人教版七年级(上)数学一元一次方程检测题1
人教版七年级数学上第三章 一元一次方程 检测试试题(含答案)

第三章《一元一次方程》检测试题一、选择题(每小题3分,共36分)1.要使关于x 的方程3(x -2)+b=a(x -1)是一元一次方程,必须满足( ).A .a ≠0B .b ≠0C .a ≠3D .a ,b 为任意有理数2.如果在方程5(x -3)=8(x -3)的两边同除以x -3,则会得到5=8,我们知道5≠8. 由此可以猜测x 的值为( ).A .0B .1C .-3D .33.当x =4时,式子5(x +b )-10与bx +4的值相等,则b 的值为( ).A .-6B .6C .-7D .74.一个长方形的周长为40cm ,若将长减少8cm ,宽增加2cm ,长方形就变成了正方形,则正方形的边长为( ).A .5cmB .6cmC .7cmD .8cm5.在日历中,圈出一个数列上的相邻的3个数,并求出它们的和为:27,33,40,60,其中符合实际的数值有( ).A .1个B .2个C .3个D .4个6.建军回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同. 当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.则初期购得的原材料( ).A .40吨B .45吨C .50吨D .55吨7.若单项式2352m a b +-与523m n a b -的差仍是单项式,则2016()m n +的值是( ).A .1B .-1C .2D .48.某种牙膏出口处直径为5mm ,贝贝每次刷牙都挤出1cm 长的牙膏,这样一只牙膏可用36次,该品牌牙膏推出新包装,只是将出口处直径改为6mm ,贝贝还是按习惯每次挤出1cm 的牙膏,这样一只牙膏能用( ).A .22次B .23次C .24次D .25次9.已知关于x 的方程m x +2=2(m —x )的解满足|x -12|-1=0,则m 的值是( ). A .10或25 B .10或-25 C .-10或25 D .-10或-2510.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ).A .54盏B .55盏C .56盏D .57盏二、填空题(每小题3分,共18分)11.已知a=x +3,b=2-x ,当x=__________时,a 比2b 大11.12.已知 A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时. t 小时后两车相距50千米,则 t 的值是_________.13.某书中一道方程题为213x x +⊗=+,⊗处印刷时被墨盖住了,查看后面答案,这道题的解为 2.5x =-,那么⊗处的数字为_____________.14.“☆”表示一种新的运算符号,已知2☆3=2+3+4;7☆2=7+8;6☆4=6+7+8+9;……按照该运算法则,若n ☆8=68,则n 的值为__________.15.若代数式13(2)42x -的值比1(2)34x -的值大1,则x 的值为__________. 16.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马_________天可以追上驽马.17.王会计在记帐时发现现金少了153.9元,查帐后得知是一笔支出款的小数点看错了一位,王会计查出这笔看错了的支出款实际是__________元.18.在课外活动期间,小英、小丽和小华在操场上画出A 、B 两个区域,一起玩投沙包游戏.沙包落在A 区域所得分值与落在B 区域所得分值不同.当每人各投沙包四次时,其落点和四次总分如图所示.则小华的四次总分为___________.三、解答题(共66分)19.(7分)已知y =1是一元一次方程12()23m y y --=的解,求关于x 的方程m(x +4)=2(mx +3)的解.20.(7分)已知a 、b 、c 、d 为有理数,现规定一种新的运算:a b c d=ad bc -, 那么当()53132x x -⎛⎫- ⎪⎝⎭2371124=时,问x 的值是多少?21.(8分)张婶去布店买了28米的红布和黑布,其中红布每米3元,黑布每米5元,结账时售货员错把红布算作每米5元,黑布每米3元,结果收了张婶108元钱,是布店受了损失,还是张婶多付了钱?请说明你的理由.图1 图2 22.(8分)已知P=3xy -8x+1,Q=x -2xy -2,当x ≠0时,3P -2Q=7总成立,求y 的值.23.(8分)甲、乙两人共加工180个零件,甲每小时加工10个零件,乙每小时加工15个零件,请你按下列条件编一道应用题:①甲乙两人不能同时加工零件;②所列的方程为一元一次方程;③语言通顺、无误;④解答所编问题.24.(9分)小华写信给老家的叔叔,问候“八一”建军节. 折叠长方形信纸,装入标准信封时发现:若将信纸按如图1连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm ;若将信纸按如图2三等分折叠后,同样方法装入时,宽绰有1.4cm. 试求信纸的纸长与信封的口宽.25.(9分)为了迎接学校检查,要求限时40分钟整理好实验室,已知张老师独立整理实验室需要50分钟,而李老师独立整理实验室只需要30分钟. 为了完成任务,张老师独自整理了30分钟后,请求李老师帮助整理,问他们能在规定的时间内完成吗?试用方程的知识说明理由.26某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人. 如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?参考答案一选择题1.C .提示:原方程可转化为(3-a)x=6-a -b ,故当3-a ≠0时符合题意.2.D .提示:根据等式的性质2,当x -3=0时,则会得到5=8的错误.3.A .提示:根据题意,可列方程得5(4+b )-10= 4b +4,解得b =-6.4.C .提示:设正方形的边长为xcm ,则长方形的长为(x +8)cm ,宽为(x -2)cm. 根据题意,得2[(x +8)+(x -2)]=40.5.C .提示:在日历中,圈出一个数列上的相邻的3个数的和必是3的倍数,所以40不是.6.B .提示:设初期每天所耗费的原材料为x 吨,则初期购得的原材料为(6x +36)吨. 根据题意,得(6x +36)-10x=30,解得x=1.5. 所以6x +36=45(吨).7.A .提示:由题意得2m +3=5,m -2n=5,解得m=1,n=-2. 所以2016()m n +=2016(1)-=1.8.D .提示:设一只牙膏能用x 次. 根据题意得2256()1036()1022x ππ⨯⨯=⨯.解得x=25. 9.A .提示:由|x -12|-1=0,可得x -12=1或x -12=-1,所以x =32或x =-12. 然后再分别代入m x +2=2(m —x )中,即可求出m.10.B .提示:设更换的新型节能灯有x 台,由题意得(106-1)×36=70×(x -1),则x=55. 二填空题11.4.提示:根据题意得(x +3)-2(2-x)=11,解得x=4.12.2或2.5.提示:相向而行时有两种可能:(120+80)t=450-50或(120+80)t=450+50.13.135x =.提示:设⊗处的数字为m ,根据题意,得2 2.51 2.53m -=-. 14.5.提示:根据题意得n ☆8=n +(n +1)+(n +2)+……+(n +7)=8n +28,故8n +28=68.15.-4.提示:根据题意,得13(2)42x -=1(2)34x -+1,解得x=-4. 16.20.提示:设良马需要x 日才能追上驽马,由题意得240x=150(x +12),解得x=20. 17.17.1.提示:本题中“小数点看错了一位”是指将该数扩大了10倍. 设这笔看错了的支出款实际是x 元,则记帐时支出款记成了10x 元. 则有10x -x=153.9,解得x=17.1. 18.30分.提示:设沙包落在A 区域得x 分,落在B 区域得(34-3x )分. 根据题意,得2x +2(34-3x )=32. 解得x =9,则34-3x =7. 所以小华的四次总分为9+3×7=30(分). 三解答题19.解:将y=1代入方程中,可得12(1)23m --=,解得m=1. 将m=1代入m(x +4)=2(mx +3),得x +4=2(x +3),解得x=-2. 20.解:根据题意,得()113753243212x x ⎛⎫---= ⎪⎝⎭,解得2x =. 21.解:布店受了损失. 理由如下:设红布买了x 米,则黑布买了(28-x)米.根据题意,得5x +3(28-x)=108,解得x=12,则28-x=16.即红布买了12米,黑布买了16米,实际应付款12×3+16×5=116(元).由于116-108=8(元). 所以布店受了损失,少收了8元钱.22.解:由于P=3xy-8x+1,Q=x-2xy-2,所以3P-2Q=3(3xy-8x+1)-2(x-2xy-2)=13xy-26x+7.又因为3P-2Q=7,所以13xy-26x+7=7,即13xy-26x=0.因为x≠0,在等式两边同时除以13x,得y-2=0,解得y=2.23.