简易数字频率计设计实验报告

合集下载

简易数字频率计的设计与仿真

简易数字频率计的设计与仿真

《电子仿真技术》实训报告题目简易数字频率计的设计、仿真所在学院电子信息工程学院专业班级***学生姓名*** 学号***指导教师***完成日期* 年* 月* 日一.设计思路(1)电路简述所谓频率,就是周期性信号在单位时间(1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为fx=N/T 。

因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。

可见数字频率计主要由闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。

数字频率计的主要功能是测量周期信号的频率。

频率是单位时间(1S )内信号发生周期变化的次数。

如果我们能在给定的1S 时间内对信号波形计数,数值保持及自动清零,并将计数结果在显示器上显示出来,就能读取被测信号的频率。

数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。

这就是数字频率计的基本原理。

被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。

时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。

可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键。

(2)任务目标利用multisim9.0软件设计一个简易数字频率计,其基本要求是:1. 被测信号的频率范围1KHZ~100MHZ(理想频率范围);2. 被测信号可以为正弦波、三角波或方波信号;3. 四位数码管显示所测频率,并用发光二极管表示单位。

数电课设报告----简易频率计

数电课设报告----简易频率计

数电课设报告简易频率计班1111电工姓名:张炫2011128085彭松2011128047蒋凯2011128026 吴棒2011123130 指导老师:吴学第一章系统概述一、设计方案的选择1. 计数法2. 计时法二、整体方框图及原理第二章单元电路的设计一、时基电路设计二、闸门电路设计三、控制电路设计四、小数点电路的设计五、整体电路设计六、原理图和PCB的设计第三章设计小结一、设计任务完成情况二、问题及改进三、心得体会题目:简易数字频率计1.显示位数至少是4位的十进制数,可以适当增加位数。

2.量程,有四个档位(第一档:最大读数9.999KHZ ,第二档:最大读数99.99KHZ ,第三档:最大读数999.9KHZ ,第四档:最大读数9999.KHZ3.用7段LED数码管显示读数。

摘要:本次课设是针对简易频率计的设计,在设计过程中,所有电路的仿真全是基于proteus的仿真,可以几乎100%的仿真出真实的电路结果,而且能在桌面上提供万用表,示波器,信号发生器,扫描仪,逻辑分析仪,数字信号发生器等器件。

本课程设计介绍了简易频率计的设计方案和基本原理,并着重介绍了频率计各单元电路的设计思想,原理及仿真。

整体电路的工作原理及控制器件的工作情况。

整个电路配以仿真电路图和波形图加以辅助说明。

设计共有三大组成部分:一是原理图的设计,本部分详细介绍了电路的理论实践,是关键部分;二是仿真结果及分析这部分是为了分析电路是否按理论那样工作,便于理解。

三是性能测试,这部分用于测试设计是否符合任务要求。

最后是本课程设计的总结。

关键字:频率计, 时基电路,逻辑控制,分频,计数,逻辑显示。

第一章系统概述一、设计原理及方案数字频率计就是直接用十进制的数字来显示被测信号频率。

可以测的方波的频率,通过放大正行处理,它可还以测量正弦波、三角波和尖脉冲信号的频率。

所谓频率就是在单位时间(1s)内周期信号的脉冲个数。

若在一定时间间隔T内测得周期信号的脉冲个数N,则其频率为f=N/T,据此,设计方案框图如图1所示:闸门电路------------------------------ _________________________分频器图1 数字频率计组成框图图中脉冲形成的电路的作用是将被测信号变成脉冲信号,其重复频率等于被测信号的频率f xo,时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号也就是闸门信号持续时间也会等于1s。

频率计实验报告

频率计实验报告

频率计实验报告一、实验目的本次实验的目的是通过设计和搭建频率计电路,掌握频率测量的基本原理和方法,熟悉相关电子元器件的使用,提高电路设计和调试的能力,并深入理解数字电路中计数器、定时器等模块的工作原理。

二、实验原理频率是指周期性信号在单位时间内重复的次数。

频率计的基本原理是通过对输入信号的周期进行测量,并将其转换为频率值进行显示。

常见的频率测量方法有直接测频法和间接测频法。

直接测频法是在给定的闸门时间内,对输入信号的脉冲个数进行计数,从而得到信号的频率。

间接测频法则是先测量信号的周期,然后通过倒数计算出频率。

在本次实验中,我们采用直接测频法。

使用计数器对输入信号的脉冲进行计数,同时使用定时器产生固定的闸门时间。

在闸门时间结束后,读取计数器的值,并通过计算得到输入信号的频率。

三、实验设备与器材1、数字电路实验箱2、示波器3、函数信号发生器4、集成电路芯片(如计数器芯片、定时器芯片等)5、电阻、电容、导线等若干四、实验步骤1、设计电路原理图根据实验要求和原理,选择合适的计数器芯片和定时器芯片,并设计出相应的电路连接图。

