转化与化归思想

合集下载

转化与化归思想 复习参考题(4)

转化与化归思想 复习参考题(4)
一个公共点,设直线 PF1,PF2 的斜率分别为 k1,k2,若 k 0, 试证明: 1 + 1 为定值,并求出这个定值.
kk1 kk2
课堂总结——化归的常用方法
直接转化法 等价转化法 特殊化法 数形结合法
构造法
换元法 坐标法 分离参数法 类比法 补集法
高考理科数学二轮复习
长沙市明德中学 谢卫平
1
函数与方程思想
2ห้องสมุดไป่ตู้
数形结合思想
3 条件 分类与整合思想 结论
4
转化与化归思想
思想概述
1.转化与化归的含义:
转化与化归思想方法,就是在研究和解决有关 数学问题时,采用某种手段将问题通过变换使之转 化,进而使问题得到解决的一种数学方法.一般是 将复杂的问题通过变换转化为简单的问题,将难解 的问题通过变换转化为容易求解的问题,将未解决 的问题通过变换转化为已解决的问题.
则( C )
A.3α-β=π2 B.3α+β=π2 C.2α-β=π2
D.2α+β=π2
点评:化繁为简:弦切互化(化一).
2.已知直线 x y 1通过点 M (cos ,sin ) ,则(
ab
D

A. a2 b2 1
B. a2 b2 1
C.
1 a2

1 b2
1
D.
1 a2
曹冲称象
2.转化与化归的基本原则:
简单化
正难则反
熟悉化
化归 将转复化问杂题的的问条题件转或化结为论简,单使其的表问现题形:式更符合数与形内
化部高所表次示为的将低和比次决谐较,将的统抽化陌一问象多的生题的变形的,问元式问以题,为题利或转单转于者化变化运转为元为用化比,熟熟命较综悉题知直合,的的问使或知其已识推解演

化归与转化的思想方法

化归与转化的思想方法

化归与转化的思想方法随着教育事业的发展,数学教育改革的逐步深入,尤其是在数学新课程标准中十分注重培养学生的思想方法,培养学生应用数学解决问题的能力。

化归作为重要的数学思想方法,在数学教育中加强对化归思想的教育已成为十分重要的工作,这里,我仅就化归思想的核心及其在生活中的作用等问题作一些初步探讨。

一、历史背景化归与转化的思想简介匈牙利著名数学家罗莎·彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的.有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气.再把壶放在煤气灶上.”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去.”但是更让人出乎意料的答案出现了。

数学家会回答:“把水倒掉,方法同上。

”一个有趣的笑话精辟的道出化归的方法的精髓。

二、化归与转化的含义在历史上曾经有不少数学家从各种不同的角度对化归方法作过论述。

例如,笛卡尔曾经提出如下的“万能方法”:①把任何问题都化归为数学问题;②把任何数学问题都化归为代数问题;③把任何代数问题都化归方程式的求解。

由于求解方程的问题被认为是已经能解决的(或者说,是比较容易解决的),因此笛卡尔认为利用这样的方法可解决各类型的问题。

显然他的这一结论并不正确,所谓的“万能方法”也根本不存在,笛卡尔所给出的这一模式毕竟可视为化归方法的一个具体运用,从而产生过具有重要意义的成果。

事实上,笛卡尔创立解析几何学,正是这种重要成果的生动体现。

化归法的一般模式,其形式如下图[4]:转换未知问题(复杂)已知问题(简单)已知理论、方法、技巧解答解答化归与转化就是将待解决或未解决的问题,通过转化归结为一个已经能解决的问题,或者归结为一个比较容易解决的问题,或者归结为一个已为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决。

转化与化归思想方法

转化与化归思想方法

转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法。

一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题. 转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.1.转化与化归的原则(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验来解决.(2)简单化原则:将复杂问题化归为简单问题, 通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。

(3)直观化原则:将比较抽象的问题化为比较直观的问题来解决.(4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解。

2。

常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元"把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径。

(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的。

(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题。

随着国家经济的发展,科技的发达,人才的需求,中国教育的改革,数学新课标的出现,在对学生的知识与技能,数学思想及情感与态度等方面的要求,学生在数学的学习方法也应该要相应改变了,要满足社会的需要.化归与转化思想的实质是揭示联系,实现转化。