解:(答案不唯一).甲、乙两人共加工180个零件,甲每小时加工10个零件,乙每小时加工15个零件. 甲先加工4小时,乙也加入一起加工,问两人合作几小时后可以完成任务?解:设甲、乙两人合作x小时后可以完成任务.根据题意,得10×4+(10+15)x=180,解得x=5.6答:两人合作5.6小时后可以完成任务.24.解:设信封的口宽为xcm. 根据题意,得4(x-3.8)=3(x-1.4),解得x=11.所以信封的纸长为4×(11-3.8)=28.8cm.答:信纸的纸长为28.8cm,信封的口宽为11cm.25.解:能在规定的时间内完成. 理由如下:设李老师加入后需要x分钟完成任务,则张老师共用了(30+x)分钟.根据题意,得3013050x x++=,解得x=7.5. 所以30+x=37.5.因为37.5分钟<40分钟,所以他们能在规定的时间内完成任务.26.解:由题意可知,七年级(1)班、(2)班的总人数多于50人,因为816不能整除10,所以两班的总人数为816÷8=102(人).设七年级(1)班有x人,七年级(2)班有(102-x)人,根据题意,得12x+10×(102-x)=1118,解得x=49,则102-x =53(人).答:七年级(1)班有49人,七年级(2)班有53人.(2)七年级(1)班节省的费用为(12-8)×49=196(元);七年级(2)班节省的费用为(10-8)×53=106(元).。
【人教版】七年级上册数学:第三章《一元一次方程》练习题(含答案)

第3章一元一次方程练习题(一)一、选择题1. 对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为( ) A .23 B .31 C . 21 D . 21- 2.下列变形错误的是( )A.由x + 7= 5得x+7-7 = 5-7 ;B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 3. 解方程3x +1=5-x 时,下列移项正确的是( )A.3x +x =5+1B.3x-x=-5-1C.1-5=-3x+xD.3x+x=5-14. 将(3x +2)-2(2x -1)去括号正确的是( )A 3x +2-2x +1B 3x +2-4x +1C 3x +2-4x -2D 3x +2-4x +25.下列解方程去分母正确的是( )A .由1132x x --=,得2x -1=3-3x . B .由44153x y +-=,得12x -15=5y +4. C .由232124x x ---=-,得2(x -2)-3x -2=-4. D .由131236y y y y +-=--,得3y +3=2y -3y +1-6y . 6.当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( )A.-8B.-4C.-2D.87.在下列方程中,解是x=2的方程是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
8.如果错误!未找到引用源。
是方程错误!未找到引用源。
的解,那么错误!未找到引用源。
的值是( )A.-8B.0C.2D.89.若x =a 是方程4x +3a =-7的解,则a 的值为( )A.7B.-7C.1D.-110.已知x =-2是方程2x -3a =2的根,那么a 的值是( )A.a =2B.a =-2C.a =23D.a =23- 11.如果错误!未找到引用源。
人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
人教版数学七年级上册 第3章 3.4实际问题与一元一次方程同步测试题(一)

实际问题与一元一次方程同步测试题(一)一.选择题1.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x2.小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3B.4C.5D.63.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500mL,需将其加入适量的水,使浓度稀释为75%.设加水量为xmL,可列方程为()A.75%x=95%×500B.95%x=75%×500C.75%(500+x)=95%×500D.95%(500+x)=75%×5004.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元5.书架上,第一层的数量是第二层书的数量x的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是()A.2x=x+3B.2x=(x+8)+3C.2x﹣8=x+3D.2x﹣8=(x+8)+36.欣欣服装店某天用相同的价格a(a≥0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.亏损B.盈利C.不盈不亏D.与进价有关7.《九章算术》是我国古代的第一部自成体系的数学专著,其中的许多数学问题是世界上记载最早的,《九章算术》卷七“盈不足”有如下记载:原文:今有共买班①,人出半,盈四;人出少半,不足三问人数、进价各几何?注释:①琺jin:像玉的石头.译文:今有人合伙买班石,每人出钱,会多4钱;每人出钱,又差3钱,问人数进价各是多少?设进价是x钱,则依题意有()A.B.C.2(x+4)=3(x﹣3)D.2(x﹣4)=3(x+3)8.一套仪器由两个A部件和三个B部件构成.用1立方米钢材可做40个A部件或240个B部件.现要用5立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?若设应用x立方米钢材做A部件,则可列方程为()A.2×40x=3×240(5﹣x)B.3×40x=2×240(5﹣x)C.D.9.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A →O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t 秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒10.根据图中提供的信息,可知一个杯子的价格是()A.6元B.8元C.10元D.12元二.填空题11.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x天可以铺好这条管线,则可列方程.12.商店促销,标价1200元的球鞋8折出售,如果是VIP会员,还可以再打9折,但商店仍可获利20%,那么球鞋的进价是元.13.一个两位数的十位数字与个位数字的和是5,把这个两位数加上9后,结果恰好成为数字对调后组成的两位数,则这个两位数是.14.六年级(11)班有60人,其中参加数学小组的人数占全班的,参加英语小组的人数比参加数学小组的人数少,并且两个小组都不参加的人数比两个小组都参加的人数的多2人,则同时参加两个小组的人数是.15.现在有一面7尺厚的墙,大小两只老鼠分别从两面相对着打洞,第一天两只老鼠都打相同距离的洞,从第二天开始,大老鼠每天打洞的距离是前一天的2倍,小老鼠每天打洞的距离是前一天的一半,第三天结束洞刚好被打通,小老鼠第一天打洞的距离为尺.三.解答题16.某水果店一次批发买进苹果若干筐,每筐苹果的进价为30元,如果按照每筐40元的价钱卖出,那么当卖出比全部苹果的一半多5筐时,恰好收回全部苹果的成本,那么这个水果店这次一共批发买进苹果多少筐?17.某街道1000米的路面下雨时经常严重积水.需改建排水系统.市政公司准备安排甲、乙两个工程队做这项工程,根据评估,有两个施工方案:方案一:甲、乙两队合作施工,那么12天可以完成;方案二:如果甲队先做10天,剩下的工程由乙队单独施工,还需15天才能完成.(1)甲、乙两队单独完成此项工程各需多少天?(2)方案一中,甲、乙两队实际各施工了多少米?18.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?19.“乐天乐地乐巴蜀,巴蜀孩子最幸福”巴蜀中学一年一度的艺术节是孩子们最盼望的节日,不仅有各种精彩的节目表演,还有美淘街各具特色的小店,就像过年一样热闹.初二(1)班的同学们在2018年的美淘街上大放异彩,他们手工编织的小挂件非常受欢迎,当天一共卖出了40件动物挂件与50件植物挂件,其中动物挂件每件售价8元,植物挂件每件售5元.2019年他们打算继续卖手工编织的挂件.与2018年的售价相比,动物挂件的售价不变,优惠如下:买2件,首件全价,第二件半价,不单件销售:植物摆件的单价上调m%.与2018年的销售量相比,动物挂件的销量增加了5m%,植物挂件的销量下降了10件.结果2019年的销售额比2018年的销售额增加了m元,求m的值.参考答案与试题解析一.选择题1.【解答】解:设安排x名工人生产口罩面,则(26﹣x)人生产耳绳,由题意得1000(26﹣x)=2×800x.故选:C.2.【解答】解:设两人起跑后60s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示小明和小亮两人的速度,则有:(V甲+V乙)t=2S,则t==,则x=60,解得:x=5.4,∵x是正整数,且只能取整,∴x=5.