数字系统时钟设计
单片机课程设计数字钟实验报告

单片机课程设计:电子钟一、实现功能1、能够实现准确计时,以数字形式显示时、分、秒的时间。
2、小时以24小时计时形式,分秒计时为60进位,能够调节时钟时间。
3、闹钟功能,一旦走时到该时间,能以声或光的形式告警提示。
4、能够实现按键启动与停止功能。
5、能够实现整点报时功能。
6、能够实现秒表功能。
二、设计思路1、芯片介绍VCC:电源。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL 门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。
基于单片机的多功能数字时钟设计

技术平台采用碱性电解液电沉积活性锌粉,选取电解液浓度1.25g/cm3,电流密度150mA/cm2,电解槽温度只需控制在室温,锌粉洗涤后真空干燥,所制得的锌粉比表面积大于0.8m2/g,具有较高的电化学活性,能满足锌银电池生产需要,生产效率也达到批量生产要求。
参考文献:[1]侯新刚,王胜,王玉棉.超细活性锌粉的制备与表征[J].粉末冶金工业,2004,14(1):10-13.[2]李永祥,黄孟阳,任锐.电解法制备树枝状锌粉工艺研究[J].四川有色金属,2011,(3):45-50.[3]胡会利,李宁,程瑾宁,等.电解法制备超细锌粉的工艺研究[J].粉末冶金工业,2007,17(1):24-29.基于单片机的多功能数字时钟设计刘晓萌(安徽职业技术学院铁道学院/合肥铁路工程学校,安徽 合肥 230011)摘 要:常见的数字钟有时间、闹钟等功能。
本文基于单片机、温度传感器、液晶显示屏、时钟芯片等硬件设计了多功能数字时钟,软件部分采用C语言编程实现。
该多功能数字时钟包含万年历、节日、节气、温度信息显示等功能,并且在断电的情况下也能正常工作。
关键词:单片机;多功能数字时钟;C语言编程0 引言人类对于时间的需求从古到今始终存在。
古代有浑天仪、日晷,近代出现了机械时钟。
如今,传统的计时工具,甚至是电子钟都已经满足不了人们多元化的时间需求。
数字时钟具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,符合电子仪器仪表的发展趋势,具有广阔的应用空间[1]。
使用数字时钟,用户可以获取精确到秒的时间信息,或是对时钟进行自定义的操作,为现代社会提供了极大的方便[2]。
然而,传统的数字时钟只包含时间显示、闹钟等功能,存在一定的局限性。
本文基于单片机、温度传感器、液晶显示屏、时钟芯片、键盘模块、闹铃模块和电力支持模块等硬件,设计了一款多功能的数字时钟。
1 系统硬件组成数字时钟的硬件由七个模块组成,包括:STC89C52单片机主控芯片、DS1302时钟芯片、DS18B20温度芯片、LCD1602液晶显示模块、闹铃模块、键盘模块和电源。
[数电课程设计数字电子时钟的实现] 电子时钟课程设计
![[数电课程设计数字电子时钟的实现] 电子时钟课程设计](https://img.taocdn.com/s3/m/09fa58d0af45b307e9719786.png)
[数电课程设计数字电子时钟的实现] 电子时钟课程设计课程设计报告设计题目:数字电子时钟的设计与实现班级:学号:姓名:指导教师:设计时间:摘要钟表的数字化给人们生产生活带来了极大的方便,大大的扩展了原先钟表的报时。
诸如,定时报警、按时自动打铃、时间程序自动控制等,这些,都是以钟表数字化为基础的。
功能数字钟是一种用数字电路实现时、分、秒、计时的装置,与机械时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。
从原理上讲,数字钟是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,此次设计与制作数字钟就是为了了解数字钟的原理,从而学会制作数字钟,而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及使用方法。
通过此次课程设计可以进一步学习与各种组合逻辑电路与时序电路的原理与使用方法。
通过仿真过程也进一步学会了Multisim7的使用方法与注意事项。
本次所要设计的数字电子表可以满足使用者的一些特殊要求,输出方式灵活,如可以随意设置时、分、秒的输出,定点报时。
由于集成电路技术的发展,,使数字电子钟具有体积小、耗电省、计时准确、性能稳定、维护方便等优点。
关键词:数字钟,组合逻辑电路,时序电路,集成电路目录摘要 (1)第1章概述············································3第2章课程设计任务及要求·······························42.1设计任务············································42.2设计要求············································4第3章系统设计··········································63.1方案论证············································63.2系统设计············································63.2.1结构框图及说明·································63.2.2系统原理图及工作原理···························73.3单元电路设计········································83.3.1单元电路工作原理·······························83.3.2元件参数选择···································14第4章软件仿真·········································154.1仿真电路图··········································154.2仿真过程············································164.3仿真结果············································16第5章安装调试··········································175.1安装调试过程········································175.2故障分析············································17第6章结论···············································18第7章使用仪器设备清单··································19参考文献·················································19收获、体会和建议·········································20第1章概述数字集成电路的出现和飞速发展,以及石英晶体振荡器的广泛应用,使得数字钟的精度稳定度远远超过了老式的机械表,用数字电路实现对“时”、“分”、“秒”数字显示的数字钟在数字显示方面,目前已有集成的计数、译码电路,它可以直接驱动数码显示器件,也可以直接采用才COMS--LED光电组合器件,构成模块式石英晶体数字钟。
基于单片机数字时钟系统的设计

图 3主程序 的流程 图 主程序 的设 计中 , 在初始化 完成后 , 调用 时间显示程序 , 取得 时钟 显示 , 并判 断是否要校 时 , 如果不需要校 时则判断是否要 启动秒表 , 并 根据当前 系统状态 调用 相应的子程序 。这里有三个基本 的子程序供调 用, 分别对应系统的各种功能状态 。分别是整点报时子程序 、 字处理 数 及显示子程序和秒表显示 子程序 等。 22时间控 制子程序设计 . 图 1硬 件电路 图 12数码管显示电路 .