确定芯片的引脚连接方式,以及与外部输入输出信号的连接关系。

2、搭建实验电路在数字电路实验箱上,按照设计好的电路原理图,插入相应的芯片和元器件,并使用导线进行连接。

仔细检查电路连接是否正确,确保无短路和断路现象。

3、调试电路接通实验箱电源,使用示波器观察输入信号和输出信号的波形,检查电路是否正常工作。

调整函数信号发生器的输出频率和幅度,观察频率计的测量结果是否准确。

4、记录实验数据在不同的输入信号频率下,记录频率计的测量值,并与函数信号发生器的设定值进行比较。

分析测量误差产生的原因,并尝试采取相应的措施进行改进。

五、实验数据与分析以下是在实验中记录的部分数据:|输入信号频率(Hz)|测量值(Hz)|误差(%)||||||100|98|2||500|495|1||1000|990|1||2000|1980|1|从数据中可以看出,测量值与输入信号的实际频率存在一定的误差。

(精校版)数字频率计仿真实验报告

(精校版)数字频率计仿真实验报告

完整word版,数字频率计仿真实验报告编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(完整word版,数字频率计仿真实验报告)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为完整word版,数字频率计仿真实验报告的全部内容。

上海电力学院课题名称数字频率计课题代码 201 院(系)电力与自动化工程学院专业电气工程及其自动化班级学号及姓名时间指导教师签名:教研室主任(系主任)签名:任务书一、目的1、了解并掌握电子电路的一般设计方法,具备初步的独立设计能力.2、通过查阅手册和文献资料,进一步熟悉常用电子器件的类型和特性,并掌握合理选用的原则;进一步掌握电子仪器的正确使用方法。

3、学会使用EDA软件Multisim对电子电路进行仿真设计.4、初步掌握普通电子电路的安装、布线、调试等基本技能.5、提高综合运用所学的理论知识独立分析和解决问题的能力,学会撰写课程设计总结报告;培养严肃认真的工作作风和严谨的科学态度。

