转化与划归思想

合集下载

高中数学 转化与化归思想

高中数学 转化与化归思想

第四讲转化与化归思想知识整合一、转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法,一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.二、转化与化归的常见方法1.直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.2.换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3.数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.4.等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的.5.特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.6.构造法:构造一个合适的数学模型,把问题变为易于解决的问题.7.坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.8.类比法:运用类比推理,猜测问题的结论,易于探求.9.参数法:引进参数,使原问题转化为熟悉的问题进行解决.10.补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A使原问题获得解决,体现了正难则反的原则.1.特殊与一般的转化典题例析例1(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则cos A+cos C1+cos A cos C=45.[思路探究]看到a,b,c成等差数列,可联想到等边三角形举特例求解.[解析]显然△ABC为等边三角形时符合题设条件,所以cos A+cos C1+cos A cos C=cos60°+cos60°1+cos60°cos60°=11+14=45.(2)已知f (x )=33x +3,则f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=__2_020__.[思路探究] 看到求f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)的值,想到求f (x )+f (1-x )的值.[解析] f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1,所以f (0)+f (1)=1,f (-2 019)+f (2 020)=1,所以f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=2 020. 规律总结化一般为特殊的应用(1)常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. (2)对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案.(3)对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.1.AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的坐标为__(0,-1)__.[解析] 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).2.在平行四边形ABCD 中,|AB →|=12,|AD →|=8.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( C )A .20B .15C .36D .6[解析] 方法一:由BM →=3MC →,DN →=2NC →知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM →=AB →+34AD →,AN →=AD →+DN →=AD→+23AB →,所以NM →=AM →-AN →=AB →+34AD →-(AD →+23AB →)=13AB →-14AD →,所以AM →·NM →=(AB →+34AD →)·(13AB →-14AD →)=13(AB →+34AD →)·(AB →-34AD →)=13(AB →2-916AD →2)=13(144-916×64)=36,故选C.方法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM →=(12,6),NM →=(4,-2),所以AM →·NM →=12×4+6×(-2)=36,故选C.2.函数、方程、不等式之间的转化 典题例析例2 (1)已知e 为自然对数的底数,若对任意的x ∈[1e ,1],总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( B )A .[1e ,e]B .(2e ,e]C .(2e,+∞)D .(2e ,e +1e)[解析] 设f (x )=ln x -x +1+a ,当x ∈[1e ,1]时,f ′(x )=1-x x ≥0,f (x )是增函数,所以x ∈[1e ,1]时,f (x )∈[a -1e ,a ].设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)单调递减,在[0,1]单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈[1e ,1],存在唯一的y ∈[-1,1],使得f (x )=g (y )成立,所以[a -1e ,a ]⊆[1e ,e],∴2e<a ≤e ,故选B.(2)(文)(2019·沈阳模拟)已知函数f (x )=x +4x ,g (x )=2x +a ,若对∀x 1∈[12,3],∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是( C )A .(-∞,1]B .[1,+∞)C .(-∞,0]D .[0,+∞)[解析] 当x ∈[12,3]时,f (x )≥2x ·4x=4,当且仅当x =2时等号成立,此时f (x )min =4.当x ∈[2,3]时,g (x )min =22+a =4+a .依题意f (x )min ≥g (x )min ,∴a ≤0.选C.(理)(2019·济南调研)已知m ,n ∈(2,e),且1n 2-1m 2<ln mn ,则( A )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定[解析] 由不等式可得1n 2-1m 2<ln m -ln n ,即1n 2+ln n <1m 2+ln m .设f (x )=1x 2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增.因为f (n )<f (m ),所以n <m .故选A . 规律总结函数、方程与不等式相互转化的应用1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助. 2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.1.已知函数f (x )=ax 2-2x +2,若对一切x ∈[12,2],f (x )>0都成立,则实数a 的取值范围为( B )A .[12,+∞)B .(12,+∞)C .[-4,+∞)D .(-4,+∞)[解析] 由题意得,对一切x ∈[12,2],f (x )>0都成立,即a >2x -2x 2=-2x 2+2x =-2(1x -12)2+12在x ∈[12,2]上恒成立,而-2(1x -12)2+12≤12,则实数a 的取值范围为(12,+∞). 2.已知a =13ln 94,b =45ln 54,c =14ln4,则( B )A .a <b <cB .b <a <cC .c <a <bD .b <c <a[解析] a =13ln 94=13ln(32)2=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln4=14×2ln2=ln22.故构造函数f (x )=ln x x ,则a =f (32),b =f (54),c =f (2).因为f ′(x )=1-1·ln x x 2=1-ln xx2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e]上单调递增;当x ∈(e ,+∞)时,f ′(x )<0, 函数f (x )在[e ,+∞)上单调递减.因为54<32<2<e ,所以f (54)<f (32)<f (2),即b <a <c ,故选B.3.