科技信息
高校理科 研究
基 孑单片和 数字时钟系统的设计
海 南师 范大 学物理 与 电子 工程 学 院 曾美云
[ 摘 要] 本文介 绍 了基于单片机的数字时钟 系统。 系统采用 2 4小时时间显示方式, 具有 时间调整及显 示、 秒表 、 整点报 时等功能。 该
数 字时钟 能连 续、 定的工作 , 稳 同时还具有低成本、 体积小、 功耗低、 结构 简单、 用方便 等特 Байду номын сангаас。 使 [ 关键词 ] 单片机 数字时钟 秒表
一
11 9—
科技信息
高校 理科 研 究
后将存放在 5 H的秒的个位数取 出,查表所得到了相应 的数码管 的段 5 码, 直接送到 P 端 口 出, 1 输 然后再将对应 的位码 ( 择第 6 数码 管显 选 个 示 ) 到P 送 2端 口输出并调用延时子程序 。 2 整点报 时子程序设计 5 在整点报时子程序 中( 定义 P _为整点报 时的输 出口) 首先 判断 3 4 , 分和秒是否 都为 0 如果都为 0的话 , P . 输 出低 电平 , , 给 3 4 使蜂 鸣器发 出嘀声 , 时间为 1。如果还没有到整点的话 ( 持续 s 即分和秒的值相加不 为 O)就返 回到主程序执行下个操作。 , 26秒表显示子程序设计 . 在秒表显示 子程序 的设计 中 , 基本和时钟显示子程序过程类似 , 只 是在秒表显示子程 序中加入了一个延 时程序 , 使得 L D数 码管可 以固 E 定显示秒表计时的数字 , 时间为 2。 持续 s 而如果不添加这个秒表显示子 程序而直接调用原先的时钟显示子程序的话 ,秒表计时的结果就不是 固定不动的显示了 , 会由于时钟 的运行显示而被覆盖。 3系统 调 试 . 31 . 电路连接部分测试 首先要测试各器件本身是否能正常工作 , 出元器件 的引脚 图 , 画 然 后再将元器件按照原理 图排列并连好所有导线 ,并用万用表测试 各连 接导线是否能够 正常导通 , 确保 单片机能正常工作和硬件 电路连接正 确后开始进行实物调试 。 3 数字时钟实物的运行 与调试 . 2 首先是软件调试 ,在单片机开发综合实验装置上进行硬件仿 真来 调试程序是否正确执行 。 试运行后 , 根据时钟运行情况来做一些相应 的 修改 , 比如说 , 时钟显示 不稳定 , 易乱跳 , 显示乱码 , 由于单片机 的运 是 行与程序的执行不能同步进行造成的 ,如某些需要复位 的地方单 片机 没有立即复位就执行下一操作 , 造成 了单片机运行混乱 , 因此应该将程 序做一些修改 ,尽量减 少跳转指令的使用而采用调用子程序 的方法来 代替 。而在修改了程序之后 , 的运行就稳定 了很多。 时钟 其次是实物调试 , 线路确定无误时连接 5 测试 V电源调试 。当连接 到5 V电源的时候 , 数码管显示模糊不清 , 亮度很小 , 这是 由于单 片机 管 脚 的输出 电流太小不能够完全 驱动数码 管 , 因此需要在 P 的每个端 口 1 并联一个 1 K的电阻使数码管有足够的亮度来显示 。
《电子技术》课程设计报告-数字电子钟设计

《电子技术》课程设计报告-数字电子钟设计一、背景介绍数字电子钟是一个实时的计时器,它可以按照设定的时刻精确地表示时间。
它使用微处理器和时钟芯片来处理时间。
因此,它可以被视为一个微处理器系统,系统中含有存储器、计数器、报警功能等。
最新的电子时钟如石英钟使用特制石英晶片来制定时钟。
由于石英可以产生完美的电振动,因此可以更准确地检测时钟改变。
二、数字电子钟的设计原理1、时钟驱动电子时钟的操作需要一定的时间和精度,主要是依靠特殊的驱动器来实现的。
驱动器有石英、硅、力学和光学等多种。
其中石英芯片是电子时钟的核心部件并且最常用。
可以让电子时钟每秒产生32千分之一秒的精度。
2、晶振电路晶体振荡器电路是将电能转换成振荡信号和时钟信号的基础电路。
在电子时钟中,晶振电路可以将3.3V的DC电源转换成正弦波信号。
3、控制电路控制电路是接收电子时钟信号,并将其转换为可读取的数字信号的电路。
它通过检测当前的时钟值与它预设的标准值,来决定是否需要重新设定。
4、显示电路为了使时间显示准确,显示电路需要有一定的能力,它可以将控制电路经过变换后的数字转化为可视的数字或符号信号,比如LED。
我们首先使用PIC16F628A微控制器来控制数字电子钟,PIC16F628A是一款常用的单片机,在实现数字电子钟的最基本功能时天然的具有很多优势,即具有丰富的I/O口及高性能的CPU。