转化与化归思想

转化与化归思想

正面与反面的转化 例 2:若抛物线 y=x2+4ax+3-4a,y=x2+(a-1)x +a2,y=x2+2ax-2a 中至少有一条与 x 轴相交,则实数 a 的取值范围是________.
第20讲 │ 要点热点探究
4 (1)-3,7 3 (2)-∞,-2∪[-1,+∞)
【解析】(1)g(x)=f′(x)=3x2+4x-a.g(x)=f′(x)在区间(-1,1) 上存在零点,等价于 3x2+4x=a 在区间(-1,1)上有解,等价于 a 的 取值范围是函数 y=3x2+4x 在区间(-1,1)上的值域,不难求出这个 4 4 函数的值域是-3,7.故所求的 a 的取值范围是-3,7. (2) 若 三 条 抛 物 线 均 不 与 x 轴 相 交 , 则
第20讲 │ 要点热点探究
x2 y2 (2)证明:由(1)知 a =3b ,所以椭圆 2+ 2=1 可化为 x2+3y2=3b2. a b → 设OM=(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),
2 2
x=λx1+μx2, ∴ y=λy1+μy2.
ቤተ መጻሕፍቲ ባይዱ
∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2, 2 2 即 λ2(x1+3y2)+μ2(x2+3y2)+2λμ(x1x2+3y1y2)=3b2. ① 1 2 a2c2-a2b2 3 2 3 3 2 1 2 由(1)知 x1+x2= c,a2= c ,b2= c ,∴x1x2= 2 = c. 2 2 2 8 a +b2 ∴x1x2+3y1y2=x1x2+3(x1-c)(x2-c) 3 9 =4x1x2-3(x1+x2)c+3c2= c2- c2+3c2=0. 2 2 2 又 x2+3y1=3b2,x2+3y2=3b2, 1 2 2 代入①得 λ2+μ2=1.故 λ2+μ2 为定值,定值为 1.

转化与化归思想在中学数学中的应用

转化与化归思想在中学数学中的应用

转化与化归思想在中学数学中的应用转化思想和化归思想是中学数学中非常重要的两个思想,它们在解决问题和证明定理过程中起着至关重要的作用。

本文将分别探讨转化思想和化归思想在中学数学中的应用。

一、转化思想在中学数学中的应用转化思想是指通过变换问题的形式或等效变形,使问题转化为熟悉的或易于处理的问题。

它就像是把难题中的棘手一面剥离,使问题变得简单易懂,进而更好地解决问题。

在中学数学中,转化思想主要体现在以下几个方面:1.利用等量代换简化方程式在代数运算中,我们会遇到很多组长方程式,而这些方程式中经常出现相同的项。

这时候,我们可以采用等量代换的方法,将其化简,使问题更容易解决。

例如,我们可以利用x+y=1这个式子,将x^3+y^3转化为(x+y)^3-3xy(x+y),从而简化计算过程。

2.利用等式变形证明定理在证明数学定理时,通过大量变量之间的等式变形,可以大大简化证明过程。

例如,在证明勾股定理中,我们可以把原方程式a^2+b^2=c^2转化为a^2+b^2-c^2=0,继续变形成(a+c)(a-c)+(b+c)(b-c)=0,再变形成其它等式,最终证明了定理。