故选:C.3.【解答】解:设加水量为xml,可列方程为:75%(500+x)=95%×500.故选:C.4.【解答】解:设两件商品以x元出售,由题意可知:×100%=20%,解得:x=96,设乙商品的成本价为y元,∴96﹣y=﹣20%×y,解得:y=120,故选:C.5.【解答】解:由题意知,第一层书的数量为2x本,则可得到方程2x﹣8=(x+8)+3.故选:D.6.【解答】解:设第一件衣服的进价为x元,第二件衣服的进价为y元,由题意得:(1+20%)x=a,(1﹣20%)y=a∴(1+20%)x=(1﹣20%)y整理得:3x=2y∴y=1.5x∴该服装店卖出这两件服装的盈利情况是:20%x﹣20%y=0.2x﹣0.2y×1.5=﹣0.1x<0即赔了0.1x元.故选:A.7.【解答】解:设进价是x钱,则依题意有:=,整理得:2(x+4)=3(x﹣3).故选:C.8.【解答】解:设应用x立方米钢材做A部件,则应用(5﹣x)m3钢材做B部件,根据题意,得3×40x=2×240(5﹣x).故选:B.9.【解答】解:①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴|2t﹣5|=2,∴2t﹣5=﹣2,或2t﹣5=2,解得t=或t=;②当5≤t≤10时,动点P所表示的数是20﹣2t,∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得t=或t=.综上所述,运动时间t的值为秒或秒秒或秒.故选:B.10.【解答】解:设一个杯子的价格是x元,则一个暖瓶的价格是(43﹣x)元,根据题意得:3x+2(43﹣x)=94,解得:x=8.答:一个杯子的价格是8元.故选:B.二.填空题11.【解答】解:设要用x天可以铺好这条管线,则可列方程:(+)x=1.故答案为:(+)x=1.12.【解答】解:设球鞋的进价是x元,依题意,得:1200×0.8×0.9﹣x=20%x,解得:x=720.故答案为:720.13.【解答】解:设这个两位数个位上的数字是x,则十位上的数字是5﹣x,∴10(5﹣x)+x+9=10x+(5﹣x),∴59﹣9x=5+9x,∴18x=54,解得x=3,∴5﹣x=5﹣3=2,∴这个两位数是23.故答案为:23.14.【解答】解:设同时参加这两个小组的人数为x,则这两个小组都不参加的人数为x+2,得:36+36﹣5﹣x+x+2=60,移项、合并同类项得:9=x,系数化为1得:x=12,即同时参加两个小组的人数是12人,故答案为:12人.15.【解答】解:设小老鼠第一天打洞的距离为x尺,根据题意,得[(x+2x)+(x+x)]+4x+x=7.解得x=.答:小老鼠第一天打洞的距离为尺.故答案是:.三.解答题(共4小题)16.【解答】解:设这个水果店一共买进水果x筐,根据题意,得:40(+5)=30x,解得x=20,答:这个水果店这次一共批发买进苹果20筐.17.【解答】解:(1)设甲队每天施工x米,则乙队每天施工米,依题意,得:12x+12×=1000,解得:x=50,∴=,∴1000÷50=20(天),1000÷=30(天).答:甲队单独完成此项工程需要20天,则乙队单独完成此项工程需要30天.(2)50×12=600(米),×12=400(米).答:方案一中,甲队实际施工了600米,乙队实际施工了400米.18.【解答】解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)一、单选题1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元2.下列方程中,一元一次方程一共有( )①9x+2;②12x =;③(1-x)(1+x)=3;④()1113352x x x -=- A .1个 B .2个 C .3个 D .4个3.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( ) A .8x+3=7x ﹣4B .8x ﹣3=7x+4C .8x ﹣3=7x ﹣4D .8x+3=7x+44.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元5.若关于x 的方程321(32)x a x a ++=-+的解是0,则a 的值为( )A .15B .35C .15- D .356.下列方程:21126740.343492x x x x x x x +=-=+=-=①;②;③;④;0x =⑤;328x y -=⑥;112x =⑦;12x=⑧中是一元一次方程的个数是( ) A .6个 B .5个 C .4个 D .3个7.下列运用等式的性质,变形正确的是( )A .若x ﹣m =y +m ,则x =yB .若a =b ,则ac =bcC .若x =y ,则x ﹣m =y +mD .若ac =bc ,则a =b8. 下列方程中,属于一元一次方程的是( ).A .021=+xB .2y 432=+x C .22x 3x =+x D .x 31232=++x x9.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元10.方程3x ﹣6=0的解是( )A .x =3B .x =﹣3C .x =2D .x =﹣2第II 卷(非选择题)二、填空题11.关于x 的方程a 2x+x=1的解是__.12.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛 13.某商品进价为40元,若按标价的8折出售仍可获利20%,则按标价出售可获利______元.14.当x=4时,式子5(x+b )﹣10与bx+4x 的值相等,则b=_____.15.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个,依题意可列方程得_____.16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.17.若293x +=2,且x y =94,则x =______,y =_______. 18.当a =____时,关于x 的方程314x -=-与方程562a x -=-的解相同.三、解答题19.解方程:x ﹣3=﹣12x ﹣4. 20.解方程:(1)5(x-1)+2=3-x(2)2121 1=63x x-+ -21.某纺织厂收购某种特色棉花,若直接转卖这种特色棉花,则每吨可获得的利润为500元.若经过B级加工再转卖,则每吨可获得的利润为1000元;若经过A级加工再转卖,则每吨可获得的利润为2000元.已知该纺织厂对棉花进行B级加工,每天可加工16吨;进行A级加工,每天可加工6吨,且这两种等级的加工不能同时进行.若该纺织厂收购了140吨这种特色棉花,决定15天内加工完,且有如下三种可行方案:方案一:将所收购的特色棉花直接转卖.方案二:将尽可能多的特色棉花进行A级加工,余下的部分直接转卖.方案三:一部分进行A级加工,另一部分进行B级加工,恰好15天完成.若你是该纺织厂负责人,想要获利最多,你决定使用哪套方案?请说明理由.22.一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇,甲、乙两城市间的铁路长多少千米?23.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是(M,N)的好点:②在数轴上,数________和数_________所表示的点都是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P,A和B中恰有一个点为其余两点的好点?24.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.25.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.26.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?27.如图,已知A、B、C是数轴上的三点,点C表示的数为6,BC=4,AB=14,动点P、Q分别从A、C同时出发,点P以每秒3个单位的速度沿数轴向右匀速运动,点Q以每秒1个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)写出点A表示的数,点B表示的数;(2)求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案1.C2.A3.B4.C5.D6.C7.B8.C9.D10.C11.211a.12.1513.2014.615.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60.16.45.17.-32218.-319.x=-2320.(1)x=1;(2)x=5621.选方案二.理由见解析22.500.23.①2,②0或-8;(2)10秒、15秒或20秒24.(1)585;(2)594;(3)若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.25.(1)8;(2)答案见解析:(3)200000立方厘米26.1627.(1)A:-12,B:2;(2) 18−116t;。