而在驱动这个数字电子时钟时,我们选择了普通的石英晶振,其工作电压为3.3V,频率为32.768kHz。
它的作用是将电源电压转换成正弦波信号,然后此信号可以被PIC单片机读取,从而实现全电子时钟功能。
在处理每秒钟走过的时间时,我们使用计数器根据晶振输入的时钟信号逐渐计数,而当计数器计数到一定值时,PIC单片机就知道一秒的时间已经过去,然后继续进行计算.最后,我们选用一个4位共阳极数码管来将这些数据转化为显示数字的动作,它从数据地址上读取数据,然后一次送到一位,就可以实时显示电子时钟的实时时间。
数电课设--数字钟的设计

数电课设--数字钟的设计摘要:该设计主要是设计一种基于数字电路实现的数字钟,用于显示当前时间,同时设计一个简单的时间调整系统来实现对数字钟的时间调整。
本设计实现了数字钟的时间显示、时间调整等功能,具有简单、实用等优点。
关键词:数字钟、计数器、时间调整系统一、引言数字钟是一种时钟显示设备,它可以在显示面板上显示当前时间,数字钟的普及改变了人们观念上的关于时间知识的变革。
本课设就是要通过设计一个数字钟,来综合应用我们所学的数字电路知识,通过数字电路的设计实现时间的显示及调整。
二、数字钟的设计原理数字钟的设计离不开计数器和定时器,计数器的作用是进行计数操作,进而对时间进行处理,定时器的作用是用来控制计数器的计数和复位,使其能够按照固定的时间序列不断进行计数。
数字钟的显示部分采用数码显示管显示当前时间,数码显示管显示的时间单位有小时、分钟和秒。
三、数字钟的设计方案数字钟的设计方案可以分为两部分,一部分是计数器及定时器的设计,另一部分是时间调整系统的设计。
下面分别进行介绍。
(一)计数器及定时器的设计计数器采用7474型D触发器进行设计,二进制计数器采用模8计数模式,带有异步复位功能。
其中,D触发器的Vcc接+5V电源,GND接地,CLK接定时器的输出,D接Q的输出,Q接下一级触发器D端。
计数器采用8253/8254型定时器,应该根据标准时钟的频率和预置值计算计数器的频率和复位时间。
时间调整功能通常是通过8255接口芯片实现。
(二)时间调整系统的设计时间调整系统通过单片机实现,主要实现以下功能:上下键切换修改时间单位、按键快速调整修改时间数字、按键高频稳定范围设置、判断闹钟是否开启、日历选择等。
四、数字钟的实现数字钟的实现可以参考实验教材进行,实现前需要明确以下几点:1. 根据实际需求确定数字钟的参数:例如显示的时间格式,以及是否需要设置闹钟等。
2. 设计好数字钟的原理图,并选择适合的元件进行接线。
3. 进行电路调试和测试,对电路进行稳定性测试等。
数字钟系统电路的设计方案与仿真分析
数字钟系统电路的设计方案与仿真分析
在电子技术实验教学中,构建学生的电路设计理念,提高学生的电路设计能力,是教学的根本目的和核心内容。
数字钟电路的设计和仿真,涉及模拟电子技术、数字电子技术等多方面知识,能够体现实验者的理论功底和设计水平,是电子设计和仿真教学的典型案例。
文中采用了555 定时器电路、计数电路、译码电路、显示电路和时钟校正电路,来实现该电路。
1 系统设计方案
数字钟由振荡器、分频器、计时电路、译码显示电路等组成。
振荡器是数字钟的核心,提供一定频率的方波信号;分频器的作用是进行频率变换,产生频率为1 Hz 的秒信号,作为是整个系统的时基信号; 计时电路是将时基信号进行计数;译码显示电路的作用是显示时、分、秒时间;校正电路用来对时、分进行校对调整。
其总体结构图,如图1 所示。
2 子系统的实现
2.1 振荡器
本系统的振荡器采用由555 定时器与RC 组成的多谐振荡器来实现,如图2 所示即为产生1 kHz 时钟信号的电路图。
此多谐振荡器虽然产生的脉冲误差较大,但设计方案快捷、易于实现、受电源电压和温度变化的影响很小。
2.2 分频器
由于振荡器产生的频率高,要得到标准的秒信号,就需要对所得到的信号进行分频。
在此电路中,分频器的功能主要有两个:1)产生标准脉冲信号;2)提供电路工作需要的信号,比如扩展电路需要的信号。
通常实现分频器的电路是计数器电路,选择74LS160 十进制计数器来完成上述功能[5]。
如图3 所示,555 定时器产生1 kHz 的信号,经过3 次1/10 分频后得到1 Hz 的脉冲信号,为秒个位提供标准秒脉冲信号。
数电课程设计报告数字钟的设计
