别开。
如,水和冰混合在一起,水为液相,冰为固相;空气为多种气体的混合物,只具有一相;糖溶解在水里形成糖水,形成均匀一相,若糖有不溶解的,就形成为两相。
在一定的温度和压力下,如果物料系统中存在两个和两个以上的相,物料在各相的相对量以及物料中各组分在各相中的浓度不随时间变化,我们称系统处于平衡状态。
平衡时,物质还是在不停的运动,但是,各相的量和各组分在各相的浓度不随时间变化,当条件改变时,将建立起新的相平衡,因此相平衡是运动的、相对的,而不是静止的、绝对的。
1.3 精馏的分类1.3.1 精馏的分类方式精馏可以从三个角度去分类。
第一、按精馏操作的方式的不同,间歇精馏和连续精馏。
第二、按精馏操作的条件(如压力)不同,可分为加压精馏、常压精馏、减压精馏等。
第三、按精馏分离原理的不同,可分为一般精馏和特殊精馏。
特殊精馏又包括恒沸精馏、萃取精馏、水蒸汽蒸馏及分子蒸馏等。
1.3.2 间歇精馏间歇精馏就是将处理的物料一次加入精馏塔釜内,然后加热进行精馏,直到塔顶和塔釜产品不符合要求为止。
排出残余的物料后,再装入一批物料进行精馏。
其精馏塔没有提馏段和精馏段之分。
操作时,釜液经间接加热至沸腾,釜中产生的蒸气上升到精馏塔内,在此进行热的交换和质的交换。
塔内上升的蒸气从塔顶引致分凝器;分凝器所得冷凝液的一部分再引致塔顶部的塔板,作为回流;而未冷凝的蒸气及另一部分冷凝液则进入冷凝冷却器,在其中使蒸气全部冷凝,并使馏出液冷却至一定温度进入贮槽,若需要获得不同沸点范围的馏出液时,则应装置若干个贮槽,按沸点范围的不同分别收集。
1.3.3 连续精馏连续精馏指的是精馏操作连续进行、连续采出。
连续精馏的塔一般一般是由精馏段和提馏段组成,此两段是以进料板为分界,进料板以上的部分为进料段,进料板以下的部分为提馏段(包括进料板)。
但是少数的连续精馏塔,他们或者只有精馏段而无提馏段,或者只有提馏段而无精馏段。
操作时,原料液经换热器换热到指定的温度,从提馏段的最上一层塔板(即进料板)加入塔内。
如果液体进料,则物料在该板与精馏段的回流液汇合,然后逐层下流至塔釜。
在逐层下降的同时就从液体中不断蒸出了易挥发(低沸点)组分,从而使下流至塔釜的液态含有较多的难挥发组分(高沸点)。
把塔釜液的一部分连续引至贮槽;另一部分送至塔底部的蒸发釜(再沸器)加热气化。
蒸发釜中产生的蒸气自塔底逐层上升,使蒸气中易挥发组分逐渐增浓,然后进入塔顶分凝器。
一部分蒸气在分凝器中冷凝,所得的液体送回塔顶作为回流;其余部分蒸气或者作为气相产品直接引出,或者进入冷凝冷却器,将未冷凝的蒸气全部冷凝,冷凝液流至产品贮槽。
这种把原料液不断地加入塔内,又从塔顶和塔釜连续不断地采出的过程,就称为连续精馏。
1.3.4 减压精馏及其应用在减压(低于一个大气压)下进行分离混合物的精馏叫做减压精馏。
减压下,纯物质的沸点较正常压力下要低。
减压精馏,就是借助降低系统压力,使混合液的泡点下降,在较低压力下沸腾,以达到降低精馏操作的温度。
不言而喻,减压精馏适用于高沸点物质的混合物,以及在高温下精馏会引起物质的聚合或分解变质的混合物。
1.3.5 加压精馏及其应用指塔顶压力高于大气压力下操作的精馏过程叫加压精馏。
加压精馏常用于被分离混合物沸点较低情况下,如在常温常压下混合物为气态的物料。
如从烃类裂解气中分离出甲烷、氢的精馏。
1.3.6 常压精馏在大气压(常压)下操作的精馏过程叫常压精如果被分离的混合物在常压下有较大的相对挥发度,并且塔顶物料可以用水来冷凝冷却,塔釜物料可以用水蒸汽来加热,这时应采用常压精馏。
例如乙醇和甲醇的提纯。
1.3.7 恒沸精馏在被分离的物系中加入共沸剂(或称共沸组分),该共沸剂必须能和物系中一个或几个组分形成具有最低沸点的恒沸物,以致于使需要分离的几种物质间的沸点差(或相对挥发度)增大。
在精馏时,共沸组分能以恒沸物的形式从精馏塔顶蒸出,工业上把这种操作称为恒沸精馏。
恒沸精馏的过程中,所加入的共沸组分必须从塔顶蒸出,而后冷凝分离,循环使用。
因而恒沸精馏消耗的能量较多。
1.3.8 萃取精馏在被分离的混合物中加入萃取剂,萃取剂的存在能使被分离混合物的组分间的相对挥发度增大。
精馏时,其在各板上基本保持恒定的浓度,而且从精馏塔的塔釜排除,这样的操作称为萃取精馏。
萃取剂的选择原则:(1)萃取剂的选择性要大。
被分离组分在萃取剂中相对挥发度的大小称为萃取剂的选择性。
被分离组分在萃取剂中相对挥发度增大的多,分离就容易,也就是选择的萃取剂选择性大。
选择性是选择萃取剂最主要的依据。
因为选择性的大小也就是决定了被分离组分中轻重关键组分分离的难易程度。
因此塔板数的多少、回流比的大小也与它有密切的关系。
(2)萃取剂对被分离组分的溶解度要大,这样塔板上的液体才能形成均相,不会分层。
(3)萃取剂的沸点应比被分离组分的沸点高的多,否则萃取剂易从塔顶挥发损失掉。
(4)热稳定性、化学稳定性要好,无毒性,不腐蚀设备。
(5)回收容易价格易得。
1.4 常用精馏塔的结构形式对精馏过程来说,精馏设备是使过程得以进行的重要条件。
性能良好的精馏设备,为精馏过程的进行创造了良好的条件。
它直接影响到生产装置的产品质量、生产能力、产品的收率、消耗定额、三废处理以及环境保护等方面。