正难则反的转化 典题例析例3 (1)若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是( B )A .(-5,-103)B .(-373,-5)C .(-5,-2)D .(-5,+∞)[解析] g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,又t ∈[1,2],则m +4≥21-3×1=-1,即m ≥-5;②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.(2)已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为 (0,18) .[解析] f ′(x )=2ax -1+1x.(ⅰ)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x ≥0,得a ≥12(1x -1x2).①令t =1x ,因为x ∈(1,2),所以t =1x ∈(12,1).设h (t )=12(t -t 2)=-12(t -12)2+18,t ∈(12,1),显然函数y =h (t )在区间(12,1)上单调递减,所以h (1)<h (t )<h (12),即0<h (t )<18.由①可知,a ≥18.(ⅱ)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x ≤0,得a ≤12(1x -1x2).②结合(ⅰ)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪[18,+∞).所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为(0,18).规律总结转化化归思想遵循的原则1.熟悉化原则:将陌生的问题转化为我们熟悉的问题. 2.简单化原则:将复杂的问题通过变换转化为简单的问题.3.直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何向平面几何问题转化).4.正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.1.若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( D )A .(-∞,12]B .(-∞,12)C .(-12,+∞)D .[-12,+∞)[解析] 设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k (x 21+x 222)=k (x 1+x 22-3)=-6k +12,所以中点P (-12k ,-6k +12).由于点P 在y >x 2的区域内,则-6k +12>(-12k )2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上存在两点关于直线y =k (x =3)对称.所以实数k 的取值范围是[-12,+∞).故选D.2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围是 (-3,32) .[解析] 若在区间[-1,1]内不存在c 满足f (c )>0, 因为Δ=36p 2≥0恒成立,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0解得⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32.所以p ≤-3或p ≥32,取补集得-3<p <32,即满足题意的实数p 的取值范围是(-3,32).4.形体位置关系的转化 典题例析例4 (1)如图所示,已知多面体ABCDEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为__4__.[解析] 方法一:(分割法)因为几何体有两对相对面互相平行,如图所示,过点C 作CH ⊥DG 于H ,连接EH ,即把多面体分割成一个直三棱柱DEH -ABC 和一个斜三棱柱BEF -CHG .由题意,知V 三棱柱DEH -ABC =S △DEH ·AD =(12×2×1)×2=2,V 三棱柱EBF -CHG =S △BEF ·DE =(12×2×1)×2=2.故所求几何体的体积为V 多面体ABCDEFG =2+2=4.方法二:(补形法)因为几何体有两对相对面互相平行,如图所示,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V 正方体ABHI -DEKG =23=8, 故所求几何体的体积为V 多面体ABCDEGH =12×8=4.(2)如图1所示,正△ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 的中点.现将△ABC 沿CD 翻折,使翻折后平面ACD ⊥平面BCD (如图2),求三棱锥C -DEF 的体积.[解析] 方法一:如图,取CD 的中点M ,连接EM ,则EM ∥AD ,且EM =12AD =a2,又AD ⊥平面BDC ,故EM 为三棱锥E -DFC 的高.求三棱锥C -DEF 的体积,即求三棱锥E -DFC 的体积. 由题意,知CD ⊥BD ,AD ⊥CD ,F 为BC 的中点, 所以S △CDF =12S △BCD =12×12CD ·BD =14(2a )2-a 2·a =34a 2.所以V 三棱锥E -CDF =13S △CDF ·EM =13×34a 2×12a =324a 3.即V 三棱锥C -DEF =324a 2.方法二:如图所示,知三棱锥C -DEF 与三棱锥E -DFC 的体积相等,且三棱锥E -DFC 是三棱锥A -BDC 的一部分.因为平面ACD ⊥平面BCD ,点E ,F 分别是AC ,BC 的中点,故三棱锥E -DFC 的底面积和高分别是三棱锥A -BDC 的底面积和高的一半.由题意,知CD ⊥BD ,AD ⊥CD ,AD ⊥BD ,AD =BD =a ,DC =3a ,所以S △BCD =12×3a ·a =32a 2. 故V 三棱锥A -BDC =13S △BCD ·AD =13×32a 2×a =36a 3,则V 三棱锥C -DEF =14V 三棱锥A -BCD =14×36a 3=324a 3. 规律总结形体位置关系的转化是通过切割、补形、等体积转化等方式转化为便于观察、计算的常用几何体,由于新的几何体是转化而来的,一般需要对新几何体的位置关系、数据情况进行必要分析,准确理解新几何体的特征.1.(2019·吉林模拟)已知如图,四边形ABCD 和四边形BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,∠BCD =∠BCE =π2,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2,则五面体EGBADC的体积为 73.[解析] 如图所示,连接DG ,BD .由平面ABCD ⊥平面BCEG , ∠BCD =∠BCE =π2,可知EC ⊥平面ABCD , 又CE ∥GB , 所以GB ⊥平面ABCD .又BC =CD =CE =2,AD =BG =1,所以V 五面体EGBADC =V 四棱锥D -BCEG +V 三棱锥G -ABD=13S 梯形BCEG ·DC +13S △ABD ·BG =13×2+12×2×2+13×12×1×2×1=73.故填73. 2.如图,在四棱锥P -ABCD 中,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是∠ABC =60°的菱形,M 为PC 的中点.(1)求证:PC ⊥AD ;(2)求点D 到平面P AM 的距离.[解析] (1)证明:如图,取AD 的中点O ,连接OP ,OC ,AC ,由题意可知△P AD ,△ACD 均为正三角形,所以OC ⊥AD ,OP ⊥AD .又OC ∩OP =O ,所以AD ⊥平面POC , 又PC ⊂平面POC ,所以PC ⊥AD .(2)点D 到平面P AM 的距离即点D 到平面P AC 的距离,由(1)可知,PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD ,即PO 为三棱锥P -ACD 的高.在Rt △POC 中,PO =OC =3,PC =6,在△P AC 中, 因为P A =AC =2,PC =6,所以边PC 上的高 AM =P A 2-PM 2=22-(62)2=102, 所以△P AC 的面积S △P AC =12PC ·AM =12×6×102=152.设点D 到平面P AC 的距离为h ,由V D -P AC =V P -ACD ,得13S △P AC ·h =13S △ACD ·PO ,又S △ACD =12×2×3=3,所以13×152×h =13×3×3,解得h =2155.故点D 到平面P AM 的距离为2155.。

