数学建模传染病模型讲解

合集下载

数学建模——传染病模型

数学建模——传染病模型

传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。

本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。

不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。

本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。

然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。

本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。

同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。

关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。

考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。

1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。

2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。

建立模型求t时刻的感染人数。

3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。

传染病模型——精选推荐

传染病模型——精选推荐

3.12传染病模型摘要:本文是一个对传染病的研究问题。

通过把一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

建立数学模型用极限和微积分等数学方法对传染病传播规律进行研究。

关键词:传染病极限和微积分正文1 传染病〔Infectious Diseases〕是由各种病原体引起的能在人与人、动物与动物或人与动物之间相互传播的一类疾病。

病原体中大部分是微生物,小部分为寄生虫,寄生虫引起者又称寄生虫病。

有些传染病,防疫部门必须及时掌握其发病情况,及时采取对策,因此发现后应按规定时间及时向当地防疫部门报告,称为法定传染病。

中国目前的法定传染病有甲、乙、丙3类,共37种医学科学的发展已经能够有效地预防和控制许多传染病,天花在世界范围内被消灭,鼠疫、霍乱等传染病得到控制。

但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

在发展中国家,传染病的流行仍十分严重;即使在发达国家,一些常见的传染病也未绝迹,而新的传染病还会出现,如爱滋病(AIDS)等。

有些传染病传染很快,导致很高的致残率,危害极大,因而对传染病在人群中传染过程的定量研究具有重要的现实意义。

传染病流行过程的研究与其他学科有所不同,不能通过在人群中实验的方式获得科学数据。

事实上,在人群中作传染病实验是极不人道的。

所以有关传染病的数据、资料只能从已有的传染病流行的报告中获取。

这些数据往往不够全面,难以根据这些数据来准确地确定某些参数,只能大概估计其范围。

基于上述原因,利用数学建模与计算机仿真便成为研究传染病流行过程的有效途径之一。

2问题提出上世纪初,瘟疫还经常在世界的某些地区流行,被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?3 模型分析社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等,在建立模型时不可能考虑所有因素,只能抓住关键的因素,采用合理的假设,进行简化。