二、设计内容、要求及设计方案1、任务设计并制作1个数字式频率计。

2、基本要求1)被测信号为TTL脉冲信号。

2)显示的频率范围为00~99Hz。

3)测量精度为±1 Hz.4)用LED数码管显示频率数值.3、扩展部分1)输入信号为正弦信号、三角波,幅值为l0mV。

2)显示的频率范围为0000~9999Hz.3)提高测量的精度至0.1Hz.4、设计方案频率是指单位时间(1s)内信号振动的次数。

从测量的角度看,即单位时间测得的被测信号的脉冲数。

电路的方框图如图1所示。

被测信号送入通道,经放大整形后,使每个周期形成一个脉冲,这些脉冲加到主门的A输入端,门控双稳输出的门控信号加到主门的B输入端。

频率计的制作实验报告

频率计的制作实验报告

频率计的制作实验报告实验目的:本实验的目的是通过制作一个简单的频率计,了解频率计的工作原理以及实际应用。

实验仪器与材料:1. 模块化电子实验箱2. 函数信号发生器3. 示波器4. 电压表5. 电阻、电容等基本元件实验原理:频率计是用于测量信号频率的一种仪器。

其基本原理是利用周期性信号的周期长度与频率之间的倒数关系,通过计算周期长度来确定信号的频率。

实验步骤:第一步:搭建电路1. 将函数信号发生器的输出接入电路板上的输入端,作为输入信号源。

2. 将电路板上的元件按照电路图连接,包括电容、电阻等。

确保电路连接正确。

第二步:调试电路1. 将函数信号发生器的频率设置为一个已知的数值,例如1000Hz。

2. 使用示波器测量电路输出端信号的周期长度。

3. 使用计算器计算出信号的频率。

4. 调整电路参数,直到测量到的频率与设定的频率相等。

第三步:验证测量准确性1. 将函数信号发生器的频率调整到其他已知值,例如2000Hz。

2. 重复上述步骤,测量并计算信号的频率。

3. 比较测量到的频率与设定的频率,验证测量准确性。

实验结果与分析:通过实验,我们成功制作了一个简单的频率计。

在调试电路的过程中,我们可以通过测量输出信号的周期长度,并利用频率的倒数与周期长度的关系计算出信号的频率。

通过与设定的频率进行比较,验证了测量的准确性。

实验中可能存在的误差主要来自于电路元件的稳定性以及测量设备的精度。

为了提高测量准确性,可以选择更稳定的元件,并使用更精确的测量设备。

实验结论:本实验通过制作一个简单的频率计,深入了解了频率计的工作原理和实际应用。

通过测量信号的周期长度并计算出频率,我们可以准确地测量信号的频率。

实验结果验证了测量的准确性,并提出了进一步提高准确性的建议。

频率计在电子测量中具有重要的应用价值,可以广泛应用于通信、电子设备维修等领域。

数字频率计实验报告

数字频率计实验报告

考虑到测量方便,将数字频率计划分为四档:10~99Hz 、100~999Hz 、1000~9999Hz 、10000~99999Hz 。

这样可以保证每一档三位有效数字,而且第三位有效数字误差在±2以内时即可达到精度要求。

三个输入信号:待测信号、标准时钟脉冲信号和复位脉冲信号。

设计细化要求:频率计能根据数字频率计设计计双0102 雷昊 2001011830786一、课程设计内容及要求本次课程设计要求设计并用FPGA 实现一个数字频率计,具体设计要求如下:测量频率范围: 10Hz ~100KHz 精度: ΔF / F ≤ ±2 %系统外部时钟: 1024Hz 测量波形: 方波 Vp-p = 3~5 V 硬件设备:Altera Flex10K10 五位数码管 LED 发光二极管编程语言:Verilog HDL / VHDL二、系统总体设计输入待测信号频率自动选择量程,并在超过最大量程时显示过量程,当复位脉冲到来时,系统复位,重新开始计数显示频率。

基于上述要求,可以将系统基本划分为四个模块,分别为分频、计数、锁存和控制,并可以确定基本的连接和反馈,如上图所示。

三、系统及模块设计与说明如左图所示为数字频率计测量频率的原理图。

已知给定标准时钟脉冲高电平时间,将此0T 高电平信号作为计数器闸门电平,通过计数器得到时间内待测脉冲的个数N ,则有。

由图示可以看出,一个闸门电平时间内0T 0T Nf计数的最大误差为N ±1,为保证误差要求取N ≥100。

经计算,四档的闸门电平时间分0T 别为10s 、1s 、0.1s 和0.01s 。

仅对计数器计数值N 进行简单的移位即可得到结果。

产生闸门电平的工作由分频器完成。

分频器采用计数分频的方法,产生计数闸门电平和一系列控制脉冲,并接受计数器和控制器的反馈。

控制器主要用来判断计数器计数是否有效,从而控制档位转换,锁存器打开、关闭和设定值。

计数器在分频器和控制器的作用下对输入待测信号计数,并把计数值输出,在计数溢出时向控制器和分频器发送溢出脉冲。

基于单片机的简易数字频率计设计报告

基于单片机的简易数字频率计设计报告

基于单片机的简易数字频率计设计报告课程设计名称:近代电子学实验设计项目名称:简易数字频率计设计专业班级:电子信息科学与技术08级1班图1-2放大整形电路其中,放大部分由集成运算放大器构成的反向比例运算电路实图1-4 显示、锁存电路显示、锁存部分的电路是由6片74LS273和6个7段数码管构目录第一章总论错误!未定义书签。

1.1 项目名称及承办单位 ................................................................................................... 错误!未定义书签。

1.2 编制依据及原则 ........................................................................................................... 错误!未定义书签。

1.3 主要建设内容 ............................................................................................................... 错误!未定义书签。

1.4 研究重点 ....................................................................................................................... 错误!未定义书签。

1.5 研究结论 ....................................................................................................................... 错误!未定义书签。

数字频率计设计报告

数字频率计设计报告

数字频率计设计报告数字频率计设计报告一、设计目标本次设计的数字频率计旨在实现对输入信号的准确频率测量,同时具备操作简单、稳定性好、误差小等特点。

设计的主要目标是实现以下功能:1. 测量频率范围:1Hz至10MHz;2. 测量精度:±0.1%;3. 具有数据保持功能,可在断电情况下保存测量结果;4. 具有报警功能,可设置上下限;5. 使用微处理器进行控制和数据处理。