数电课程设计报告第一章设计背景与要求设计要求第二章系统概述设计思想与方案选择各功能块的组成工作原理第三章单元电路设计与分析各单元电路的选择设计及工作原理分析第四章电路的组构与调试遇到的主要问题现象记录及原因分析解决措施及效果功能的测试方法,步骤,记录的数据第五章结束语对设计题目的结论性意见及进一步改进的意向说明总结设计的收获与体会附图电路总图及各个模块详图参考文献第一章设计背景与要求一.设计背景与要求在公共场所,例如车站、码头,准确的时间显得特别重要,否则很有可能给外出办事即旅行袋来麻烦;数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确度和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用;数字钟是一种典型的数字电路,包括了组合逻辑电路和时序电路;设计一个简易数字钟,具有整点报时和校时功能;1以四位LED数码管显示时、分,时为二十四进制;2时、分显示数字之间以小数点间隔,小数点以1Hz频率、50%占空比的亮、灭规律表示秒计时;3整点报时采用蜂鸣器实现;每当整点前控制蜂鸣器以低频鸣响4次,响1s、停1s,直到整点前一秒以高频响1s,整点时结束;4才用两个按键分别控制“校时”或“校分”;按下校时键时,是显示值以0~23循环变化;按下“校分”键时,分显示值以0~59循环变化,但时显示值不能变化;二.设计要求电子技术是一门实践性很强的课程,加强工程训练,特别是技能的培养,对于培养学生的素质和能力具有十分重要的作用;在电子信息类本科教学中,课程设计是一个重要的实践环节,它包括选择课题、电子电路设计、组装、调试和编写总结报告等实践内容;通过本次简易数字钟的设计,初步掌握电子线路的设计、组装及调试方法;即根据设计要求,查阅文献资料,收集、分析类似电路的性能,并通过组装调试等实践活动,使电路达到性能要求;第二章系统概述设计思想与方案选择方案一 ,利用数字电路中学习的六十进制和二十四进制计数器和三八译码器来实现数字中的时间显示;方案二,利用AT89S51单片机和74HC573八位锁存器以及利用C语言对AT89S51进行编程来实现数字钟的时间显示;由于方案一通过数电的学习我们都比较熟悉,而方案二比较复杂,涉及到比较多我们没学过的内容,所以选择方案一来实施;简易数字钟电路主体部分是三个计数器,秒、分计数器采用六十进制计数器,而时计数器采用二十四进制计数器,其中分、时计数器的计数脉冲由校正按键控制选择秒、分计数器的溢出信号或校正10Hz计数信号;计数器的输出通过七段译码后显示,同时通过数值判断电路控制蜂鸣器报时;各功能块的组成分频模块,60进制计数器模块,24进制计数器模块,4位显示译码模块,正点报时电路模块,脉冲按键消抖动处理模块工作原理一.简易数字钟的基本工作原理是对1Hz标准频率秒脉冲进行计数;当秒脉冲个数累计满60后产生一个分计数脉冲,而分计数脉冲累计满60后产生一个时计数脉冲,电路主要由3个计数器构成,秒计数和分计数为六十进制,时计数为二十四进制;将FPGA开发装置上的基准时钟OSC作为输入信号通过设计好的分频器分成1Hz~10MHz8个10倍频脉冲信号;1Hz的脉冲作为秒计数器的输入,这样实现了一个基本的计时装置;通过4位显示译码模块,可以显示出时间;时间的显示范围为00时00分~23时59分;二.当需要调整时间时,可使用数字钟的时校正和分校正进行调整,数字钟中时、分计数器都有两个计数脉冲信号源,正常工作状态时分别为时脉冲和分脉冲;校正状态时都为5~10Hz的校正脉冲;这两种状态的切换由脉冲按键控制选择器的S 端来实现;为了更准确的设定时间,需要对脉冲按键进消抖动处理;三.电路在整点前10 秒钟内开始控制蜂鸣器报时,可采用数字比较器或逻辑门判断分、秒计数器的状态码值,以不同频率的脉冲控制蜂鸣器的鸣响;第三章单元电路设计与分析各单元电路的选择1分频模块,设计一个8级倍率为10 的分频电路,输出频率分别为1Hz 、10Hz、100 Hz、1k Hz、10k Hz、100k Hz、1 