人教版七上数学第三章一元一次方程单元检测题

一元一次方程单元检测题一.选择题(共10小题)1.下列方程是一元一次方程的是()A.B.x+2y=6C.x2=4D.2x﹣3=52.若使方程(m+2)x=1是关于x的一元一次方程,则m的值是()A.m≠﹣2B.m≠0C.m≠2D.m>﹣23.下列运用等式性质进行的变形中,正确的是()A.若a=b,则a+5=b﹣5B.若a=b,则2a=3bC.若a+b=2b,则a=b D.若a=b+2,则2a=2b+24.小南在解关于x的一元一次方程时,由于粗心大意在去分母时出现漏乘错误,把原方程化为4x﹣m=3,并解得为x=1,请根据以上已知条件求出原方程正确的解为()A.B.x=1C.D.5.解一元一次方程(x+15)=1﹣(x﹣7)的过程如下.解:去分母,得3(x+15)=15﹣5(x﹣7).①去括号,得3x+45=15﹣5x+7.②移项、合并同类项,得8x=﹣23.③化未知数系数为1,得x=﹣④以上步骤中,开始出错的一步是()A.①B.②C.③D.④6.已知min{a,b,c}表示取三个数中最小的那个数.例如:min{﹣1,﹣2,﹣3}=﹣3,当min{,x2,x}=时,则x的值为()A.B.C.D.7.关于x的一元一次方程(k﹣1)x=6的解是整数,则符合条件的所有整数k的值的和是()A.0B.4C.6D.88.某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/小时,求两个码头之间的距离,若设两个码头之间的距离为x千米,则可得方程为()A.+4B.C.D.9.某商场销售两件商品,售价都是800元,同进价比,第一件赚了60%,第二件赔了60%,两件商品销售完后,商场的盈亏情况为()A.盈利900元B.亏损900元C.亏损700元D.不亏不盈10.如图,数轴上点A和点B表示的数分别是﹣6和4,动点M从A点以每秒3cm的速度匀速向右移动,动点N同时从B点以每秒1cm的速度匀速向右移动.设移动时间为t秒,当动点N到原点的距离是动点M到原点的距离的2倍时,t的值为()A.B.C.或D.或二.填空题(共6小题)11.某学校在“读一本好书”活动中,为学生购买了名著《三国演义》20套,《西游记》16套,共用了1820元,其中《三国演义》每套比《西游记》每套多1元,求《三国演义》和《西游记》每套各多少元?设《西游记》每套x元,可列方程为.12.已知2x m﹣2+3=0是关于x的一元一次方程,则m=.13.买一件打八五折的衣服便宜了30元,这件衣服的原价是元.14.若代数式3x+2与代数式x﹣10的值互为相反数,则x=.15.阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=4的解,则代数式4a2+4ab+b2+6a+3b﹣1的值是.16.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2022次相遇在边上.三.解答题(共6小题)17.解方程:(1)3x﹣9=6x﹣1;(2)﹣=1.18.我市某工厂有A、B两个车间,B车间每天生产560个零件,B车间每天比A车间多生产.(1)求A、B两个车间每天共生产多少个零件?(2)若工厂每天把生产出来的全部零件,按照5:3的比配送给甲、乙两个商店进行销售,求配送给甲、乙每个商店的零件各是多少个?19.“若要电费缴得少,节约用电要做好“,某市居民生活用电试行“阶梯电价“收费,标准如下:居民月用电量x(千瓦时)单价(元)不超过210千瓦时a超过210千瓦时但不超过400千瓦时的部分0.6超过400千瓦时的部分0.9已知小丽家七月份用电200千瓦时,电费为110元.(1)则上表中a=.(2)若小明家八月份用电240千瓦时,小亮家八月份用电410千瓦时,这两家八月份电费分别是多少元?(3)若小刚家八月份电费为247.5元,求小刚家八月份的用电量.20.惠民超市“十一”大酬宾,对顾客实行优惠购物,规定如下:若顾客一次性购物不超过200元,则不予优惠;若顾客一次性购物超过200元,但不超过500元,则按标价给予九折优惠;若顾客一次性购物超过500元,其中500元按上述给予九折优惠,超过500元的部分给予八折优惠.(1)刘阿姨在该超市购买了一台标价750元的吸尘器,她应付多少元?(2)何叔叔先后两次去该超市购物,分别付款189和554元,如果何叔叔一次性购买,只需要付款多少元?21.某校为美化校园,计划在假期对教室的地砖进行更换,每间教室的面积大小相同,安排了甲、乙两个工程队完成.7月份施工时,甲工程队7天完成了16间教室的地砖铺设;乙工程队3天铺完了8间教室地砖后再铺设了20m2的地砖,已知甲工程队比乙工程队每天少完成28m2的地砖铺设.(1)求每间教室需要铺设地砖的面积;(2)8月份施工时,甲、乙两个工程队各自需要完成24间教室的铺砖工作.由于天气炎热,甲、乙两个工程队均调整了施工速度,甲工程队每天铺设的地砖面积是乙工程队每天铺设的地砖面积的,乙工程队比甲工程队少用7天完成任务,求8月份甲、乙两个工程队每天各铺设地砖的面积.22.在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后,点P 到达B点?(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案一.选择题(共10小题)1.下列方程是一元一次方程的是()A.B.x+2y=6C.x2=4D.2x﹣3=5解:A.不是整式方程,故本选项不合题意;B.x+2y=6含有两个未知数,不是一元一次方程,故本选项不合题意;C.x2=4,含有未知数的项的最高次数2次,不是一元一次方程,故本选项不合题意;D、2x﹣3=5是一元一次方程,故本选项符合题意.故选:D.2.若使方程(m+2)x=1是关于x的一元一次方程,则m的值是()A.m≠﹣2B.m≠0C.m≠2D.m>﹣2解:由题意可知:m+2≠0,解得m≠﹣2.故选:A.3.下列运用等式性质进行的变形中,正确的是()A.若a=b,则a+5=b﹣5B.若a=b,则2a=3bC.若a+b=2b,则a=b D.若a=b+2,则2a=2b+2解:A.∵a=b,∴a+5=b+5,故本选项不符合题意;B.∵a=b,∴2a=2b,不一定等于3b,故本选项不符合题意;C.∵a+b=2b,∴a+b﹣b=2b﹣b,∴a=b,故本选项符合题意;D.∵a=b+2,∴2a=2b+4,故本选项不符合题意;故选:C.4.小南在解关于x的一元一次方程时,由于粗心大意在去分母时出现漏乘错误,把原方程化为4x﹣m=3,并解得为x=1,请根据以上已知条件求出原方程正确的解为()A.B.x=1C.D.解:把x=1代入得:4﹣m=3,解得:m=1,把m=1代入方程得:﹣1=,解得:x=.故选:A.5.解一元一次方程(x+15)=1﹣(x﹣7)的过程如下.解:去分母,得3(x+15)=15﹣5(x﹣7).①去括号,得3x+45=15﹣5x+7.②移项、合并同类项,得8x=﹣23.③化未知数系数为1,得x=﹣④以上步骤中,开始出错的一步是()A.①B.②C.③D.④解:去分母,得3(x+15)=15﹣5(x﹣7).①去括号,得3x+45=15﹣5x+35.②移项、合并同类项,得8x=5.③化未知数系数为1,得x=.④则开始出错的一步是②.故选:B.6.已知min{a,b,c}表示取三个数中最小的那个数.例如:min{﹣1,﹣2,﹣3}=﹣3,当min{,x2,x}=时,则x的值为()A.B.C.D.解:当最小时,=,即x=<=,不符合题意;当x2最小时,x2=,即x=(负值舍去),满足题意;当x最小时,x=>=x2,不符合题意,综上所示,x的值为.故选:D.7.关于x的一元一次方程(k﹣1)x=6的解是整数,则符合条件的所有整数k的值的和是()A.0B.4C.6D.8解:解方程(k﹣1)x=6得,x=,∵关于x的一元一次方程(k﹣1)x=6的解是整数,∴k﹣1为:﹣6,﹣3,﹣2,﹣1,1,2,3,6,∴k为﹣5,﹣2,﹣1,0,2,3,4,7,∴符合条件的所有整数k的值的和是:(﹣5)+(﹣2)+(﹣1)+0+2+3+4+7=8,故选:D.8.某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/小时,求两个码头之间的距离,若设两个码头之间的距离为x千米,则可得方程为()A.+4B.C.D.解:设若设两个码头之间的距离为x千米,因此可列方程为﹣4=+4,故选:A.9.某商场销售两件商品,售价都是800元,同进价比,第一件赚了60%,第二件赔了60%,两件商品销售完后,商场的盈亏情况为()A.盈利900元B.亏损900元C.亏损700元D.不亏不盈解:设第一商品进价为x元/件,第二商品进价为y元/件,依题意,得:800﹣x=60%x,800﹣y=﹣60%y,解得:x=500,y=2000,∴800×2﹣x﹣y=﹣900.即亏损900元.故选:B.10.如图,数轴上点A和点B表示的数分别是﹣6和4,动点M从A点以每秒3cm的速度匀速向右移动,动点N同时从B点以每秒1cm的速度匀速向右移动.设移动时间为t秒,当动点N到原点的距离是动点M到原点的距离的2倍时,t的值为()A.B.C.或D.