二、系统概述数字频率计系统主要由以下几个部分组成:1. 输入信号处理单元:用于将输入信号进行缓冲、滤波和整形,以便于微处理器进行准确处理;2. 计数器单元:用于对输入信号的周期进行计数,并通过微处理器进行处理,以得到准确的频率值;3. 数据存储单元:用于存储测量结果和设置参数;4. 人机交互单元:用于设置参数、显示测量结果和接收用户输入。

三、电路原理数字频率计的电路原理主要包括以下步骤:1. 输入信号处理:输入信号首先进入缓冲器进行缓冲,然后通过低通滤波器进行滤波,去除高频噪声。

滤波后的信号通过整形电路进行整形,以便于微处理器进行计数。

2. 计数器单元:整形后的信号输入到计数器,计数器对信号的周期进行计数。

计数器的精度直接影响测量结果的精度,因此需要选择高精度的计数器。

3. 数据存储单元:测量结果和设置参数通过微处理器进行处理后,存储在数据存储单元中。

数据存储单元一般采用EEPROM或者Flash 存储器。

4. 人机交互单元:人机交互单元包括显示屏和按键。

用户通过按键设置参数和查看测量结果。

显示屏用于显示测量结果和设置参数。

四、元器件选择根据系统设计和电路原理,以下是一些关键元器件的选择:1. 缓冲器:采用高性能的运算放大器,如OPA657;2. 低通滤波器:采用一阶无源低通滤波器,滤波器截止频率为10kHz;3. 整形电路:采用比较器,如LM393;4. 计数器:采用16位计数器,如TLC2543;5. 数据存储单元:采用EEPROM或Flash存储器,如24LC64;6. 显示屏:采用带ST7565驱动的段式液晶显示屏,如ST7565R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子线路课程设计报告姓名:学号:专业:电子信息日期: 2014.4.13南京理工大学紫金学院电光系2014-4-13引言《电子线路课程设计》是一门理论和实践相结合的课程。

它融入了现代电子设计的新思想和新方法,架起一座利用单元模块实现电子系统的桥梁,帮助学生进一步提高电子设计能力。

对于推动信息电子类学科面向21世纪课程体系和课程内容改革,引导、培养大学生创新意识、协作精神和理论联系实际的学风,加强学生工程实践能力的训练和培养,促进广大学生踊跃参加课外科技活动和提高毕业生的就业率都会起到了良好作用。

该课程主要内容:(1)了解和掌握一个完整的电子线路设计方法和概念;(2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。

(3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用:包括放大器、滤波器、比较器、光电耦合器、单稳、逻辑控制、计数和显示电路等。

(4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。

(5)电子线路课程设计课题:设计并制作一个基于模电和数电的简易数字频率计。

目录第一章设计要求.................................................1.1 基本要求...........................................1.2 提高部分...........................................1.3 设计报告........................................... 第二章整体方案设计.............................................2.1 算法设计...........................................2.2 整体方框图及原理................................... 第三章单元电路设计.............................................3.1 模电部分设计.......................................3.1.1 放大电路........................................3.1.2 滤波电路........................................3.1.3 比较电路........................................3.1.4 模电总体电路....................................3.2 数电部分设计.......................................3.2.1 时基电路........................................3.2.2 单稳态电路......................................3.2.3 计数、译码、显示电路............................3.2.4 数电总体电路.................................... 第四章测试与调整...............................................4.1 时基电路的调测.....................................4.2 计数电路的调测.....................................4.3 显示电路的调测..................................... 第五章设计小结.................................................5.1 设计任务完成情况...................................5.2心得体会...........................................第一章设计要求1.1 基本要求(1)输入信号:正弦、三角和方波;频率:10Hz~2KHz;幅度:峰-峰值0.3 V ~3V;(2)频率计通带:10Hz~1KHz;(3)量程范围:0~99;(4)闸门时间:1s;(5)采样周期:≥2s;(6)实现自动测频、自动清零、数据显示和保持功能。

1.2 提高部分(1)实现双通道自动测频、数据显示和保持功能。

(2)实现通道号显示。

(3)实现输入信号和数字频率计的隔离。

(4)其他。

1.3 设计报告(1)系统方案比较与选择、方案描述。

(2)理论分析与计算(3)电路设计主电路原理图及说明。

(4)仿真结果仿真电路、方法、说明及波形图。

(5)测试结果测试结果完整性、测试结果分析。

(6)使用说明书第二章整体方案设计2.1 算法设计 频率是周期信号每秒钟内所含的周期数值。

可根据这一定义采用如图2-1所示的算法。

图2-2是根据算法构建的方框图。

被测信号图2-2 频率测量算法对应的方框图在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s 的闸门信号。