转化与化归思想、分类讨论思想

转化与化归思想、分类讨论思想
第2讲 转化与化归思想、分类讨论思想
一、转化与化归思想
[思想概述] 转化化归思想的基本内涵是:人们在解决数学问题时,常 常将待解决的数学问题A,通过某种转化手段,归结为另一 问题B,而问题B是相对较容易解决的或已经有固定解决模
式的问题,且通过问题B的解决可以得到原问题A的解.用
框图可直观地表示为:
[规律方法] (1)根据问题的特点转化命题,使原问题转化为与之
相关,易于解决的新问题,是我们解决数学问题的常用思 路. (2)本题把立体几何问题转化为平面几何问题,三维降为二 维,难度降低,易于解答的数学问题分解(或分割)
成若干个基础性问题,通过对基础性问题的解答来实现解决原 问题的思想策略.对问题实行分类与整合,分类标准等于增加 一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论的常见类型:
(1)由数学概念引起的分类讨论:有的概念本身就是分类的,如 绝对值、直线斜率、指数函数、对数函数等.
(2)由性质、定理、公式的限制引起的分类讨论:有的定理、
公式、性质是分类给出的,在不同的条件下结论不一致,如 等比数列的前n项和公式、函数的单调性等. (3)由数学运算和字母参数变化引起分类;如偶次方根非负, 对数的底数与真数的限制,方程(不等式)的运算与根的大小比
难以入手,因此对参数θ取特殊值,进行推理求解.
(2)当问题难以入手时,可以先对特殊情况或简单情形进行 观察、分析,发现问题中特殊的数量或关系结构或部分元 素,然后推广到一般情形,并加以证明.
类型二
换元及常量与变量的转化
【例 2】 已知 f(x)为定义在实数集 R 上的奇函数,且 f(x)在[0,+ π ∞)上是增函数.当 0≤θ≤2时,是否存在这样的实数 m,使 f(cos 2θ-3)+f(4m-2mcos θ)>f(0)对所有的