或解:当点M在原点的左侧时,由题意可得:4+t=2(6﹣3t),∴t=,当点M在原点的右侧时,由题意可得:4+t=2(﹣6+3t),∴t=,综上所述:t的值为:或,故选:C.二.填空题(共6小题)11.某学校在“读一本好书”活动中,为学生购买了名著《三国演义》20套,《西游记》16套,共用了1820元,其中《三国演义》每套比《西游记》每套多1元,求《三国演义》和《西游记》每套各多少元?设《西游记》每套x元,可列方程为20(x+1)+16x=1820.解:设《西游记》每套x元,《三国演义》每套(x+1)元,根据题意可得:20(x+1)+16x=1820.故答案为:20(x+1)+16x=1820.12.已知2x m﹣2+3=0是关于x的一元一次方程,则m=3.解:∵2x m﹣2+3=0是关于x的一元一次方程,∴m﹣2=1,解得:m=3.故答案为:3.13.买一件打八五折的衣服便宜了30元,这件衣服的原价是200元.解:设这件衣服的原价是x元,根据题意得:x﹣85%•x=30,解得:x=200,故答案为:200.14.若代数式3x+2与代数式x﹣10的值互为相反数,则x=2.解:∵代数式3x+2与代数式x﹣10的值互为相反数,∴3x+2+x﹣10=0,整理得:4x﹣8=0,解得:x=2,故答案为:x=2.15.阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=4的解,则代数式4a2+4ab+b2+6a+3b﹣1的值是27.解:∵x=2是关于x的一元一次方程ax+b=4的解,∴2a+b=4,原式=(2a+b)2+3(2a+b)﹣1=42+3×4﹣1=27,故答案为:27.16.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2022次相遇在边DC上.解:正方形的边长为4,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为8,甲行的路程为8×=2,乙行的路程为8﹣2=6,在AD边相遇;②第二次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在DC边相遇;③第三次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在CB边相遇;④第四次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16﹣4=12,在AB边相遇;…∵2022=505×4+2,∴它们第2022次相遇在边DC.故答案为:DC.三.解答题(共6小题)17.解方程:(1)3x﹣9=6x﹣1;(2)﹣=1.解:(1)3x﹣9=6x﹣1;移项,得3x﹣6x=﹣1+9,合并同类项,得:﹣3x=8,解得:x=﹣;(2)﹣=1,去分母,得5(3x﹣1)﹣2(4x+2)=10,去括号,得15x﹣5﹣8x﹣4=10移项,得15x﹣8x=10+5+4,合同类项,得7x=19,解得x=.18.我市某工厂有A、B两个车间,B车间每天生产560个零件,B车间每天比A车间多生产.(1)求A、B两个车间每天共生产多少个零件?(2)若工厂每天把生产出来的全部零件,按照5:3的比配送给甲、乙两个商店进行销售,求配送给甲、乙每个商店的零件各是多少个?解:(1)设A车间每天生产x个零件,根据题意得:(1+)x=560,解得x=400,∴A车间每天生产400个零件,∵400+560=960(个),∴A、B两个车间每天共生产960个零件;(2)∵960×=600(个),960×=360(个),答:配送给甲商店的零件是600个,配送给乙商店的零件是360个.19.“若要电费缴得少,节约用电要做好“,某市居民生活用电试行“阶梯电价“收费,标准如下:居民月用电量x(千瓦时)单价(元)不超过210千瓦时a超过210千瓦时但不超过400千瓦时的部分0.6超过400千瓦时的部分0.9已知小丽家七月份用电200千瓦时,电费为110元.(1)则上表中a=0.55.(2)若小明家八月份用电240千瓦时,小亮家八月份用电410千瓦时,这两家八月份电费分别是多少元?(3)若小刚家八月份电费为247.5元,求小刚家八月份的用电量.解:(1)根据题意,得200a=110,解得a=0.55,故答案为:0.55;(2)小明家:210×0.55+30×0.6=133.5(元),小亮家:210×0.55+(400﹣210)×0.6+(410﹣400)×0.9=238.5(元),答:这两家八月份电费分别是:133.5元和238.5元;(3)设小刚家八月份的用电量x千瓦时,∵247.5>238.∴x>400,∴5210×0.55++(400﹣210)×0.6+(x﹣400)×0.9=247.5,(x﹣400)×0.9=18,x=420,答:小刚家八月份的用电量:420千瓦时.20.惠民超市“十一”大酬宾,对顾客实行优惠购物,规定如下:若顾客一次性购物不超过200元,则不予优惠;若顾客一次性购物超过200元,但不超过500元,则按标价给予九折优惠;若顾客一次性购物超过500元,其中500元按上述给予九折优惠,超过500元的部分给予八折优惠.(1)刘阿姨在该超市购买了一台标价750元的吸尘器,她应付多少元?(2)何叔叔先后两次去该超市购物,分别付款189和554元,如果何叔叔一次性购买,只需要付款多少元?解:(1)依题意得:500×0.9+(750﹣500)×0.8=450+250×0.8=450+200=650(元).答:应付674元;(2)设第一次优惠前应付款x元,第二次优惠前应付款y元,依题意得:0.9x=189,0.9×500+(y﹣500)×0.8=554,解得:x=210,y=630,则如一次性购买应付款为:500×0.9+(210+630﹣500)×0.8=450+272=722(元).答:何叔叔一次性购买,只需要付款722元.21.某校为美化校园,计划在假期对教室的地砖进行更换,每间教室的面积大小相同,安排了甲、乙两个工程队完成.7月份施工时,甲工程队7天完成了16间教室的地砖铺设;乙工程队3天铺完了8间教室地砖后再铺设了20m2的地砖,已知甲工程队比乙工程队每天少完成28m2的地砖铺设.(1)求每间教室需要铺设地砖的面积;(2)8月份施工时,甲、乙两个工程队各自需要完成24间教室的铺砖工作.由于天气炎热,甲、乙两个工程队均调整了施工速度,甲工程队每天铺设的地砖面积是乙工程队每天铺设的地砖面积的,乙工程队比甲工程队少用7天完成任务,求8月份甲、乙两个工程队每天各铺设地砖的面积.解:(1)设每间教室需要铺设地砖的面积xm2,依题意得:,解得:x=56,答:每间教室需要铺设地砖的面积56m2;(2)设乙工程队每天铺设ym2,则甲工程队每天铺设ym2,依题意得:,解得:y=64,经检验:y=64是原方程的解,则甲工程队每天铺设的面积为:×64=48(m2),答:甲工程队每天各铺设地砖的面积为48m2,乙工程队每天铺设的面积为64m2.22.在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后,点P 到达B点?(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,运动几秒后,P、Q两点间的距离为4个单位长度?解:(1)∵|a+5|+|b﹣7|=0,∴a=﹣5,b=7,∴A与点B之间的距离为7﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=6(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(1+3)=2(秒),P、Q相遇后:(12+4)÷(1+3)=4(秒),答:运动2秒或4秒后,P、Q两点间的距离为4个单位长度。
人教版数学七年级上册 第3章 一元一次方程单元测试试题(一)
一元一次方程单元测试试题(一)一.选择题1.方程4x=﹣2的解是()A.x=﹣2B.x=2C.x=﹣D.x=2.2020年初新冠疫情肆虐,社会经济受到严重影响.地摊经济是就业岗位的重要来源.小李把一件标价60元的T恤衫,按照8折销售仍可获利10元,设这件T恤的成本为x元,根据题意,下面所列的方程正确的是()A.60×0.8﹣x=10B.60×8﹣x=10C.60×0.8=x﹣10D.60×8=x﹣103.下列变形中正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程t=,未知数系数化为1,得t=1D.方程=x化为=x4.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母正好配套,设有x名工人生产螺钉,其他工人生产螺母,则根据题意可列方程为()A.2000x=1200(22﹣x)B.2×1200x=2000(22﹣x)C.2×2000x=1200(22﹣x)D.1200x=2000(22﹣x)5.某书店把一本新书按标价的八折出售,仍可获利10%,若该书的进价为24元,则标价为()A.30元B.31元C.32元D.33元6.如图,正方形ABCD的边长是2个单位,一只乌龟从A点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在()A.点A B.点B C.点C D.点D7.