3.利用变量的代数变换简化问题有些问题需要建立函数关系式,但是常见的函数关系式过于复杂,不容易解决。

这时候,我们可以尝试采用代数变换的方法,将其变成简单的函数关系式。

例如,在解决极值问题时,我们可以利用三角函数的性质进行变量的代数变换,将复杂的函数关系式变得简单清晰。

二、化归思想在中学数学中的应用化归思想是指将问题按一定规律,通过变形而归约成一个与原问题相关的子问题,然后逐步化简子问题,最终解决原问题。

通过化归,我们可以更容易地理解问题,从而更好地解决问题。

在中学数学中,化归思想主要体现在以下几个方面:1.将高阶次问题化归为低阶次问题有些问题是高阶次或高维的,很难直接解决。

这时候,我们可以采用化归的方法,将其化归为低阶次问题。

例如,在解决n阶递推数列时,我们可以将n阶递推数列化归为n-1阶递推数列,从而简化问题的处理。

数学思想之转化与化归总结

数学思想之转化与化归总结

数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。

通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。

转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。

下面将从这几个方面对转化与化归进行总结。

首先,等价转化是一种常见的数学思想之一。

它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。

等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。

一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。

在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。

其次,代数化简是转化与化归的另一个重要方面。

代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。

代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。

代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。

几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。

几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。

几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。

最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。

枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。

枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。

然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。

综上所述,转化与化归是数学中一种重要的思想方法。

转化与化归思想

如图,台风中心位于点 ,并沿东北方向 PQ移动,已知台风移动的速度为 千米 时, 移动, 千米/时 移动 已知台风移动的速度为40千米 受影响区域的半径为260千米,B市位于点 千米, 市位于点 市位于点P 受影响区域的半径为 千米 的北偏东75°方向上,距离P点 千米. 的北偏东 °方向上,距离 点480千米. 千米 (1)说明本次台风是否会影响 市; )说明本次台风是否会影响B市 2)若这次台风会影响B市 B市受台风 (2)若这次台风会影响B市,求B市受台风 影响的时间. 影响的时间.
例1 已知 x + x + 1 = 0, 求 x + 2 x + 2010 的的。
2 3 2
例2 解方解 2( x − 1) − 5( x − 1) + 2 = 0.
2
1 1 4 例3 已知 x + = 2, 则 x + 4 的的为 __________ . x x
已知正方形的边长为a, 例4 已知正方形的边长为 ,以各边为直径 在正方形内画半圆,求所围成的图形( 在正方形内画半圆,求所围成的图形(阴影 部分)的面积。 部分)的面积。
如图,在梯形 在梯形ABCD中,AD//BC,AB=CD, 例6 如图 在梯形 中 对角线AC,BD交于点 且AC⊥BD.已知 交于点O,且 ⊥ 对角线 交于点 已知 AD=3,BC=5,求AC的长 的长. 求 的长
如图, 分别是正三角形ABC、正 例7 如图,点E、D分别是正三角形 、 分别是正三角形 、 四边形ABCM、正五边形 中以C点为 四边形 、正五边形ABCMN中以 点为 中以 顶点的一边延长线和另一边反向延长线上的 延长线交AE于点 点,且BE=CD,DB延长线交 于点 . , 延长线交 于点F. 1))若将条件“正三角形、正四边形、正 求图1中∠AFB度数,并证明 , 、 中 度数, ((3)若将条件“正三角形、正四边形图3中 )求图2中∠AFB的度数为 中 度数 并证明CD2=BD•EF 2)图 中 的度数为______, 的度数为 五边形”改为“ 边形” 其它条件不变, 度数为_______,在图 、图3中, 五边形”改为 边形 在图2、 ∠AFB度数为“正n边形”,其它条件不变, 度数为 , 中 ;(填 可用含n的代数式 成立” 则∠AFB度数为 (1)中的等式 _______. 填“成立”或“不成 )中的等式_____ ;( (可用含 的代数式 度数为 表示,不必证明) 表示,不必证明) 不必证明) 立”,不必证明)