MHz、10MHz8组占空比为50%的脉冲信号;260进制计数器模块,采用两片74161级联;324进制计数器模块,采用两片74161级联;44位显示译码模块,由分频器,计数器,数据选择器,七段显示译码,3-8线译码器构成一个4位LED数码显示动态扫描控制电路;其中4位计数器用74161,数据选择器用74153,七段显示译码器部分采用AHDL硬件描述语言设计;5正点报时电路模块,该模块采用与门和数据选择器74153构成6脉冲按键消抖动处理模块,采用D触发器实现消抖动,从而能够比较精确地设定时间;设计及工作原理分析1分频模块要输出8级频率差为10倍的分频电路,可采用十进制计数器级联实现;集成十进制计数器的类型很多,比较常用的有74160、74162、74190、74192和7490等;这里采用7490来实现分频,7490是二-五-十进制加计数器,片上有一个二进制计数器和一个异步五进制计数器;QA是二进制加计数器的输出,QB、QC、QD是五进制加计数器的输出,位序从告到低依次为D,C,B;该分频器一共用到7片7490,初始信号输入到第一片7490的CLKB 端口,QD输出端连接到CLKA端,作为输入,从QA引出1MHz的output端口,并引线到第二片7490的CLKB端口,依此类推,直到第七片7490连接完成如附图所示;每片7490相当于一个五进制计数器和一个二进制计数器级联实现了十进制加计数,从而实现分频;分频模块图如图所示分频模块内部结构图如下图所示260进制计数器模块采用两片74161级联,如图,下面一片74161做成十进制的,初始脉冲从CLK输入,ENT和ENP都接高电平,而QD与QA用作为与非门的两个输入,与非门输出分别连接到自身的LDN端与上面一片74161的CLK端;上面一片74161的QC和QA端作为与非门的两个输入通过输出连接到自身的LDN,ENT 和ENP接高电平;下面一片实现从0000到1001即0~9十个状态码的计数,当下面一片为1001状态时,自身的LDN为低电平,此时QD,QC,QB,QA的状态恢复到0000,即从0开始从新计数,而上面一片74161的CLK电平改变,上面一片74161开始计数为0001,实现从0000~到0101即0到5六个状态码的计数,当上面一片状态为0101时,LDN为低电平,此时计数器为0000;这样子通过两片74161就实现了一个六十进制计数器;下图为六十进制计数器模块的示意图由六十进制计数模块构成的秒分计数如下图,下面那块六十进制技术模块表示为妙,上面那块六十进制计数模块表示为分;当妙计数模块的状态为0101 1001时,向分计数模块进位, 即通过74153M的输入C1,此时74153M输出接到分计数模块的输入端 ,通过74153M作为选择器,实现进位控制;324进制计数器模块采用两片74161级联,如图,下面一片74161做成十进制的,初始脉冲从CLK输入,ENT和ENP都接高电平,而QD与QA用作为与非门的两个输入分别连接到自身的LDN端与上面一片74161的CLK端;上面一片74161的QB非门的一个输入通过输出连接到自身的LDN,ENT 和ENP接高电平,并且上面74161的QB端和下面一块74161的QC端通过与非门输出接到两片74161的清零端CLRN;下面一片实现从0000到1001即0~9十个状态码的计数,当下面一片为1001状态时,自身的LDN为低电平,此时QD,QC,QB,QA的状态恢复到0000,即从0开始从新计数,而上面一片74161的CLK电平改变,上面一片74161开始计数为0001,实现从0000~到0010即0到2三个状态码的计数,当上面一片状态为0010即2时,下面一片状态为0100即4时,两块74161的CLRN为低电平,此时两块74161的状态都为0000,即实现了23时过后显示00时;这样子通过两片74161就实现了一个24进制计数器;下图为24进制计数器模块示意图由二十四进制计数模块构成的时计数模块如图,下面那块六十进制技术模块表示为分,上面那块24进制计数模块表示为时;当分计数模块的状态为0101 1001时,向时计数模块进位, 即通过74153M的输入C1,此时74153M输出接到时计数模块的输入端 ,通过74153M作为选择器,实现进位控制;二十四进制计数模块构成的时计数模块44位显示译码模块由分频器,计数器,数据选择器,七段显示译码,3-8线译码器构成一个4位LED数码显示动态扫描控制电路;4位计数器由74161构成;如下图所示74161构成的4位计数器数据选择器采用两片74153 和一片74153M两片74153实现连在一起实现对四个数字的选择,而一片74153M实现对小数点的选择;如下图所示74153M构成的数据选择器两片74153构成的数据选择器七段显示译码器部分采用AHDL硬件描述语言设计,语句如下:subdesign