下列方程:①y=x﹣7;②2x2﹣x=6;③m﹣5=m;④=1;⑤=1,⑥6x =0,其中是一元一次方程的有()A.2个B.3个C.4个D.5个8.下列等式变形正确的是()A.若﹣2x=5,则x=B.若3(x+1)﹣2x=1,则3x+1﹣2x=1C.若5x﹣6=﹣2x﹣8,则5x+2x=8+6D.若,则2x+3(x﹣1)=69.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x10.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.6二.填空题11.已知关于x的一元一次方程mx=5x﹣2的解为x=2,则m值为.12.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于元.13.解方程5(x﹣2)=6(﹣).有以下四个步骤,其中第①步的依据是.解:①去括号,得5x﹣10=3x﹣2.②移项,得5x﹣3x=10﹣2.③合并同类项,得2x=8.④系数化为1,得x=4.14.防控新冠肺炎疫情期间.某药店在市场抗病毒药品紧缺的情况下,将某药品提价后,使价格翻一番(即为原价的2倍),物价部门查处后,其价格降到比原价高10%.则该药品降的百分比是.15.新定义:对非负数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(x﹣1)=4,则x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2020x)=m+(2020x);其中正确的结论有(填写所有正确的序号).三.解答题16.解方程:3(2x﹣1)﹣2(1﹣x)=0.17.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分別为,,PQ=.(2)当PQ=8时,求t的值.18.王莉骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距24km,到中午12时,两人又相距24km.求A、B两地间的路程.某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:50张以上购买贺卡数不超过30张30张以上不超过50张每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?参考答案与试题解析一.选择题1.【解答】解:方程4x=﹣2,解得:x=﹣.故选:C.2.【解答】解:设这件T恤的成本为x元,根据题意,可得:60×0.8﹣x=10.故选:A.3.【解答】解:方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故选项A变形错误;方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故选项B变形错误;方程t=,未知数系数化为1,得t=,故选项C变形错误;方程=x化为=x,利用了分数的基本性质,故选项D正确.故选:D.4.【解答】解:∵有x名工人生产螺钉,∴有(22﹣x)名工人生产螺母.∵每天生产螺母的总数是生产螺钉总数的2倍,∴2×1200x=2000(22﹣x).故选:B.5.【解答】解:设这本新书的标价为x元,依题意得:0.8x﹣24=24×10%,解得:x=33.故选:D.6.【解答】解:设运动x秒后,乌龟和兔子第2020次相遇,依题意,得:2x+6x=2×4×2020,解得:x=2020,∴2x=4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A.故选:A.7.【解答】解:一元一次方程有m﹣5=m,=1,6x=0,共3个,故选:B.8.【解答】解:A、若﹣2x=5,则x=﹣,错误,故本选项不符合题意;B、若3(x+1)﹣2x=1,则3x+3﹣2x=1,错误,故本选项不符合题意;C、若5x﹣6=﹣2x﹣8,则5x+2x=﹣8+6,错误,故本选项不符合题意;D、若+=1,则2x+3(x﹣1)=6,正确,故本选项符合题意;故选:D.9.【解答】解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.10.【解答】解:由题意,可得8+x=2+7,解得x=1.故选:A.二.填空题11.【解答】解:∵关于x的一元一次方程mx=5x﹣2的解为x=2,∴2m=10﹣2,解得:m=4.故答案为:4.12.【解答】解:设亏本的那双皮鞋的进价为x元,则亏本的那双皮鞋的售价为(1﹣10%)x元,盈利的那双皮鞋的售价为[200﹣(1﹣10%)x]元,盈利的那双皮鞋的进价为元,依题意,得:(1﹣10%)x﹣x+[200﹣(1﹣10%)x]﹣>0,解得:x<150.故答案为:150.13.【解答】解:第①步去括号的依据是:乘法分配律.故答案是:乘法分配律.14.【解答】解:设该药品的原价为a元,降价的百分比为x,依题意,得:2a(1﹣x)=(1+10%)a,解得:x=0.45=45%.故答案为:45%.15.【解答】解:①(1.493)=1,故①符合题意;②(2x)≠2(x),例如当x=0.3时,(2x)=1,2(x)=0,故②不符合题意;③若(x﹣1)=4,则4﹣x﹣1<4+,解得:9≤x<11,故③符合题意;④m为非负整数,故(m+2020x)=m+(2020x),故④符合题意;综上可得①③④正确.故答案为:①③④.三.解答题16.【解答】解:去括号,得6x﹣3﹣2+2x=0,移项,得6x+2x=3+2,合并同类项,得8x=5,系数化为1,得x=.17.【解答】解:(1)∵2×2=4,12+2×1=14,∴当t=2时,P,Q两点对应的有理数分别是4,14,∴PQ=14﹣4=10.故答案为:4;14;10.(2)当运动t秒时,P、Q两点对应的有理数分别为12+t,2t.①当点P在点Q右侧时:∵PQ=8,∴(12+t)﹣2t=8,解得t=4.②当点P在点Q的左侧时:∵PQ=8,∴2t﹣(12+t)=8,解得t=20.综上所述,当PQ=8时,t的值为4或20.18.【解答】解:设A、B两地间的路程为xkm,依题意,得:=,解得:x=72.答:A、B两地间的路程为72km.19.【解答】解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元)。
人教版数学七年级上册第3章【一元一次方程】期末复习检测(一)
【一元一次方程】期末复习检测(一)一.选择题1.若x=2是方程2x+m﹣6=0的解,则m的值是()A.﹣2B.﹣4C.2D.42.下列说法正确的是()A.在等式ab=ac两边除以a,可得b=cB.在等式2x=2a﹣b两边除以2,可得x=a﹣bC.在等式a=b两边除以(c2+1),可得=D.在等式两边除以a,可得b=c3.在下列方程的变形中,正确的是()A.由2x+1=3x,得2x+3x=1B.由x=,得x=C.由2x=,得x=D.由﹣=2,得﹣x+1=64.若代数式5﹣4x与的值互为相反数,则x的值是()A.B.C.1D.25.现定义运算“*”,对于任意有理数a,b满足a*b=.如5*3=2×5﹣3=7,*1=﹣2×1=﹣,若x*3=5,则有理数x的值为()A.4B.11C.4或11D.1或116.已知关于y的方程3y+2m﹣5=0的解比y﹣3(m﹣2)=2的解大1,则m的值为()A.B.C.D.7.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A.8x﹣3=7x+4B.8x+3=7x+4C.8x﹣3=7x﹣4D.8x+3=7x﹣48.甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为()A.56元B.60元C.72元D.80元9.若关于x的方程(k﹣4)x=3有正整数解,则自然数k的值是()A.1或3B.5C.5或7D.3或710.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.6二.填空题11.新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为.12.若关于x的方程9x﹣14=ax+3的解为整数,那么满足条件的所有整数a的和为.13.已知关于x的一元一次方程3x﹣m=2x+m的解为x=3,则m的值为.14.若关于x的方程2ax=(a+1)x+6的解为正整数,求整数a的值.15.已知整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,关于y的方程(3n﹣3m)y=﹣my﹣5的解为.三.解答题16.解下列一元一次方程:(1)1+2(x+3)=4﹣x;(2)﹣=1.17.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.18.肖坝社区惠民水果店第一次用615元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:甲乙进价(元/千克)58售价(元/千克)1015(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为735元,求第二次乙种苹果按原价打几折销售?19.