转化与化归思想

转化与化归思想1.解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。

2.化归与转化思想的实质是揭示联系,实现转化。

除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。

从这个意义上讲,解决数学问题就是从未知向已知转化的过程。

化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。

数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。

3.转化有等价转化和非等价转化。

等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

4.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。

(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。

(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。

(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。

(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

一、选择题1.某厂2007年生产利润逐月增加,且每月增加的利润相同,但由于厂方正在改造建设,元月份投入资金建设恰好与元月的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到12月投入建设资金又恰好与12月的生产利润相同,问全年总利润M 与全年总投入N 的大小关系是 ( )A. M>NB. M<NC.M = ND.无法确定 解:设第n 个月的利润与投入资金分别为,n n a b ,则1(1)n a a n d =+-是关于n 的一次函数,1n n b a q -=⋅是关于n 的指数函数复合形,易知111212,a b a b ==,作出示意图如下:显然有i i a b >,2,3,4,,11i = 故有M>N ,选答案A2.已知两条直线1l :y x =,2l :0ax y -=,其中a R ∈,当这两条直线的夹角在(0,)12π内变动时,a 的取值范围是( ) A.(0,1)B.(3C.(3D.解:分析直线2l 的变化图形,化数为形,答案为C3.若(0x y -=,则x y -的最小值和最大值分别是( )A.12-和B.C.1-D.1解:已知化为x =y =即221(0)x y x +=≤或221(0)x y y +=≥,即单位圆的34(除去第四象限部分) 令cos sin x y θθ=⎧⎨=⎩,3[0,]2πθ∈∴3cos sin )4x y πθθθ-=-=+∵339[,]444πππθ+∈,∴3sin ()[1,42πθθ+∈-∴[x y -∈,选答案D4.函数114sin 5sin y x x =-++的值域是( )A.11[,]126B.11[,]3012C.11[,]93D.11[,]159解:221191sin 9sin 20(sin )24y x x x ==+++- ∵sin [1,1]x ∈-,∴291(sin )[12,30]24x +-∈故11[,]3012y ∈,选答案B5.已知二次函数22()42(2)21f x x p x p p =----+,若区间[1,1]-内至少存在一个实数c ,使()0f c >,则实数p 的取值范围是( )A.1(,1)2-B.1(3,)2--C.3(3,)2-D.13(,)22-解:由反面情况分析易知只须(1)0f ->或(1)0f >(或由保号性亦可直接推出)得答案A6.若抛物线21y ax =-上总存在关于直线0x y +=的两个对称点,则实数a 的取值范围是( )A.1(,)4+∞ B.3(,)4+∞ C.1(0,)4 D.13(,)44解:(法一)21y ax =-关于0x y +=的对称曲线为21x ay -=-由2211y ax x ay ⎧=-⎨=-+⎩ ①②,得22()x y a x y +=- 易知0x y +≠,∴()1a x y -=把①代入得2(1)1a x ax -+=,即2210a x ax a --+=0∆>,得224(1)0a a a +->2(43)0a a ⇔⋅->∴34a >,选答案B(法二)假设存在两个对称点P 111(,)x y ,P 222(,)x y ,则由21122211y ax y ax ⎧=-⎨=-⎩两式相减得:121212()()y y a x x x x -=+-……① 设P 1P 2中点M 00(,)x y ,∵P 1P 2与对称轴0x y +=垂直∴1212121P P y y k x x -==-,∴①式变为012ax =又000x y +=,∴中点M 11(,)22a a -,结合图象知必有0a >,且M 在抛物线内部∴2001y ax >-,∴211.()122a a a ->-,得34a > (法三)设P 1P 2所在直线:y xb =+与21y ax =-联合消去y 得:210ax x b ---=由0∆>,得14(1)0a b ++>……①设P 1P 2中点M 00(,)x y ,∴120122x x x a +==,0012y x b b a=+=+ 又点M 在直线0x y +=上,∴000x y +=即11022b a a ++=,∴1b a=-, 代入①,得114(1)0a a +-+>,即34a >二、填空题7.函数3()33f x x bx b =-+在(0,1)内有极小值,则b 的取值范围是_____________。