转化与化归思想

转化与化归思想

转化与化归思想转化与化归思想就是把那些待解决或难解决的问题,通过某种手段,使之转化为一类已解决或易解决的问题,最终使原问题获解.使用化归思想的原则是:化难为易、化生为熟、化繁为简、化未知为已知.转化与化归思想高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,它几乎可以渗透到所有的数学内容和解题过程中. 类型一 直接转化【典例1】 已知在数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.【答题模板】【解析】 ∵a n +1=2a n a n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12.又a 1=1,则1a 1=1,∴{1a n}是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12,∴a n =2n +1(n ∈N *).【对点练1】 求下列函数的值域:(1)y =sin x +cos x ;(2)y =sin 2x -cos x +1; (3)y =cos x2cos x +1;(4)y =1+sin x 3+cos x.【解析】 (1)∵y =sin x +cos x =2sin(x +π4),∴函数的值域为[-2,2]. (2)∵y =sin 2x -cos x +1=2-cos 2x -cos x =-(cos x +12)2+94,∴函数的值域为[0,94]. (3)由y =cos x 2cos x +1,得cos x =y1-2y .∵|cos x |≤1,∴解不等式|y 1-2y |≤1,得y ≤13或y ≥1.∴函数的值域为(-∞,13]∪[1,+∞).(4)由y =1+sin x3+cos x ,得sin x -y cos x =3y -1,即1+y 2·sin(x -φ)=3y -1.∴sin(x -φ)=3y -11+y 2.∵|sin(x -φ)|≤1,∴|3y -11+y 2|≤1.平方化简得y ·(4y -3)≤0.∴0≤y ≤34,即函数值域为[0,34].类型二 换元法【典例2】 求函数y =(4-3sin x )(4-3cos x )的最小值. 【答题模板】【解析】 y =16-12(sin x +cos x )+9sin x cos x ,令t =sin x +cos x ,则t ∈[-2,2]且sin x cos x =t 2-12.∴y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72.【对点练2】 (2015·衡水调研)已知x +y =-1,且x ,y 都是负数,求xy +1xy 的最值. 【解析】 设x =-sin 2α(sin 2α≠0),y =-cos 2α(cos 2α≠0),则xy +1xy =sin 2αcos 2α+1sin 2αcos 2α=14sin 22α+4sin 22α=14(sin 22α+16sin 22α). ∵sin 22α+16sin 22α在sin 22α∈(0,1]上是减函数,∴sin 22α=1时,取得最小值,∴xy +1xy 的最小值为14(1+161)=174.【典例3】 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是________. 【答题模板】 可采用换元法,令t =3x ,将问题转化为关于t 的方程有正解进行解决. 【解析】 设t =3x ,则原命题等价于关于t 的方程 t 2+(4+a )t +4=0有正解,分离变量a 得a +4=-(t +4t ),∵t >0,∴-(t +4t )≤-4.∴a ≤-8,即实数a 的取值范围是(-∞,-8]. 【对点练3】 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 【解析】 令2x +y =t ,则y =t -2x .则4x 2+y 2+xy =1变形为6x 2-3tx +t 2-1=0. Δ=9t 2-4·6·(t 2-1)≥0,t 2≤85.∴-2105≤t ≤2105,即2x +y 的最大值是2105.