某工厂有机器100台,平均每天每台消耗的油费为80元,为了节省能源,市场推出一种新的节油装置,每台机器改装费为4000元,工厂第一次改装了部分机器后核算:已改装后的机器每天消耗的油费占剩下未改装机器每天消耗油费的,工厂第二次再改装同样多的机器后,所有改装后的机器每天消耗的油费占剩下未改装机器每天消耗的油费的.问:(1)工厂第一次改装了多少台机器?(此问必须用一元一次方程来解)(2)改装后的每台机器平均每天消耗的油费比改装前消耗的油费下降了百分之多少?(3)若工厂一次性将全部机器改装,多少天后就可以从节省的油费中收回改装费用?20.如图1,数轴上点A表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,则点D表示的数=;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.参考答案一.选择题1.解:将x=2代入2x+m﹣6=0,∴4+m﹣6=0,∴m=2,故选:C.2.解:A、当a=0时,该结论不成立,故A错误.B、在等式2x=2a﹣b两边除以2,可得x=,故B错误.C、由于c2+1>1,在等式a=b两边除以(c2+1),可得=,故C正确.D、在等式两边除以a,可得,故D错误.故选:C.3.解:A、由2x+1=3x得2x﹣3x=﹣1,原变形错误,故此选项不符合题意;B、由x=得x=×,原变形正确,故此选项符合题意;C、由2x=得x=,原变形错误,故此选项不符合题意;D、由﹣=2得﹣x﹣1=6,原变形错误,故此选项不符合题意;故选:B.4.解:根据题意得:5﹣4x+=0,去分母得:10﹣8x+2x﹣1=0,移项合并得:﹣6x=﹣9,解得:x=,故选:A.5.解:当x≥3,则x*3=2x﹣3=5,x=4;当x<3,则x*3=x﹣2×3=5,x=11,但11>3,这与x<3矛盾,所以此种情况舍去.即:若x*3=5,则有理数x的值为4,故选:A.6.解:解关于y的方程3y+2m﹣5=0得到:y=.解关于y的方程y﹣3(m﹣2)=2得到:y=3m﹣4.根据题意,得﹣1=3m﹣4.解得m=.故选:C.7.解:由题意可得,设有x人,可列方程为:8x﹣3=7x+4.故选:A.8.解:设乙店每副耳机的进价为x元,则甲店每副耳机的进价为0.9x元,依题意有(1+17%)x﹣(1+20%)×0.9x=5.4,解得x=60.故乙店每副耳机的进价为60元.故选:B.9.解:(k﹣4)x=3,解得x=,又∵(k﹣4)x=3有正整数解,k为自然数,∴自然数k的值是5或7.故选:C.10.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.二.填空题11.解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,解得x=2.故答案为:2.12.解:9x﹣14=ax+3移项得:9x﹣ax=3+14,合并同类项,得(9﹣a)x=17,系数化为1,得x=,∵解为整数,∴9﹣a=±17或9﹣a=±1,解得a=﹣8或26或a=8或10,﹣8+26+8+10=36.故答案为:36.13.解:把x=3代入方程3x﹣m=2x+m得:9﹣m=6+m,﹣m﹣m=6﹣9,﹣m=﹣3,m=2,故答案为:2.14.解:方程整理得:(a﹣1)x=6,解得:x=,由方程的解为正整数,即为正整数,得到整数a=2,3,4,7,故答案为:2,3,4,715.解:∵整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,∴,解得:,关于y的方程(3n﹣3m)y=﹣my﹣5可以整理为:(﹣12+9)y=3y﹣5,则﹣6y=﹣5,解得:y=.故答案为:y=.三.解答题16.解:(1)去括号得:1+2x+6=4﹣x,移项得:2x+x=4﹣6﹣1,合并得:3x=﹣3,(2)去分母得:2(x+1)﹣3(2x﹣3)=6,去括号得:2x+2﹣6x+9=6,移项合并得:﹣4x=﹣5,解得:x=1.25.17.解:(1)由题意得:6﹣x=2(2+7x).∴x=.(2)由题意得:2+7x﹣(6﹣x)=﹣3,∴x=.18.解:(1)设惠民水果店第一次购进乙种苹果x千克,则购进甲种苹果(2x+15)千克,依题意,得:5(2x+15)+8x=615,解得:x=30,∴2x+15=75.答:惠民水果店第一次购进甲种苹果75千克,乙种苹果30千克.(2)设第二次乙种苹果按原价打y折销售,依题意,得:(10﹣5)×75+(15×﹣8)×30×3=735,解得:y=8.答:第二次乙种苹果按原价打8折销售.19.解:(1)设工厂第一次改装了x台机器.则:2(100﹣x)×80×=,所以,第一次改装20台机器;(2)改装后燃料费下降了:;(3)设y天后就可以从节省的油费中收回改装费用.则根据题意得:(80﹣48)y=4000,解得:y=125.答:125天后就可以从节省的油费中收回改装费用.20.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.故答案为:10;(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点B的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,解得x=﹣4或4.∴点D表示的数为﹣4或4.故答案为:﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点G表示的数为4+3=7,∴m=EG+FG=9+3=12.综上所述:m的值为6或12.。
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案
人教版七年级数学上册《第三章一元一次方程》测试题-带参考答案一、单选题1.如果,那么下列关系式中成立的是()A.B.C.D.2.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x千克到乙脐橙园,则可列方程为().A.B.C.D.3.一张方桌由一个桌面和四条桌腿组成,如果立方米木料可制作方桌的桌面个或制作桌腿条,现有立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?设用立方米木料做桌面,那么桌腿用木料立方米,根据题意,得()A.B.C.D.4.若是关于的一元一次方程,则()A.1 B.-1 C.±1 D.05.关于x的一元一次方程的解为,则m的值为()A.3 B.C.7 D.6.小李在解方程(x为未知数)时,误将看作,得方程的解为,则原方程的解为()A.B.C.D.7.宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡()A.在糖果的称盘上加2克砝码B.在饼干的称盘上加2克砝码C.在糖果的称盘上加5克砝码D.在饼干的称盘上加5克砝8.一件商品的标价为元,比进价高出,为吸引顾客,现降价处理,要使售后利润率不低于,则最多可以降到()A.元B.元C.元D.元二、填空题9.若是关于的方程的解,则的值等于.10.小明在一次比赛中做错了3道题,做对的占,他做对了道题.11.在中国共青团建团100周年时,小明同学为留守儿童捐赠了一个书包.已知一个书包标价58元,现在打折出售,支付时还可以再减免3元,小明实际支付了43.4元,若设打了x折,则根据题意可列方程为.12.为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是.13.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题;“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有人.三、解答题14.解方程:(1) ;(2) .15.小明在对关于的方程去分母时,得到了方程,因而求得的解是,你认为他的答案正确吗?如果不正确,请求出原方程的正确解.16.某车间每天能制作甲种零件200只,或者制作乙种零件150只,2只甲种零件与3只乙种零件配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?17.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?18.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.参考答案:1.D2.D3.A4.B5.A6.C7.A8.B9.-210.4211.12.171013.2514.(1)解:移项得:合并同类项得:系数化为1得:(2)解:方程两边同时乘以6得:去括号得:移项得:合并同类项得:系数化为1得:15.解:不正确;把代入∴解得:∴原方程为去分母,得解得:;16.解:设甲种零件制作x天,乙种零件制作(30-x)天根据题意得: 200x× 3=2×150(30-x)x=1030-x=30-10=20 天答:甲种零件制作10天,乙种零件制作20天.17.(1)解:设商场销售种型号计算器的销售价格是元,则销售种型号计算器的销售价格是元由题意得:解得答:商场销售种型号计算器的销售价格是42元.(2)解:设需要购进型号的计算器台,则购进型号的计算器台由题意得:解得答:需要购进型号的计算器40台.18.(1)解:设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000x=52∴92﹣x=40答:甲校有52人参加演出,乙校有40人参加演出.(2)解:乙:92﹣52=40人甲:52﹣10=42人两校联合:50×(40+42)=4100元而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元此时又比联合购买每套节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装即比实际人数多买91﹣(40+42)=9套。