转化与化归思想

转化与化归思想[思想方法解读] 转化与化归思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性.转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.常考题型精析题型一 正难则反的转化例1 已知集合A ={x ∈R |x 2-4mx +2m +6=0},B ={x ∈R |x <0},若A ∩B ≠∅,求实数m 的取值范围.解 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},即U ={m |m ≤-1或m ≥32}. 若方程x 2-4mx +2m +6=0的两根x 1,x 2均为非负,则⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2=4m ≥0,⇒m ≥32,x 1x 2=2m +6≥0所以,使A ∩B ≠∅的实数m 的取值范围为{m |m ≤-1}.点评 本题中,A ∩B ≠∅,所以A 是方程x 2-4mx +2m +6=0①的实数解组成的非空集合,并且方程①的根有三种情况:(1)两负根;(2)一负根和一零根;(3)一负根和一正根.分别求解比较麻烦,我们可以从问题的反面考虑,采取“正难则反”的解题策略,即先由Δ≥0,求出全集U ,然后求①的两根均为非负时m 的取值范围,最后利用“补集思想”求解,这就是正难则反这种转化思想的应用,也称为“补集思想”.变式训练1 若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________.答案 ⎝⎛⎭⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x-3x 在x ∈(t,3)上恒成立, 所以m +4≥2t-3t 恒成立,则m +4≥-1,即m ≥-5; 由②得m +4≤2x-3x 在x ∈(t,3)上恒成立, 则m +4≤23-9,即m ≤-373. 所以,函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 题型二 函数、方程、不等式之间的转化例2 已知函数f (x )=13x 3+⎝⎛⎭⎫a 2-43x 2+⎝⎛⎭⎫43-23a x (0<a <1,x ∈R ).若对于任意的三个实数x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,求实数a 的取值范围.解 因为f ′(x )=x 2+⎝⎛⎭⎫a -83x +⎝⎛⎭⎫43-23a =⎝⎛⎭⎫x -23(x +a -2),所以令f ′(x )=0, 解得x 1=23,x 2=2-a . 由0<a <1,知1<2-a <2.所以令f ′(x )>0,得x <23,或x >2-a ; 令f ′(x )<0,得23<x <2-a , 所以函数f (x )在(1,2-a )上单调递减,在(2-a,2)上单调递增.所以函数f (x )在[1,2]上的最小值为f (2-a )=a 6(2-a )2,最大值为max{f (1),f (2)}=max ⎩⎨⎧⎭⎬⎫13-a 6,23a .因为当0<a ≤25时,13-a 6≥23a ; 当25<a <1时,23a >13-a 6, 由对任意x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,得2f (x )min >f (x )max (x ∈[1,2]).所以当0<a ≤25时,必有2×a 6(2-a )2>13-a 6, 结合0<a ≤25可解得1-22<a ≤25; 当25<a <1时,必有2×a 6(2-a )2>23a , 结合25<a <1可解得25<a <2- 2. 综上,知所求实数a 的取值范围是1-22<a <2- 2. 点评 解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.变式训练2 (2015·课标全国Ⅰ)设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a. (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,因为e 2x 单调递增,-a x单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于022e x -a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a. 题型三 主与次的转化例3 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.答案 ⎝⎛⎭⎫-23,1 解析 由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0, 即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0, 解得-23<x <1. 故当x ∈⎝⎛⎭⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 点评 主与次的转化法合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现两个字母:x 及a ,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量,则上述问题即可转化为在[-1,1]内关于a 的一次函数小于0恒成立的问题.变式训练3 设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为______________.答案 (-∞,-1]∪[0,+∞)解析 ∵f (x )是R 上的增函数,∴1-ax -x 2≤2-a ,a ∈[-1,1].(*)(*)式可化为(x -1)a +x 2+1≥0,对a ∈[-1,1]恒成立.令g (a )=(x -1)a +x 2+1.则⎩⎪⎨⎪⎧g (-1)=x 2-x +2≥0,g (1)=x 2+x ≥0, 解得x ≥0或x ≤-1,即实数x 的取值范围是(-∞,-1]∪[0,+∞).题型四 以换元为手段的转化与化归例4 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间[0,π2]上的最大值是1?若存在,则求出对应的a 的值;若不存在,则说明理由.解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-(cos x -a 2)2+a 24+58a -12.∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t , 则y =-(t -a 2)2+a 24+58a -12,0≤t ≤1. 当a 2>1,即a >2时,函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1, 解得a =2013<2(舍去); 当0≤a 2≤1,即0≤a ≤2时, t =a 2函数有最大值,y max =a 24+58a -12=1, 解得a =32或a =-4(舍去); 当a 2<0,即a <0时, 函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递减, ∴t =0时,函数有最大值y max =58a -12=1, 解得a =125>0(舍去), 综上所述,存在实数a =32使得函数有最大值. 点评 换元有整体代换、特值代换、三角换元等情况.本题是关于三角函数最值的存在性问题,通过换元,设cos x =t ,转化为关于t 的二次函数问题,把三角函数的最值问题转化为二次函数y =-(t -a 2)2+a 24+58a -12,0≤t ≤1的最值问题,然后分类讨论解决问题.