类型三 数形结合法【典例4】 求函数f (x )=2-sin x2+cos x 的值域.【解析】 函数f (x )=2-sin x2+cos x ,可看作点(2,2),(-cos x ,sin x )两点连线的斜率.点(-cos x ,sin x )的轨迹为x 2+y 2=1.函数值域即为(2,2)与单位圆x 2+y 2=1上点连线斜率的范围,由图可知,过(2,2)且与单位圆相切的直线斜率存在,不妨设为k .∴切线方程为y -2=k (x -2),即kx -y -2k +2=0.∴满足|2-2k |1+k 2=1,解之得k =4±73.∴函数f (x )的值域为[4-73,4+73]. 【对点练4】 设f (x )=1+x 2,求证:对于任意实数a ,b ,a ≠b ,都有|f (a )-f (b )|<|a -b |.【解析】 设A (x 1,1),B (x 2,1),则|OA |=1+x 21,|OB |=1+x 22,|AB |=|x 1-x 2|.在△AOB 中,||OA |-|OB ||<|AB |,即有|1+x 21-1+x 22|<|x 1-x 2|,所以|f (x 1)-f (x 2)|<|x 1-x 2|,即|f (a )-f (b )|<|a -b |. 类型四 构造法【典例5】 在三棱锥P -ABC 中,PA =BC =234,PB =AC =10,PC =AB =241,则三棱锥P -ABC 的体积为________.【答题模板】 用常规方法利用三棱锥的体积公式求解体积时,无法求出三棱锥的高.但若换个角度来思考,注意到三棱锥的三对棱两两相等,我们可以构造一个特定的长方体,将问题转化为长方体中的某个问题.【解析】 如图所示,把三棱锥P -ABC 补成一个长方形AEBG -FPDC ,易知三棱锥P -ABC 的各棱分别是长方体的面对角线,不妨令PE =x ,EB =y ,EA =z ,则由已知有:⎩⎪⎨⎪⎧ x 2+y 2=100,x 2+z 2=136,y 2+z 2=164,解得⎩⎪⎨⎪⎧x =6,y =8,z =10.所以V P -ABC =V AEBG -FPDC -V P -AEB -V C -ABG -V B -PDC -V A -FPC =V AEBG -FPDC -4V P -AEB =6×8×10-4×16×6×8×10=160.故所求三棱锥P -ABC 的体积为160.【对点练5】 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【解析】先在一个正方体中找一个满足条件的正三棱锥,再利用正方体的性质解题.如图,满足题意的正三棱锥P -ABC 可以是正方体的一部分,其外接球的直径是正方体的体对角线,且面ABC 与体对角线的交点是体对角线的一个三等分点,所以球心到平面ABC 的距离等于体对角线长的16,故球心到截面ABC 的距离为16×23=33. 类型七 参数法【典例8】 已知直线l 过点A (2,3)且与x 轴,y 轴的正半轴分别交于M ,N 两点,则当|AM |·|AN |最小时,直线l 的方程为________. 【解析】 设∠AMO 为θ,则θ∈(0,π2), ∴|AM |=3sin θ,|AN |=2cos θ. ∴|AM |·|AN |=6sin θ·cos θ=12sin2θ≥12. 当且仅当sin2θ=1,即θ=π4时取“=”号.此时k l =-1,∴l 的方程为x +y -5=0. 【对点练8】 (2015·北京东城联考)已知点P (3,4)与圆C :(x -2)2+y 2=4,A ,B 是圆C 上两个动点,且|AB |=23,则OP →·(OA →+OB →)(O 为坐标原点)的取值范围是( ) A .[3,9] B .[1,11] C .[6,18] D .[2,22]【解析】 设AB 的中点为D ,则OA →+OB →=2OD →,因为|AB |=23,所以|CD |=1,故点D在圆(x -2)2+y 2=1上,所以点D 的坐标为(2+cos α,sin α),故OP →·(OA →+OB →)=2OP →·OD →=2(6+3cos α+4sin α)=2[6+5sin(α+φ)],而2≤2[6+5sin(α+φ)]≤22,则OP →·(OA →+OB →)的取值范围是[2,22].。