ymqdata_in3..0 :input;a,b,c,d,e,f,g :output;begintabledata_in3..0 =>a,b,c,d,e,f,g;b"0000" =>1,1,1,1,1,1,0;b"0001" =>0,1,1,0,0,0,0;b"0010" =>1,1,0,1,1,0,1;b"0011" =>1,1,1,1,0,0,1;b"0100" =>0,1,1,0,0,1,1;b"0101" =>1,0,1,1,0,1,1;b"0110" =>0,0,1,1,1,1,1;b"0111" =>1,1,1,0,0,0,0;b"1000" =>1,1,1,1,1,1,1;b"1001" =>1,1,1,0,0,1,1;b"1010" =>1,1,1,0,1,1,1;b"1011" =>0,0,1,1,1,1,1;b"1100" =>1,0,0,0,1,1,0;b"1101" =>0,1,1,1,1,0,1;b"1110" =>1,0,0,1,1,1,1;b"1111" =>1,0,0,0,1,1,1;end table;end;整个四位显示译码模块如图所示5正点报时电路模块该模块采用与门和数据选择器74153构成,如下图所示;7个输入端口的与门控制A,当时间在59分51s,53s,55s,57s,59s的时候,A为高电平1,当秒的个位数为9时,B为高电平1,A为1,B为0时,输出C1低频率信号,A为1,B为1时输出C3高频率信号,实现整点的不同频率的报时电路;整点报时电路模块6脉冲按键消抖动处理模块采用D触发器实现消抖动,从而能够精确地设定时间;校正状态为5HZ的校正脉冲,分频器输出的10HZ通过T触发器得到5HZ的校正脉冲;如图脉冲按键消抖动处理模块通过T触发器得到的5HZ校正脉冲第四章电路的组构与调试遇到的主要问题1在用74161做二十四进制计数器时,没有深入考虑,打算采用第一片六进制,第二片四进制级联而成,结果出现问题;2时、分调整按键没有安装消抖动装置;3在设置简易数字钟的分时,时计数器也会进;现象记录及原因分析1虽然也能够计数实现二十四进制,但是不能与七段显示译码器配合使用,不能显示直观的数值,这样给用户带来不便;2在下载调试的时候,我要进行时分调整,但是有时按一下子脉冲键会进两个数值,这样子给时分的设置带来了麻烦,原因是按键没有采用消抖动装置;3在调试的时候,打算通过按键调整分,但是发现时计数器也会进位,这就不符合要求了,原因是调整分时,各计数器都按正常状况在计数,所以会按正常情况产生进位;解决措施及效果1仍然采用两片74161,第一片可以从0~9,第二片只能从0~2,而且当第二片为2的时候,第一片到4的话就都清零复位,这样不仅实现了二十四进制计数器,而且能与七段显示译码器配合使用,直观的显示数字;2在脉冲控制按键上加上了D触发器,这样子可以达到消抖动的效果;3加上选择器,把两路信号分开,当调整分的时候,不对时计数器产生进位,这样子就不会产生十进位了,解决了这个问题;功能的测试方法、步骤,记录的数据1简易数字钟的测试,将电路图连好后,分析与综合,仿真,编译,下载到仪器上,表示秒的小数点按1Hz,占空比50%跳动,分从0~59计数,分过了59后,向时计数器进1;2整点点报时功能的测试,到了整点,即59分51s,53s,55s,57s时蜂鸣器低频率间断性鸣响,59分59秒时,蜂鸣器高频率鸣响一次;3时、分调整功能的测试,按分调整键,分按一定的频率逐次加一,但是时显示不变;按时调整键,时按一定的频率逐次加一,但是分显示不变;第五章结束语对设计题目的结论性意见及进一步改进的意向说明简易数字钟的设计中,主要运用了分频器,六十进制计数器,二十四进制计数器,动态扫描显示电路,选择器,按键消抖以及门电路等数字电路方面的知识;可以在简易数字钟的基础上加上24小时和12小时转换功能,秒表功能,闹钟功能,这样更能满足人们的使用需求;总结设计的收获与体会简易数字钟的设计及实验当中,我坚持了下来,上学期的数电我学的并不好,而且对软件应用的接受能力不强,刚开始的时候做的很慢,看到别人都做好了,心里比较着急,于是,我找出了数电课本,复习所涉及的知识点,并练习所学软件,终于有了进步,可以更上同学们的进度,但数字钟的设计一直困扰我,看到别人拓展功能都做好了,自己基本的都还没做好,心里很急;在设计的过程中,碰到了很多的困难,遇到了很多问题,不断地思考与尝试,以及向同学和老师请教,但还是没能完全设计好,以后有时间还得多去实验室尝试,争取做好一些拓展功能;通过这次设计,对上学期学习的数字电路的相关知识得到了复习和巩固,也查阅了一些相关的资料,也加深了我对数字电路应用的理解,总之这次的电子技术课程设计受益匪浅;参考文献:基于FPGA的数字电路系统设计西安电子科技大学出版社数字电子技术基础电子工业出版社数字电路与逻辑设计实验及应用人民邮电出版社附图1.