变式训练4 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是____________. 答案 (-∞,-8]解析 设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解,分离变量a ,得a +4=-⎝⎛⎭⎫t +4t , ∵t >0,∴-⎝⎛⎭⎫t +4t ≤-4, ∴a ≤-8,即实数a 的取值范围是(-∞,-8].高考题型精练1.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c答案 B 解析 ∵a =log 23+log 23=log 233,b =log 29-log 23=log 233,∴a =b .又∵函数y =log a x (a >1)为增函数,∴a =log 233>log 22=1,c =log 32<log 33=1,∴a =b >c .2.下列关于函数f (x )=(2x -x 2)e x 的判断正确的是( )①f (x )>0的解集是{x |0<x <2};②f (-2)是极小值,f (2)是极大值;③f (x )既没有最小值,也没有最大值.A .①②③B .②C .①③D .③答案 A解析 若f (x )=(2x -x 2)e x >0,则0<x <2,①正确;∵f ′(x )=-e x (x +2)(x -2),∴f (x )在(-∞,-2)和(2,+∞)上单调递减,在(-2,2)上单调递增.∴f (-2)是极小值,f (2)是极大值,②正确;易知③也正确.3.(2014·湖南)若0<x 1<x 2<1,则( ) 21121212212121A.e e ln ln B.e e lnC e eD e e x x x x x x x x x x x x x x ->--<><.. 答案 C解析 设f (x )=e x -ln x (0<x <1),则f ′(x )=e x -1x =x e x -1x . 令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x的图象可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e x x (0<x <1),则g ′(x )=e x(x -1)x 2. 又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数.又0<x 1<x 2<1,∴g (x 1)>g (x 2),1221e e .x x x x ∴>4.设a ,b ∈R ,a 2+2b 2=6,则a +2b 的最小值为( )A .-2 2B .-533C .-2 3D .-72答案 C解析 由a 2+2b 2=6,得a 26+b 23=1. 所以可设⎩⎨⎧a =6cos θ,b =3sin θ.a +2b =6cos θ+6sin θ=12⎝⎛⎭⎫22cos θ+22sin θ =12sin ⎝⎛⎭⎫θ+π4. 因为-1≤sin ⎝⎛⎭⎫θ+π4≤1,所以a +2b ≥-2 3. 5.过双曲线x 2a 2-y 2b2=1上任意一点P ,引与实轴平行的直线,交两渐近线于R 、Q 两点,则PR →·PQ →的值为( )A .a 2B .b 2C .2abD .a 2+b 2答案 A解析 当直线RQ 与x 轴重合时,|PR →|=|PQ →|=a ,故选A.6.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎡⎦⎤-1,-12 B .[-1,0] C .[0,1]D.⎣⎡⎦⎤12,1 答案 A解析 设P (x 0,y 0),倾斜角为α,0≤tan α≤1,f (x )=x 2+2x +3,f ′(x )=2x +2,0≤2x 0+2≤1,-1≤x 0≤-12,故选A.7.P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9答案 D解析 设双曲线的左、右焦点分别为F 1、F 2,则其分别为已知两圆的圆心,由已知|PF 1|-|PF 2|=2×3=6.要使|PM |-|PN |最大,需PM ,PN 分别过F 1、F 2点即可.∴(|PM |-|PN |)max =(|PF 1|+2)-(|PF 2|-1)=|PF 1|-|PF 2|+3=9.8.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( )A .a <-1B .a >-1C .a >-1eD .a <-1e 答案 A解析 ∵y =e x +ax ,∴y ′=e x +a .∵函数y =e x +ax 有大于零的极值点,则方程y ′=e x +a =0有大于零的解,∵x >0时,-e x <-1,∴a =-e x <-1.9.已知等差数列{a n }的公差d ≠0,且a 1、a 3、a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________. 答案 1316 解析 由题意知,只要满足a 1、a 3、a 9成等比数列的条件,{a n }取何种等差数列与所求代数式的值是没有关系的.因此,可把抽象数列化归为具体数列.比如,可选取数列a n =n (n ∈N *),则a 1+a 3+a 9a 2+a 4+a 10=1+3+92+4+10=1316. 10.已知一个几何体的三视图如图所示,如果点P ,Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点,则在几何体侧面上,从P 点到Q 点的最短路径的长为________.答案 a 1+π2解析 由三视图,知此几何体是一个圆锥和一个圆柱的组合体,分别沿P 点与Q 点所在母线剪开圆柱侧面并展开铺平,如图所示.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2.所以P ,Q 两点在侧面上的最短路径的长为a 1+π2.11.f (x )=13x 3-x ,x 1,x 2∈[-1,1]时,求证:|f (x 1)-f (x 2)|≤43. 证明 ∵f ′(x )=x 2-1,当x ∈[-1,1]时,f ′(x )≤0,∴f (x )在[-1,1]上递减.故f (x )在[-1,1]上的最大值为f (-1)=23, 最小值为f (1)=-23, 即f (x )在[-1,1]上的值域为[-23,23]. 所以x 1,x 2∈[-1,1]时,|f (x 1)|≤23,|f (x 2)|≤23, 即有|f (x 1)-f (x 2)|≤|f (x 1)|+|f (x 2)|≤23+23=43. 即|f (x 1)-f (x 2)|≤43. 12.已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……) (1)求函数g (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). (1)解 ∵g (x )=1ef (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x-1(x >0). 令g ′(x )>0,解得0<x <1;令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立), 令t =x -1,得t ≥ln(t +1)(t >-1),取t =1n(n ∈N *)时, 则1n >ln ⎝⎛⎭⎫1+1n =ln ⎝⎛⎭⎫n +1n ,∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎫n +1n , 叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n)=ln(n +1). 即1+12+13+…+1n >ln(n +1).。