病毒传播模型的建模和分析

病毒传播模型的建模和分析

病毒传播模型的建模和分析随着新冠肺炎疫情的爆发,人们开始关注病毒传播模型的建模和分析。

病毒传播模型是通过建立数学模型来描述一种病毒从一个人传播到另一个人的过程。

这些模型可以用来预测未来的病例数和疫情的发展趋势,从而对公共卫生政策做出决策。

本文将深入讨论一些病毒传播模型的建模和分析方法,以及用于计算病毒传播的参数。

基本假设在研究病毒传播模型之前,我们需要了解一些基本的假设。

首先,我们假设感染者可以将病毒传给其他人,这些人也可以将病毒传给其他人。

其次,每个人只能被感染一次。

最后,我们假设传染过程是随机的,并且每个人在接触病毒后,可以在一段时间内携带病毒,但并不一定表现出症状。

接触率接触率是指某个人在一段时间内和其他人接触的频率。

接触率是病毒传播模型中的一个重要参数,它可以用来预测病例数和疫情的发展趋势。

接触率的计算方法包括调查问卷、传感器技术和社交网络分析。

社交网络分析方法是最常用的方法之一,它通过分析人们之间的联系、交流和兴趣来计算接触率。

物理模型物理模型是建模和分析病毒传播的另一种方法。

在这种方法中,我们将人们视为一个个质点,并将他们在三维空间中的运动建模。

人与人之间的距离越近,接触的可能性就越高。

我们还可以通过模拟一个建筑物或地区的运动,预测病毒在该建筑物或地区的传播情况。

传染模型传染模型是病毒传播模型的核心部分,它用一个数学方程描述病毒在人群中的传播情况。

最常用的传染模型包括SI模型(易感者-感染者模型)、SIR模型(易感者-感染者-康复者模型)和SEIR模型(易感者-潜伏者-感染者-康复者模型)。

这些模型可以帮助我们了解病毒传播的时间和规模,以及在不同的干预措施下,疫情的发展趋势。

分析模型分析模型是对传染模型进行分析的一种数学方法。

通常,我们使用微分方程来描述传染模型,然后使用数值方法或解析方法来解决该微分方程。

解方程可以帮助我们了解一些基本的病毒传染规律。

例如,我们可以使用微分方程来计算感染速度,即感染者每日新增的数量。

离散传染病模型公式

离散传染病模型公式

离散传染病模型公式一、离散传染病模型简介离散传染病模型是一种描述传染病在人群中传播过程的数学模型。

它主要通过公式来描述感染率、恢复率、死亡率等关键参数,从而为防控传染病提供理论依据。

离散传染病模型主要包括SIR模型、SIRS模型和SEIR模型等。

二、离散传染病模型公式及参数解释1.感染率公式:感染率是指单位时间内感染者数量与易感者数量之比。

公式为:R0 = β·N·I/γ其中,R0为基本感染率,β为感染者与易感者接触后的感染概率,N 为总人口数,I为感染者数量,γ为恢复率。

2.恢复率公式:恢复率是指单位时间内恢复者数量与感染者数量之比。

公式为:gamma = γ·I其中,gamma为恢复率,γ为恢复概率,I为感染者数量。

3.死亡率公式:死亡率是指单位时间内死亡者数量与感染者数量之比。

公式为:gamma_d = δ·I其中,gamma_d为死亡率,δ为死亡概率,I为感染者数量。

4.传播速度公式:传播速度是指传染病在人群中的传播速度。

公式为:dI/dt = β·I·(1-I/N)其中,dI/dt为感染者数量的变化率,β为感染者与易感者接触后的感染概率,I为感染者数量,N为总人口数。

5.模型参数解释:- β:感染者与易感者接触后的感染概率,与传染病的传播能力有关。

- γ:恢复概率,表示感染者恢复为免疫者的概率。

- δ:死亡概率,表示感染者死亡的概率。

- N:总人口数,包括易感者、感染者和康复者。

三、离散传染病模型的应用案例1.SIR模型:该模型仅考虑感染、恢复和免疫三个状态,适用于研究免疫期较短的传染病。

2.SIRS模型:在SIR模型的基础上,增加了感染后再次感染的可能性,适用于研究免疫期较长的传染病。

3.SEIR模型:该模型在SIR模型的基础上,考虑了潜伏期对传染病传播的影响,适用于研究具有潜伏期的传染病。

四、离散传染病模型在疫情防控中的应用离散传染病模型在疫情防控中具有重要作用。

传染病问题研究(数学建模精讲)

传染病问题研究(数学建模精讲)

传染病问题的研究社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

本论文通过建立传染病模型,分析被传人数多少与哪些因素有关,如何预报传染病高潮的到来等等。

一﹑模型假设1.在疾病传播期内所考察的地区范围不考虑人口的出生、死亡、流动等种群动力因素。

总人口数N(t)不变,人口始终保持一个常数N 。

人群分为以下三类:易感染者(Susceptibles),其数量比例记为s(t),表示t 时刻未染病但有可能被该类疾病传染的人数占总人数的比例;感染病者(Infectives),其数量比例记为i(t),表示t 时刻已被感染成为病人而且具有传染力的人数占总人数的比例;恢复者(Recovered),其数量比例记为r(t),表示t 时刻已从染病者中移出的人数(这部分人既非已感染者,也非感染病者,不具有传染性,也不会再次被感染,他们已退出该传染系统。

)占总人数的比例。

2.病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。

该模型的缺陷是结果常与实际有一定程度差距,这是因为模型中假设有效接触率传染力是不变的。

二﹑模型构成在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:在假设1中显然有: s(t) + i(t) + r(t) = 1对于病愈免疫的移出者的数量应为rtd NNi d μ=不妨设初始时刻的易感染者,染病者,恢复者的比例分别为0s (0s >0),0i (0i >0),0r =0.SIR 基础模型用微分方程组表示如下:didt dsdt drdt si i si i λμλμ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩s(t) , i(t)的求解极度困难,在此我们先做数值计算来预估计s(t) , i(t)的一般变化规律。