转换与化归思想

转换与化归思想

浅谈转换与化归思想转化思想就是数学中的一种基本却很重要的思想。

深究起来,转化两字中包含着截然不同的两种思想,即转换与化归。

这两者其实表达了不同的思想方法,可以说就是思维方式与操作方法的区别。

一、 转换思想(1)转换思想的内涵转换思想就是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。

要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。

(2)转换思想在同一学科中的应用转换思想可以就是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。

象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。

比如,函数、方程、不等式就是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其她模块的各类问题。

不等式恒成立问题可以转换到用函数图象解决,或者就是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。

再比如,数列问题用函数观点来解释,那更就是我们数学课堂中一再强调的问题了。

瞧这样一个问题:已知:11122=-+-a b b a ,求证:122=+b a 。

[分析] 这就是一个纯粹的代数证明问题,条件的变形就是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。

再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。

[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了就是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设与结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还就是比较棘手的。

专题四转化与化归思想

专题四转化与化归思想

则a≥ x ,x∈(0, ]恒成立.
返回目录
模拟训练
【点评】 本题主要考查转化思想和分类整合思想,分类讨论实 质上也是一种转化思想. 解法1 采用的是分类讨论的方法, 将比较复杂问题通过分类转化 为一些较简单的问题进行求解, 而每一分类中又将恒成立的问题又转 化为最值问题.
1 (0,], 变为不等式一边为参数 , 另一边为含有x的代数式,a只要大 2 1 1 于或等于y= x ,x∈(0, ]的最大值就满足上式要求. x 2
消去x2得2 x12
2 1 x1 2 6m 1 0 , m m
返回目录
模拟训练
2 1 ∴x1∈R,∴Δ= 8 2 6m 1>0, m m 1 ∴(2m+1)(6m2-2m+1)<0,∴m< . 2 1 即当m< 时,抛物线上存在两点关于直线y=m(x-3)对称. 2
x12 满足 2 x1 x 1
2 x2 x1 x 2 m 3 , 2 2 2 x2 1 . x2 m
2 x12 x 2 m( x1 x 2 6), ∴ 1 x x . 1 2 m
行转化, 使问题逐次达到规范化、模式化,直至问题的解决.
返回目录
模拟训练
1. 函数f (x)=cos2x-2 3 sinxcosx的最小正周期是__________.
π 【解析】 ∵f(x) =cos2x-2 3 sinxcosx=cos2x- 3 sin2x=-2sin 2x ,
祝您高考成功!
作文成绩
语文作文课上, 老师布置了一篇500字的作文。
下课铃响了, 一学生发现自己只写了250字, 灵机一动,在

第二讲转化与化归思想

第二讲转化与化归思想
3.常见的转化与化归的方法 转化与化归思想方法用在研究、解决数学问题中,当思维受阻时考虑寻 求简单方法或从一种状况转化到另一种情形 ,也就是转化到另一种情境 使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思 维方式.常见的转化方法有:
(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问 题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂 的 函数、方程、不等式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通 过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目 的. (5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问 题,结论适合原问题.
方法二:(看成不等式的解集)∵a,b为正数,
∴a+b≥2 ab,又ab=a+b+3,
∴ab≥2 ab+3.
即( ab)2-2 ab-3≥0,
解得 ab≥3或 ab≤-1(舍去),∴ab≥9. ∴ab的取值范围是[9,+∞). 方法三:若设ab=t,则a+b=t-3, ∴a,b可看成方程x2-(t-3)x+t=0的两个正根.
则当且仅当gg-1=1= x2+x2-x≥x+0,2≥0, 解之,得x≥0或x≤-1. 即实数x的取值范围是x≤-1或x≥0. 拓展提升——开阔思路 提炼方法 通过以上两种方法的比较可以看出,若按常规方法求解,问题 较麻烦;若将变量与参数变更关系,a为主元,转换思考的角度,使解 答变得容易.这种处理问题的思想即为转化与化归的思想.
转化与化归思想使用的根本目的,是为了能更加有效地解答我们所遇到 的问题.转化与化归,不是盲目地转化给出的条件,无论是哪种转化, 都是为了使问题更好地获解,以下几条原则我们在解题中常要遵循,可 对使用这一思想方法起到提示的作用. (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知 的知识、经验来解决问题.