转化与化归思想(适合小学、初中)

转化与化归思想化归与转化的思想是指在解决数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略,一般情况,总是将未解决的问题化归转化为已解决的问题.化归与转化的思想方法是数学中最基本的思想方法,也是在解决数学问题过程中无处不存在的的基本思想方法,各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段.高考中十分重视对化归与转化思想的考查,要求考生熟悉化归与转化各种变换方法,并有意识地运用变换方法解决有关的数学问题.化归与转化的原则是:将不熟悉和难解的问题转化为熟知的易知的易解的或已经解决的问题;将抽象的问题转化为具体的直观的问题;将复杂的问题转化为简单的问题;将一般性的问题转化为直观的特殊的问题,将实际问题转化为数学问题,使问题便于解决.题例1题例2 比较下图面积大小题例3回忆:我们在推导图形的面积或体积公式时用过哪些转化策略?题例1用分数表示各图中的涂色部分( )( )圆面积推导题例4 把一个圆剪拼成一个近似的长方形,已知长方形的周长是33.12cm,求阴影部分的面积.练习一1.1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90=2.在一列数2,7,14,23,……中的第十个数为____。

3.两数相除,商是4余数是8,被除数,除数,商和余数的和是415,则被除数是多少?4.一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。

5.小明卖出一批苹果得到一笔钱。

如果小明多卖出10个苹果且所得到的钱的总数相同的话,则每个苹果的售价将比原售价少2元。

如果小明少卖出10个苹果且所得到的钱的总数相同的话,则每个苹果的售价将比原售价多4元。

请问a) 小明卖出几个苹果?b) 每个苹果原来的售价是多少元?6. 五个连续偶数之和是完全平方数,中间三个偶数之和是立方数(即一个整数的三次方),这样一组数中的最大数的最小值是多少?7. P 、Q 两城市相距625公里,小华从P 市于上午5:30出发,以每小时100公里之速度驶向Q 市。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲 转化与化归思想
思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单
方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化
是解决问题的有效策略,同时也是获取成功的思维方式.

方法一 特殊与一般的转化
一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一
般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成
批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问
题答案.
例1 (1)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直

的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C:x2a+1+y2a=

1(a>0)的离心率为12,则椭圆C的蒙日圆的方程为( )
A.x2+y2=9 B.x2+y2=7
C.x2+y2=5 D.x2+y2=4
思路分析 求蒙日圆方程→求蒙日圆半径→找圆上任一点即可求半径→取特殊点→求两切线
的交点,即为蒙日圆上一点
答案 B
解析 因为椭圆C:
x2a+1+y2a=1(a>0)的离心率为12,所以1a+1=1
2
,解得a=3,

所以椭圆C的方程为x24+y23=1,
所以椭圆的上顶点A(0,3),右顶点B(2,0),所以经过A,B两点的切线方程分别为y=3,
x=2,
所以两条切线的交点坐标为(2,3),
又过A,B的切线互相垂直,
由题意知交点必在一个与椭圆C同心的圆上,可得圆的半径r=22+32=7,
所以椭圆C的蒙日圆方程为x2+y2=7.
批注 根据题意每个椭圆的“蒙日圆”都是固定的,所以取特殊点,利用过特殊点的互相垂
直的切线的交点也在蒙日圆上即可求半径,体现了特殊到一般的思想.

(2)在平行四边形ABCD中,|AB→|=12,|AD→|=8,若点M,N满足BM→=3MC→,DN→=2NC→,则AM→·NM

等于( )
A.20 B.15 C.36 D.6
思路分析 假设ABCD为矩形,建系→写出坐标→数量积运算
答案 C
解析 假设ABCD为矩形,以A为坐标原点,AB,AD所在直线为x轴、y轴建立如图所示
的平面直角坐标系,

则A(0,0),M(12,6),N(8,8),
∴AM
→=(12,6),NM→
=(4,-2),

∴AM→·NM

=12×4+6×(-2)=36.

规律方法 一般问题特殊化,使问题处理变得直接、简单;特殊问题一般化,可以把握问题
的一般规律,使我们达到成批处理问题的效果.
对于客观题,当题设条件提供的信息在普通条件下都成立或暗示答案是一个定值时,可以把
题中变化的量用特殊值代替,可以快捷地得到答案.