人教版七年级数学上册第三章《一元一次方程》章节测试题(含答案)
人教版七年级数学上册第三章《一元一次方程》章节测试题一、单选题1.下列方程中为一元一次方程的是( )A .234x y +=-B .232x x -=C .12x x +=D .123y y -=+2.已知关于x 的方程()143k x x k -=-的根是-4,则28k k -的值是( )A .0B .96C .-48D .643.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x +3(x ﹣1)=1 C .若5x ﹣6=2x +8,则5x +2x =8+6D .若3(x +1)﹣2x =1,则3x +3﹣2x =1 4.若代数式2x ﹣3与32x +的值相等,则x 的值为( ) A .3B .1C .﹣3D .4 5.解一元一次方程3(2)3212x x --=-去分母后,正确的是( ) A .3(2﹣x )﹣3=2(2x ﹣1) B .3(2﹣x )﹣6=2x ﹣1C .3(2﹣x )﹣6=2(2x ﹣1)D .3(2﹣x )+6=2(2x ﹣1) 6.下列方程变形中,正确的是( )A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1C .方程2332t =,系数化为1得,t =1D .方程110.20.5x x --=,去分母得,5( x ﹣1)﹣2x =1 7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元8.甲、乙两人从同一地点出发,如果甲先出发2小时后,乙从后面追赶,那么当乙追上甲时,下面说法正确的是( )A .乙比甲多走了2小时B .乙走的路程比甲多C .甲、乙所用的时间相等D .甲、乙所走的路程相等9.明代数学家程大位的《算法统宗》中有一个“以碗知僧”的问题,“巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共尝一碗羹.请问先生能算者,都来寺内几多僧?”其大意为:山上有一座古寺叫都来寺,在这座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗.请问都来寺里有多少个和尚?此问题中和尚的人数为( )A .31B .52 C .371 D .624 10.方程 (13153520192021)x x x x ++++=⨯的解是x =( ) A .20212020 B .20211010 C .20212019 D .10102021二、填空题11.如果方程120n x n -+=是关于x 的一元一次方程,那么n =________.12.已知关于x 的方程20x m +=的解比方程30x m -=的解大10,则m =________.13.若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________.14.十个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个整数,并把自己想好的数如实告诉他两旁的两个人,然后每人将他两旁的人告诉他的数计算出平均数并报出来.已知每个人报的结果如图所示,那么报“3”的人自己心里想的数是_______.三、解答题15.根据下列条件,列出方程.(1)x 的倒数减去-5的差为9;(2)5与x 的差的绝对值等于4的平方;(3)长方形的长与宽分别为16、x ,周长为40;(4)y 减去13的差的一半为x 的35. 16.解方程: (1)36156x x -=--;(2)45173x x +=-;(3) 2.57.5516y y y --=-;(4)11481.5533z z +=-.17.某连队从驻地出发前往某地执行任务,行军速度是6千米/时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟(15分钟)内把命令传达给该连队.小王骑自行车以14千米/时的速度沿同一路线追赶连队.问小王能否在规定的时间内完成任务?18.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案11.212.-1213.2514.-215.(1)()159x --=;(2)254x -=;(3)()21640x +=;(4)()131325y x -= 16.(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 17.能够在规定时间内完成任务18.(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(上)一元一次方程单元测试题
一、填空题(每小题2分,共20分)。
1.白天的温度是20℃,夜间下降了t ℃,则夜间的温度是 ℃。
2.去括号合并:=+--)32()(2b a b a 。
3.当=x 时,代数式
2
3
+x 的值是0。
4.方程762+=-y y 变形为672+=-y y ,这种变形叫 ,根据是 。
5.当=x 时,式子
223x -与3
2x
-互为相反数。
6.甲班有a 人,乙班的人数是甲班人数的2倍少b 人,则乙班的人数为 。
7.某厂产值每年平均增长%x ,若第一年的产值为50万元,则第二年的产值为 万元。
9.飞机在A 、B 两城之间飞行,顺风速度是每小时a 千米,逆风速度是每小时b 千米,则风的
速度是每小时 千米。
10.一条环城公路长18千米,甲沿公路骑自行车,每分行550米,乙沿公路跑步,每分跑250米,两人同时从同一起点向同一方向出发,经x 小时两人又相遇,列出方程为 。
二、选择题(每小题3分,共18分)
11.下列四个式子中,方程的是( )。
A .104321=+++
B .32-x
C .1=x
D .2
1
|211|=-
12.在解方程
13
3
221=+--x x 时,去分母正确的是( )。
A .1)32(2)1(3=+--x x
B .6)32(2)1(3=+--x x
C .13413=+--x x
D .63413=+--x x
13.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后得新数比
原数大9,则原来的两数是( )。
A .54 B .27 C .72 D .45
14.一项工程甲单独做要x 天完成,乙单独做需要y 天完成,两人合作这项工程需要的天数为
( )。
A .
y
x +1
B .
y
x 11+ C .
xy
1 D .
y
x 111+
15.某工厂计划每天烧煤a 吨,实际每天少烧b 吨,则m 吨煤可多烧( )天。
A .
b
m a m - B .
a m
b a m -- C .b a m a m -- D . b
a m
- 16.一个长方形的周长为cm 26,这个长方形的长减少cm 1,宽增加cm 2,就可成为一个正方
形,设长方形的长为xcm ,可列方程( )。
A .2)26(1+-=-x x B .2)13(1+-=-x x C .2)26(1--=+x x
D .2)13(1--=+x x
三、解下列方程(每小题5分,共20分)
17. 132+=-x x
18. 2
8)5(2x
x -
=--
19.
15
1
423=+--x x 20.
6.12
.04
5.03=+--x x
四、列方程解应用题(每小.7分,共42分)
21.在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直
径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?
22.甲乙两人练习跑步,从同一地点出发,甲分钟跑250米,乙每分钟跑200米,甲因找跑鞋
比乙晚出发3分中,结果两人同时到达终点,求两人所跑的路程。
23.为了拓展销路,商店对某种照相机的售价了调整,按原价的8折出售,此时的利润率为14%,
若此种照相机的进价为1200元,问该照相机的原售价为多少元?
24.爷爷和孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现各局)
后,得分相同,他们各赢了多少盘?
25.甲队原有工人68人,乙队原有工人44人,现又有42名工作调入这两队,为了使乙队的人
数是甲队人数的
4
3
,应调往甲乙两队各多少人?
26.一个三位数满足的条件:①三个数位上的数字和为20;②百位上的数字比十位上的数字大
5;③个数上的数字是十位上的数字的3倍。
这个三位数是几?。