4、转化与化归思想

4、转化与化归思想

4 转化与化归思想主线—基础—方法—应用—例题—注意—总结知识清单:知识1 转化与化归思想概述知识2 转化与化归的原则知识1 转化与化归思想概述所谓化归思想就是通过转化,使所要解决的问题由难变易或变为已经解决的问题,以有利于解决的一种数学思想。

化归思想常常以变换题目的结构形状、变更问题、从反面探究结论等方式出现,前面所介绍的函数思想、方程思想、数形结合、分类讨论等都是重要的化归方法。

知识2 转化与化归的原则(1)目标简化原则将复杂的问题向简单的问题转化。

(2)和谐统一性原则即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当。

(3)具体化原则即化归方向应由抽象到具体。

(4)低层次原则即将高维空间问题化归成低维空间问题。

(5)正难则反原则即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

方法清单:方法1 直接转化法方法2 换元转化法方法3 数形结合法转化方法4 构造法转化方法5 坐标法转化方法6 补集法转化方法7 空间与平面间的转化方法8 几何条件转化为向量关系的方法方法9 变更主元的转化法方法10一般式转化为标准式方法1 直接转化法把原问题转化为基本定理、基本公式或基本图形问题。

例1函数y=1+a x(0<a<1)的反函数的图象大致是()方法2 换元转化法运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。

例2 设20≤≤x ,求函数523421+⋅-=-x x y 的最大值和最小值。

方法3 数形结合法转化研究原问题中数量关系(解析式)与空间形式(图形)的关系,通过互相变化获得转化途径。

例3 已知1,0,0=+≥≥b a b a ,求证225)2()2(22≥+++b a 方法4 构造法转化 “构造”一个合适的数学模型,把问题变为易于解决的问题。