分频模块分频器仿真波形下图为分频器线路图2.60进制计数器模块60进制计数器仿真波形3.24进制计数器模块24进制计数器仿真波形4. 4位显示译码模块七段显示译码器模块七段显示译码器部分采用AHDL硬件描述语言设计,语句如下:subdesign ymqdata_in3..0 :input;a,b,c,d,e,f,g :output;begintabledata_in3..0 =>a,b,c,d,e,f,g;b"0000" =>1,1,1,1,1,1,0;b"0001" =>0,1,1,0,0,0,0;b"0010" =>1,1,0,1,1,0,1;b"0011" =>1,1,1,1,0,0,1;b"0100" =>0,1,1,0,0,1,1;b"0101" =>1,0,1,1,0,1,1;b"0110" =>0,0,1,1,1,1,1;b"0111" =>1,1,1,0,0,0,0;b"1000" =>1,1,1,1,1,1,1;b"1001" =>1,1,1,0,0,1,1;b"1010" =>1,1,1,0,1,1,1;b"1011" =>0,0,1,1,1,1,1;b"1100" =>1,0,0,0,1,1,0;b"1101" =>0,1,1,1,1,0,1;b"1110" =>1,0,0,1,1,1,1;b"1111" =>1,0,0,0,1,1,1;end table;end;整个4位显示译码模块四位显示译码模块。
数电课程实验报告——数字钟的设计
.《数字电子技术》课程设计报告设计题目: 数字钟班级学号:1407080701221 1407080701216 1407080701218学生:志强企海清指导教师:周玲时间:2016.6.15-2016.6.16《数字电子技术》课程设计一、设计题目:数字钟的设计一、设计任务与要求:1.时钟显示功能,能够以十进制显示“时”、“分”、“秒”。
其中时为24进制,分秒为60进制。
2. 其他功能扩展:(1)设计一个电路实现时分秒校准功能。
(2)闹钟功能,可按设定的时间闹时。
(3)设计一个电路实现整点报时功能等。
在59分51秒、53秒、55秒、57秒输出750Hz 音频信号,在59分59秒时输出1000Hz信号,音频持续1s,在1000Hz荧屏结束时刻为整点。
二、设计方案:数字电子钟由石英晶体振荡器、分频器、计数器、译码器显示器和校时电路组成。
振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,然后经过分频器输出标准秒脉冲。
秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。
计数器的输出分别经译码器送显示器显示。
计时出现误差时,可以用校时电路校时、校分。
三、芯片选定及各单元功能电路说明:实验器材及主要器件(1)CC4511 6片(2)74LS90 5片(3)74LS92 2片(4)74LS191 1片(5)74LS00 5片(6)74LS04 3片(7)74LS74 1片(8)74LS2O 2片(9)555集成芯片1片(10)共阴七段显示器6片(11)电阻、电容、导线等若干①振荡器石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。
它还具有压电效应,在晶体某一方向加一电场,则在与此垂直的方向产生机械振动,有了机械振动,就会在相应的垂直面上产生电场,从而机械振动和电场互为因果,这种循环过程一直持续到晶体的机械强度限止时,才达到最后稳定。
这用压电谐振的频率即为晶体振荡器的固有频率。
数字电子时钟课程设计报告-1
目录一、概述 (1)数字钟简介设计目的设计要求二、主要实验器材 (2)三、设计原理及方框图 (3)四、各部分的电路及实现 (5)振荡器电路计数器的设计六十进制电路整点报时电路校时电路五、总体电路图设计 (10)六、安装与调试 (12)七、收获与体会 (12)一、概述1.1数字钟简介20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。