传染病数学建模代码

传染病数学建模代码

传染病数学建模代码传染病数学建模是一种利用数学模型来研究疾病传播规律的方法。

它可以帮助我们更好地了解疫情的变化和控制措施的有效性。

下面,我们就让这篇文章来为您详细介绍传染病数学建模的相关代码吧!在传染病数学建模中,我们通常使用SIR模型。

SIR模型是以S (Susceptible)、I(Infectious)、R(Recovered)三类人群为基础的病毒传播模型。

我们可以通过以下代码,构建基本的SIR模型:```pythonimport numpy as npimport matplotlib.pyplot as plt定义初始变量N = 1000 # 总人数I0 = 1 # 初始感染者数量S0 = N - I0 # 初始易感者数量R0 = 0 # 初始恢复者数量beta = 0.2 # 易感者被感染率gamma = 0.1 # 感染者康复率构建SIR模型def SIR_model(t, y):S, I, R = ydS_dt = -beta * S * I / NdI_dt = beta * S * I / N - gamma * IdR_dt = gamma * Ireturn([dS_dt, dI_dt, dR_dt])计算SIR模型y0 = [S0, I0, R0]t = np.linspace(0, 100, 10000) # 时间范围res = odeint(SIR_model, y0, t)S = res[:, 0]I = res[:, 1]R = res[:, 2]绘制SIR曲线fig = plt.figure(facecolor='w')ax = fig.add_subplot(111, facecolor='#dddddd', axisbelow=True)ax.plot(t, S/N, 'b', alpha=0.5, lw=2, label='易感者')ax.plot(t, I/N, 'r', alpha=0.5, lw=2, label='感染者')ax.plot(t, R/N, 'g', alpha=0.5, lw=2, label='恢复者')ax.set_xlabel('时间(天)')ax.set_ylabel('人口比例')ax.set_ylim(0,1.2)ax.yaxis.set_tick_params(length=0)ax.xaxis.set_tick_params(length=0)ax.grid(b=True, which='major', c='w', lw=2, ls='-')legend = ax.legend()legend.get_frame().set_alpha(0.5)plt.show()```在上述代码中,我们首先定义了初始变量和SIR模型。

第二章传染病模型

第二章传染病模型
数学建模
数学建模
传染病模型
茂名学院
1
5.1 传染病模型
数学建模
问题 • 描述传染病的传播过程
• 分析受感染人数的变化规律
• 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段 • 按照传播过程的一般规律,
用机理分析方法建立模型
茂名学院
2
数学建模
模型1 已感染人数 (病人) i(t)
假设
建模
di i
i
di dt

si

i
ds

dt

si
i(0)

i 0
,
s(0)

s 0

di

ds

1
s
1
i ss0 i0
s(t)单调减相轨线的方向
s 1/ , i im t , i 0
s满足
s0
i0 s
1

ln
s s0
0
P1: s0>1/ i(t)先升后降至0
di

ds

1
s
1
i ss0 i0
相轨线
i(s) (s i ) s 1 ln s
0
0
i
s0
1
D {(s,i) s 0, i 0, s i 1}
在D内作相轨线i(s)
的图形,进行分析
茂名学院
D 0
110 s
数学建模
模型4 相轨线 i(s) 及其分析 SIR模型
茂名学院
t
t m

1
ln
1 i0
1
t i 1 ?

传染病模型 (2)

传染病模型 (2)

传染病模型
传染病模型是一种用数学和计算机模拟来研究传染病传播过程和预测未来发展趋势的方法。

常用的传染病模型包括SIR模型、SEIR模型、SI模型等。

1. SIR模型:SIR模型划分人群为三个组成部分,分别是易感者(Susceptible, S)、感染者(Infected, I)和恢复者(Recovered, R)。

模型假设人群之间的转移是通过直接接触传播的,且感染后会产生免疫力。

该模型用于研究传染病的基本传播过程。

2. SEIR模型:SEIR模型在SIR模型的基础上加入了暴露者(Exposed, E)的概念。

暴露者是指已经感染病毒但尚未出现症状的人群。

该模型考虑了传染病的潜伏期,在研究疫情的初期或具有显著潜伏期的传染病时较为常用。

3. SI模型:SI模型是最简单的传染病模型,只考虑了易感者(S)和感染者(I)两个组成部分。

该模型没有考虑恢复者和
免疫力的概念,适用于一些无法恢复或无法获得免疫的传
染病。

传染病模型的建立需要依赖大量的数据和参数,如传染率、恢复率、潜伏期等,可以利用已有的疫情数据对模型进行
参数估计。

基于模型的分析可以帮助政府和卫生机构制定
合适的控制措施,预测疫情的发展趋势,并进行防控策略
的优化。

然而,传染病模型仍有其局限性,如对人群行为
的假设较为简单,无法精确模拟复杂的社交网络。

因此,
模型的结果需要结合实际情况进行综合分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传染病的传播摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。

而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。

并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。

运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。

同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。

关键词:微分方程 SARS 数学模型 感染率1问题的重述SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