方法二 命题的等价转化
将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得
以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转
化.
例2 (1)(2022·济南模拟)若“∃x∈(0,π),sin 2x-ksin x<0”为假命题,则k的取值范围为
( )
A.(-∞,-2] B.(-∞,2]
C.(-∞,-2) D.(-∞,2)
思路分析 原命题为假命题→“∀x∈0,π,sin 2x-ksin x≥0”为真命题→分离常数求解.
答案 A
解析 依题意知,命题“∃x∈(0,π),sin 2x-ksin x<0”为假命题,
则“∀x∈(0,π),sin 2x-ksin x≥0”为真命题,
所以2sin xcos x≥ksin x,则k≤2cos x,
解得k≤-2,所以k的取值范围为(-∞,-2].
(2)已知在三棱锥P-ABC中,PA=BC=234,PB=AC=10,PC=AB=241,则三棱锥P
-ABC的体积为( )
A.40 B.80
C.160 D.240
思路分析 求P-ABC的体积→补成长方体→求长方体除P-ABC之外的三棱锥体积
答案 C
解析 因为三棱锥P-ABC的三组对边两两相等,所以可将此三棱锥放在一个特定的长方体
中(如图所示),把三棱锥P-ABC补成一个长方体AEBG-FPDC.

易知三棱锥P-ABC的各棱分别是此长方体的面对角线.
不妨令PE=x,EB=y,EA=z,

则由已知,可得
 x2+y2=100,x2+z2=136,y2+z2=164⇒



x=6,

y=8,
z=10.

从而知V
P-ABC=VAEBG-FPDC-VP-AEB-VC-ABG-VB-PDC-VA-FPC=VAEBG-FPDC-4VP-AEB

6×8×10-4×13×12×6×8×10=160.
规律方法 根据命题的等价性对题目条件进行明晰化是解题常见思路;对复杂问题可采用正
难则反策略,也称为“补集法”;含两个变量的问题可以变换主元.
方法三 函数、方程、不等式之间的转化
函数与方程、不等式紧密联系,通过研究函数y=f(x)的图象性质可以确定方程f(x)=0,
不等式f(x)>0和f(x)<0的解集.

例3 已知f(x)=ln x-x4+34x,g(x)=-x2-2ax+4,若对∀x1∈(0,2],∃x2∈[1,2],使得
f(x1)≥g(x2)成立,则a的取值范围是__________.
思路分析 对∀x1∈0,2],∃x2∈[1,2],使得fx1≥gx2成立→∃x2∈[1,2],fxmin≥gx→
分离参数求范围.

答案 -18,+∞
解析 因为f(x)=ln x-
x4+3
4x

所以f′(x)=1x-14-
3
4x
2

=-x2+4x-34x2=-x-1x-34x2,
当0当10,
所以f(x)min=f(1)=12,
即∃x∈[1,2],g(x)≤12,
即∃x∈[1,2],-x2-2ax+4≤12,
∴a≥-x2+74xmin,
函数φ(x)=-x2+74x在[1,2]上单调递减,
∴φ(x)∈



-18,

5

4

∵a≥-
1
8

∴a的取值范围是



-18,+∞
.

例4 已知函数f(x)=eln x,g(x)=1ef(x)-(x+1).
(1)求函数g(x)的极大值;
(2)求证:1+12+13+…+1n>ln(n+1)(n∈N*).
思路分析 gx的极值→ln x(1)解 ∵g(x)=1ef(x)-(x+1)=ln x-(x+1),
∴g′(x)=
1
x
-1(x>0).

令g′(x)>0,解得0令g′(x)<0,解得x>1.
∴函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
∴g(x)
极大值

=g(1)=-2.

(2)证明 由(1)知x=1是函数g(x)的极大值点,也是最大值点,
∴g(x)≤g(1)=-2,
即ln x-(x+1)≤-2⇒ln x≤x-1(当且仅当x=1时,等号成立),
令t=x-1,得t≥ln(t+1)(t>-1).

取t=1n(n∈N*)时,则1n>ln1+1n=ln n+1n,
∴1>ln 2,12>ln 32,13>ln 43,…,1n>ln
n+1
n

∴叠加得1+12+13+…+1n>ln


2×32×43×…×
n+1

n
=ln(n+1).

即1+12+13+…+
1
n
>ln(n+1)(n∈N*).

规律方法 借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关
系转化为最值(值域)问题,从而求出参变量的范围.

相关文档
最新文档