数字钟已成为人们日常生活中:必不可少的必需品,广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。
由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、集成电路有体积小、功耗小、功能多、携带方便等优点,,因此在许多电子设备中被广泛使用。
电子钟是人们日常生活中常用的计时工具,而数字式电子钟又有其体积小、重量轻、走时准确、结构简单、耗电量少等优点而在生活中被广泛应用,因此本次设计就用数字集成电路和一些简单的逻辑门电路来设计一个数字式电子钟,使其完成时间及星期的显示功能。
多功能数字钟采用数字电路实现对“时”、“分”、“秒”数字显示的计时装置。
具有时间显示、走时准确、显示直观、精度、稳定等优点。
电路装置十分小巧,安装使用也方便。
同时在日期中,它以其小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化而受广大消费的喜爱设计目的(1).让学生掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法;(2). 进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力;(3). 提高电路布局﹑布线及检查和排除故障的能力;(4).培养书写综合实验报告的能力设计要求(1)设计一个有“时”、“分”、“秒”(12小时59分59秒)显示,且有校时功能的电子钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字系统时钟设计
数字系统时钟是一种基于数字电路的时钟设计,它采用数字技术来
测量、显示和调控时间。数字时钟具有精准、稳定和便捷等特点,广
泛应用于各个领域。本文将介绍数字系统时钟设计的原理、构成和实
现方法。
一、原理介绍
数字系统时钟设计的原理基于时钟信号的生成和计数。时钟信号是
一个周期性的信号,一般采用晶振作为时钟信号源。晶振以固定的频
率振荡,通过频率分频电路将高频振荡信号分频为较低频率的时钟信
号,然后经过计数器进行计数,最后通过显示器来显示时间。
二、构成要素
数字系统时钟设计的构成要素包括晶振、频率分频电路、计数器和
显示器。
1. 晶振
晶振是数字系统时钟的稳定时钟信号源,一般采用石英晶体振荡器。
它能产生固定频率的振荡信号,作为时钟信号的基准。
2. 频率分频电路
频率分频电路将晶振输出的高频振荡信号分频为较低频的时钟信号。
常见的分频电路有二分频、十分频等,根据需要选择适当的分频倍数。
3. 计数器
计数器用于计数时钟信号的脉冲数量,将时间单位与计数器的脉冲
数量建立起对应关系。计数器一般采用二进制计数器,可以通过电路
设计来实现时、分、秒的计数。
4. 显示器
显示器用于将计数器中的时间信息显示出来。常见的显示器有数码
管和液晶显示屏,通过电路控制段选和位选,将计数器的二进制输出
转换为十进制数码或字符显示。
三、实现方法
实现数字系统时钟的方法多种多样,下面介绍一种较为简单的实现
方法。
1. 晶振和频率分频电路的连接
将晶振的输出接入频率分频电路的输入端,可通过选用电路元件和
合理的电路设计来实现所需的分频倍数。
2. 计数器的设计
根据实际需要,设计一个二进制计数器,用于计数时钟信号的脉冲
数量。通过电路连接和设计,将分频电路的输出接入计数器的时钟输
入端。
3. 显示器的连接
将计数器的输出接入显示器的输入端,通过电路控制段选和位选,
将计数器的二进制输出转换为十进制数码或字符,实现时间的显示。
4. 供电电路和调控电路的设计
为数字系统时钟提供适当的供电电路,保证各个元件正常工作。根
据需要,设计调控电路,实现时间的调节和显示格式的选择等功能。
总结:
数字系统时钟设计是一种基于数字电路的时钟设计,通过晶振、频
率分频电路、计数器和显示器等构成要素,以及相应的电路连接和设
计,实现精准、稳定和便捷的时间测量、显示和调控功能。通过合理
的电路设计和调节,可以实现不同类型和功能的数字系统时钟。它在
生活和工作中有着广泛的应用,提供准确的时间信息和便捷的时间管
理。