请你们对SARS 的传播建立数学模型,具体要求如下:1)建立传染病传播的指数模型,评价其合理性和实用性。

2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

附件1提供的数据供参考。

3)说明建立传染病数学模型的重要性。

2 定义与符号说明N …………………………………表示为SARS 病人的总数;K (感染率)……………………表示为平均每天每人的传染他人的人数;L …………………………………表示为每个病人可能传染他人的天数;dt dN(t)………………………… 表示为每天(单位时间)发病人数;N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数;t …………………………………表示时间;R 2………………………………表示拟合的均方差; 3 建立传染病传播的指数模型3.1模型假设1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。

单位时间(一天)内一个病人能传播的人数是常数k ;2) 在 所传染的人当中不考虑已治愈的人是否被再次被传播,治愈的人数占该地区的总人数是绝对的少数,治愈者不会再被传播并不影响疫情在该时间内的感染率常数k;3) 病者在潜伏期传播可能性很小, 仍按健康人处理;4) SARS 对不同的年龄组的感染率略有不同(相差不大),但我们只考虑它健康人的感染率是一样的;5) 我们所采取的隔离是非常严格的,被隔离的病人不会再感染其他人;3.2模型的分析和建立求解全国疫情从出现第一例病人起,到4月20日前后(从起点起45天左右)是疫情高峰,在此之前k值我们取k=0.16204,在此后的时间里我们取k=0.0273来计算。

根据提供的数(1+K)t。

据可以建立指数模型:N(t)=n在前45天我们取k=0.16204来代入,分别算出45天的病人累计数,根据45天中天病人的数量来画出图1,并与附件中所提供的数据中的日累计数来进行了比较。

如图3-1所示:图3-1 根据指数模型建立的图形图3-2根据附件1所建立的图形从两个图形中,我们可以看出,从4月20日开始计算,前45天的病人累计数和我们用k 的值来代入模型画出的病人计算数基本上是吻合的。

图形1中的横坐标数字表示时间的天数,如15即4月20日之后的第15天,40即4月20日之后的第40天。

在45天之后的时间里,模型对k 的值进行了调整,k=0.0273,我们再将k=0.0273代入模型 N(t)=n 0(1+K)t ,在45天之后的时间里,我们取了30天的时间,分别算出每天的病人累计数,如图3-3所示:全国人数变化500100015002000250030003500135********17192123252729天数人数(全国)累计人数天数图3-33.3对指数模型的验证和评价在图形3-3中的横坐标的数值表示图形1中所表示的天数之后的天数,如1即表示4月15日之后的45天之后的有第六天,也就是4月15日之后的第51天,即表示4月15日之后的第67天。

首先在图形3-3结合图形3-1可以看出,图形3-1中的第45天与图形2中的第一天(相隔一天)的人数统计是相差比较大的,存在这种情况的原因是在我们在计算第61天,数据值发生了改变,从0.16204到0.0273是一个很大的变化,而在实际的生活中的情况是k 值每天都在进行数值在减小的改变,但改变的没有这么大,也正是因为k 有了跳跃,N(t)的值才会发生这么大的变化,这是可以理解的。

我们对图形2的整个曲线来与附件1中的图形1进行比较,可以发现,在整个阶段的数值曲线图形都是很接近的。

我们在对全国在前期和后期k 分别取k=0.16204和k=0.0273的值来代入所给的模型来计算并画出的图形,与实际的数据和图形进行了比较,是有着很好的吻合,同样我们也可以对k 取值一个定值来对全国进行计算和画图,同样也是合理的。

因此我们就认为题目中给我们的那个模型N(t)=n 0(1+K)t 是合理的。

通过这个模型我们可以根据某一地区的疫情从爆发到高潮或某一阶段的时间的长短来拟合得到一个与该地区这种疫情的感染率,就可以用该模型来计算或预测该地区现在及以后的病人的累计数, 这也就是该模型的实用性所在。

4建立新模型4.1模型假设模型假设与指数模型假设一致不在赘述。

4.2模型分析与建立4.2.1模型分析初期由于疫情初期政府控制力度不够,大众的对SARS 的防范意识不强,造成病情迅速蔓延。

而当政府采取有力措施,人们的防患意识增强,疫情则趋于缓和,病患者人数迅速下降。

所以SARS 传播大体上可分为两个阶段:1)控制前期:即认为病毒传播方式是自然传播。

2)控制后期:政府强力介入之后的病毒传播模型。

4.2.2 模型建立根据对指数模型的分析和4.2的分析疫情走势的微分方程如下;dtd N(t) = K [ N(t) – N(t – L) ] . (1) 4.3模型的求解如果假定有一个初始爆发时间,最初有N0 个病人突然出现,在L 天之内(t < L)则 N(t-L)=0 。