该闸门信号控制闸门电路的导通与开断。

让被测信号送入闸门电路,当1s 闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s 闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s 内被测信号的周期个数,即为被测信号的频率。

测量频率的误差与闸门信号的精度直接相关,因此,为保证在1s 内被测信号的周期量误差在10 ³量级,则要求闸门信号的精度为10 ⁴量级。

2.2 整体方框图及原理输入电路 闸门 计数电路 显示电路闸门产生输入电路:由于输入的信号可以是正弦波、方波、三角波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。

频率测量:被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。

时基信号由555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。

被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。

周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。

方波信号中的脉冲宽度恰好为被测信号的1个周期。

将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。

计数器累计的结果可以换算出被测信号的周期。

用时间Tx来表示:Tx=NTs 式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。

时基电路:时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态时间分别为:T1=0.7(Ra+Rb)C T2=0.7RbC重复周期为 T=T1+T2。

由于被测信号范围为10Hz~2KHz,采用1s闸门脉宽。

闸门时间要求非常准确,它直接影响到测量精度,在要求高精度、高稳定度的场合,通常用晶体振荡器作为标准时基信号。

在实验中我们采用的就是前一种方案。

在电路中引进电位器来调节振荡器产生的频率。

使得能够产生1kHz的信号。

这对后面的测量精度起到决定性的作用。

计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。

在计数的时候数码管不显示数字。

当计数完成后,此时要使数码管显示计数完成后的数字。

控制电路:控制电路里面要产生计数清零信号和锁存控制信号。

如图:第三章单元电路设计3.1 模电部分设计3.1.1放大电路:3.1.2 滤波电路:3.1.3 比较电路:3.1.4 模电总体电路:3.2 数电部分设计3.2.1 时基电路:3.2.2 单稳态电路:3.2.3 计数、译码、显示电路:3.2.4 数电总体电路:第四章测试与调整4.1 时基电路的调测首先调测时基信号,通过555定时器、RC阻容件构成多谐振荡器的两个暂态时间公式,选择R1=10KΩ ,R2=10KΩ,C=10μF。

把555产生的信号接到示波器中,调节电位器使得输出的信号的频率为1KHz。

同时输出信号的频率也要稳定。

测完后,下面测试分频后的频率,分别接一级分频、二级分频、三级分频的输出端,测试其信号。

测出来的信号频率和理论值很接近。

由于是将示波器的测量端分别测量每个原件的输出端。

4.2 计数电路的调测将74160的PT端,~CLR端,~LD端都接高电平,3个74160级联,构成异步十进制计数器。

在调测的过程中,我忘记将其置零,导致在后面数码管一直不显示数字。

接好后,给最低位的74160一个CP信号。

让函数信号发生器产生一个频率适当的方波。

这样,计数器就开始计数了。

数码管从00~99显示。

计数电路就这样搞好了。

4.3 显示电路的调测由于在设计过程中,控制电路这部分比较难,要花时间在上面设计电路。

为了节约时间,我在课程设计的过程中就先连接后面的显示电路和计数电路。

首先是对数码管(数码管的管脚图和功能表详见附录)的显示进行了调测。

所示接好显示电路(这里就只给出一个数码管说明一下)。

第五章设计小结5.1设计任务完成情况完成了本次设计的技术指标,从一开始由于我第一次接触这个实验对实验的还有很多不了解在一些方面浪费了很多时间,在连接电路的时候,不知道该怎么排版然后就会不停的停下来设计控制电路,因为要提高效率,在实际的操作中,先连好时基电路,分频电路测试通过后,再把显示电路和计数电路连好,调测符合要求。

最后搞定控制电路的连接。

最后完成的一块电路板,它所实现的功能就是可以测被测信号的频率,周期和脉宽。

在调测的过程中发现测量频率时,档位在10Hz~2kHz,最终数码管跳的不稳定,其他的测量结果非常接近测量值5.2 心得体会时间如流水一般为期一周的实验课就这么的结束了。

本次实习让我们大体了解到设计电路、连接电路、调测电路的步骤和其中的问题解决。

设计是我们将来必需的技能,这次实习恰恰给我们提供了一个应用自己所学知识的机会,一开始我从到图书馆查找资料。

再到实习的过程中发现了以前学的数字电路的知识掌握的不牢。

同时在设计的过程中,遇到了一些以前没有见到过的元件,通过查找资料来学习这些元件的功能和使用。

相关文档
最新文档