转化与化归思想

转化与化归思想
如图,台风中心位于点 ,并沿东北方向 PQ移动,已知台风移动的速度为 千米 时, 移动, 千米/时 移动 已知台风移动的速度为40千米 受影响区域的半径为260千米,B市位于点 千米, 市位于点 市位于点P 受影响区域的半径为 千米 的北偏东75°方向上,距离P点 千米. 的北偏东 °方向上,距离 点480千米. 千米 (1)说明本次台风是否会影响 市; )说明本次台风是否会影响B市 2)若这次台风会影响B市 B市受台风 (2)若这次台风会影响B市,求B市受台风 影响的时间. 影响的时间.
例1 已知 x + x + 1 = 0, 求 x + 2 x + 2010 的的。
2 3 2
例2 解方解 2( x − 1) − 5( x − 1) + 2 = 0.
2
1 1 4 例3 已知 x + = 2, 则 x + 4 的的为 __________ . x x
已知正方形的边长为a, 例4 已知正方形的边长为 ,以各边为直径 在正方形内画半圆,求所围成的图形( 在正方形内画半圆,求所围成的图形(阴影 部分)的面积。 部分)的面积。
如图,在梯形 在梯形ABCD中,AD//BC,AB=CD, 例6 如图 在梯形 中 对角线AC,BD交于点 且AC⊥BD.已知 交于点O,且 ⊥ 对角线 交于点 已知 AD=3,BC=5,求AC的长 的长. 求 的长
如图, 分别是正三角形ABC、正 例7 如图,点E、D分别是正三角形 、 分别是正三角形 、 四边形ABCM、正五边形 中以C点为 四边形 、正五边形ABCMN中以 点为 中以 顶点的一边延长线和另一边反向延长线上的 延长线交AE于点 点,且BE=CD,DB延长线交 于点 . , 延长线交 于点F. 1))若将条件“正三角形、正四边形、正 求图1中∠AFB度数,并证明 , 、 中 度数, ((3)若将条件“正三角形、正四边形图3中 )求图2中∠AFB的度数为 中 度数 并证明CD2=BD•EF 2)图 中 的度数为______, 的度数为 五边形”改为“ 边形” 其它条件不变, 度数为_______,在图 、图3中, 五边形”改为 边形 在图2、 ∠AFB度数为“正n边形”,其它条件不变, 度数为 , 中 ;(填 可用含n的代数式 成立” 则∠AFB度数为 (1)中的等式 _______. 填“成立”或“不成 )中的等式_____ ;( (可用含 的代数式 度数为 表示,不必证明) 表示,不必证明) 不必证明) 立”,不必证明)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x) = x 2 + (a − 4) x + 4 − 2a
的值总大于0,则实数x的
答案:例4 例5
-1≤a≤1 x<1或x>3
数与形的转化
研究原问题中数量关系与图形关系,互相 转化简化问题。
例6. 已知OB = (2,0), OC = (2,2) , CA = ( 2cosα , 2sinα ) ( α ∈ R), 则OA与OB 夹角范围为(O为坐标原点) π A : 0, 4 5π π C: , 12 2 π 5π B: , 4 12 π 5π D: , 12 12
2
答案:
1(a ≤ −2) 2 a g (a ) = − − 2a − 1(−2 < a < 2) . 2 1 − 4a(a ≥ 2)
a=-1 ;5
常量与变量的转化
利用主元与参变量的关系,视参变量为主元(即变 量与主元的角色换位)常常可以简化问题。
例4: 2 − ax − 2 ≤0对于 x ∈ [−1,1] 恒成立,求实数a的取值范围. x 例5:对任何a ∈ [−1,1] 函数 取值范围是:__分支间的转化
数学各分支间的转化是一种重要策略,应用十分广泛,比 如用向量解立体几何,用解析几何处理平面几何、代数、三角及 立体几何中的位置问题,求角与距离转化为平面几何中求角与距 离等。 例7:四棱锥S-ABCD中,底面ABCD为平行四边形,侧 面SBC ⊥底面ABCD,已知∠ABC=45 °,AB=2,BC=2 2 , SA=SB= 3。 (1)证明:SA ⊥ BC (2)求直线SD与平面SAB所成角的正弦值。
答案:
22 11
小结: 小结:
我们学习了化归与转化思想,这种思想在教学中应用 非常普遍,我们在解每一道题时,实际上都在转化和化归, 将问题由难转易,由陌生的问题转为熟悉的问题,从而从 问题得到解决,希望在解决问题的时候加以应用,提高解 题能力。
正与反的转化:
有些数学问题,如果直接从正面入手求解难度较大, 我们可以从反面 反面着手去解决。如集合中补集的应用,函数 反面 与反函数的有关问题,对立事件的概率、间接法求解排列 组合问题。 例1:某射手射击1次击中目标的概率是0.9他连续射击4次且他 : 各次射击是否击中目标是相互独立的,则他至少击中目标1次 的概率为—— 答案:1-0.14=0.9999
专题二 转化与化归思想
知识概要 解决数学问题时,常遇到一些问 题直接求解较为困难,通过观察、分 析、类比、联想等思维过程,选择运 用恰当的数学方法进行变换,将原问 题转化为一个新问题(相对来说,对 自己较熟悉的问题),通过新问题的 求解,达到解决原问题的目的,这一 思想方法我们称之为“化归与转化的 思想方法”.
化 归 与 转 化 应 遵 循 的 基 本 原 则
(1)熟悉化原则:将陌生的问题转化为熟悉的问
题,以利于我们运用熟知的知识、经验和问题来 解决. (2)简单化原则 简单化原则:将复杂的问题化归为简单 简单化原则 问题,通过对简单问题的解决,达到解决复杂 问题的目的,或获得某种解题的启示和依据. (3)直观化原则 直观化原则:将比较抽象的问题转化为 直观化原则 比较直观的问题来解决.
一般与特殊的转化
当面临的数学问题由一般情况难以解决,可以从特殊 情况来解决,反之亦然,这种方法在选择,填空题中非常 适用。 例2:设等比数列{an}的公比为q,前n项和为Sn, 若Sn+1、Sn、Sn+2成等差数列,则q=___________.
答案:q=-2
换元转换
通过换元把较复杂的函数、方程、不等式等问题转化 为易于解决的基本问题,尤其是复合函数的问题。 例3:已知函数f(x)=1-2a-2acos x-2sin2x的最小 值为g(a). (1)求g(a)的表达式; (1) g(a) 1 (2)若g(a)= , 求实数a的值,并求此时f(x)的最大值.
相关文档
最新文档