在这个初发期间内,方程(1) 给出的发病人数呈指数增长N(t)=N(1+K)t( 0<t≤L) (2) 当L<t≤2L的时候,N(t-L)这部分人就已经没有传播能力了,因此我们推算出了下列模型N(t)= N0[(1+K)t–(t-L)K(1+K))1(--Lt ] (L<t≤2L)(3)当2L<t≤3L的时候又有下列模型N(t)= N(1+K)t–N(t-L) (2L< t ≤ 3L) (4)L可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后他失去传染作用,可能的原因是被严格隔离、病愈不再传染或死去等。

在不同的时期L的取值范围也是不一样的,我们所得到的资料中总结出不论对于疫情的爆发阶段,还是疫情的控制阶段,这个参数都不能用得太小,否则无法描写好各阶段的数据。

该参数放在15-25之间比较好,现在医学界还没有确定出L的值,我们想象可能有的人抵抗能力强,有的人抵抗能力差,因此我们把它固定在20(天)上这个值有一定统计上的意义.我们把L的值定在了20天,是合理的,当t的取值比较大时,该模型又有指数关系,N(t)前后之间的差距比较大,然而当t>60时,在这之前失去传播能力的只占了少部分,因此规定当t>60时也可用N(t)= N(1+K)t–N(t-L)的模型。

K的值其实是一个变量,它每天的值都在发生变化。

疫情刚开始的时候,K的值大,原因可能有刚可能是政府部门还没有足够重视起来,人们也还没有重视,医疗部门也还没有比较好的设备,医生们对病情也还没有很了解,技术上可能也还有不足。

但随着病情的日益加重,来自各个方面的重视程度都有很大的提高,这是K的值就比较小了。

在此模型中,我们认为感染率(K)在数值上与病例的增长率是相等的,疫情患者他传播在传播给健康人的时候,健康人他可能是带病毒了,但健康热处于潜伏期状态,据“全国“非典”科技攻关组公布七大科研进展”与于2003-06-03日报道中指出潜伏期患者传染的可能很小。

有关部门对非典暴发过程中两例传播链进行了细致的调查和分析,这两个案例中共追查到潜伏期密切接触者158人,无一人死亡。

因此我们在模型中说的感染率只为疫情患者传染给他人,而且他人发病,若他人不发病则不为感染率。

增长率在数值上即为感染率。

我们对全国所提供的所有数据中的已确诊病例累计进行了分析计算,得出感染率K的变化数据并画出了曲线图。

如图4-1所示:图4-1K(感染率)是一条跟t的值有关的曲线,我们通过回归法K的公式为:K = 7E-13t6 - 4E-10t5 + 8E-08t4 - 1E-05t3 + 0.0006t2 - 0.0191t +0.2325 (5)图4-1中R2=0.6988为曲线回归的均方差,可见存在的误差并不大。

t为疫情流行的天数。

4.4模型检验通过该公式可预测疫情开始时或以后的累计病人总数。

例如要预测某一天病人的累计总数,将时间t的天数代入方程(5)即可求得K(感染率)的大小,因为L的值定在20天,所以当0<t≤20时,将K代入(2);当20<t≤40时,将K代入(3);当40<t≤60时,将K代入(4)。

当t=10时,我们根据方程(5),可求得K=0.0923,我们再将K=0.0923代入(2)得到N=8。

当t=50时,我们根据方程(5),可求得K=0.0614,我们再将K=0.0614代入(2)得到N=308。

这与实际给出的数据非常接近。

可以说明我们的模型是一个比较能够预测以及能为预防和控制提供信息的模型。

4.5模型的应用与推广此模型可以作为预测以及能为预防和控制提供可靠、足够的信息的模型。

4.6与指数模型的比较1)我们对不同阶段的疫情的计算和预测建立了不同的模型,这样来分析比附件1所提供的早期模型更加的精确。

2)对感染率K求出了方程,可以知道每一天的疫情感染率,可以更加有效的计算与预测有关数据。

3)该模型实用性更强,能更加准确的反映实情。

5 建立模型的关键和困难建立模型的关键在于对模型进行动态的分析,当传染病发展到一定阶段在政府的控传染率下降。

相关文档
最新文档