八年级下册数学教案配新人教版

合集下载

新人教版八年级数学下册教案全册

新人教版八年级数学下册教案全册

新人教版八年级数学下册教案全册第一单元分式与有理数第一课有理数加减法本课程旨在教授学生有理数的加减法。

通过具体的生活实例和练题,让学生掌握有理数的加减法运算规则和方法。

研究目标- 理解有理数的概念和表示方法- 掌握有理数的加法和减法运算规则- 能够在实际生活中运用有理数进行加减法运算课程内容1. 有理数的概念和表示方法2. 有理数的加法运算规则3. 有理数的减法运算规则4. 实际生活中的加减法运算练授课步骤1. 引入:通过问题引发学生对有理数加减法的思考,激发学生的研究兴趣。

2. 理论讲解:介绍有理数的概念和表示方法,并讲解有理数的加法和减法运算规则。

3. 实例演示:通过具体的实例演示有理数的加减法运算过程,帮助学生理解运算规则。

4. 练训练:设计一系列的练题,让学生巩固和应用所学的加减法运算规则。

5. 总结提高:总结本课所学的内容,并提出下节课的预任务。

教学资源- 教材:新人教版八年级数学下册- 实例演示用的实物或图片- 练题和答案评估方式- 检查课堂讨论的参与度- 作业完成情况- 答题准确率第二课分式的概念与性质本课程旨在介绍分式的概念和性质。

通过生动的例子和实践操作,使学生理解分式的含义和相关性质。

研究目标- 了解分式的概念和表示方法- 掌握分式的化简和扩展方法- 能够应用分式解决实际问题课程内容1. 分式的概念和表示方法2. 分式的化简和扩展方法3. 分式的实际应用授课步骤1. 引入:通过生活中的实例引发学生对分式的思考,激发学生的研究兴趣。

2. 理论讲解:介绍分式的概念和表示方法,并讲解分式的化简和扩展方法。

3. 实例演示:通过具体的实例演示分式的化简和扩展过程,帮助学生掌握方法。

4. 实践操作:设计分组活动,让学生通过实际操作解决分式相关问题。

5. 总结提高:总结本课所学的内容,并提出下节课的预任务。

教学资源- 教材:新人教版八年级数学下册- 实际生活中的分数例子- 分组活动所需的材料评估方式- 检查课堂讨论的参与度- 实践操作的表现和成果- 练题和作业的完成情况及准确率...(继续编写其他单元的教案)。

新人教版八年级数学下册《19.2.3一次函数与方程、不等式》教案

新人教版八年级数学下册《19.2.3一次函数与方程、不等式》教案

新人教版八年级数学下册《一次函数与方程、不等式(3)》教学设计一、创建情境问题为了研究某合金资料的体积V(cm3)随温度t(℃)变化的规律,对一个用这类合金制成的圆球测得有关数据以下:可否据此求出V和t的函数关系?将这些数值所对应的点在座标系中作出.我们发现,这些点大概位于一条直线上,可知V和t近似地切合一次函数关系.我们能够用一条直线去尽可能地与这些点相切合,求出近似的函数关系式.以下列图所示的就是一条这样的直线,较近似的点应当是(10,1000.3)和(60,1002.3).V=kt+b(k≠0),把(10,1000.3)和(60,1002.3)代入,可得k=,b=.V=+.你也能够将直线稍稍搬动一下,不取这两点,换上更适合的两点.二、研究概括我们曾采纳待定系数法求得一次函数和反比率函数的关系式.可是现实生活中的数目关系是盘根错节的,在实践中得到一些变量的对应值,有时很难精准地判断它们是什么函数,需要我们依据经验剖析,也需要进行近似计算和修正,第1页成立比较靠近的函数关系式进行研究.三、实践应用1为了学生的身体健康,学校课桌、凳的高度都是按必定的关系科学设计的.小明对学校所添置的一批课桌、凳进行察看研究,发现它们能够依据人的身长调理高度.于是,他丈量了一套课桌、凳上相对应的四档高度,获得以下数据:(1)小明经过对数据研究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);小明回家后,丈量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为,请你判断它们能否配套?说明原因.解(1)设一次函数为y=kx+b(k≠0),将表中数据任取两组,不如取(37.0,70.0)和(42.0,78.0)代入,得解得一次函数关系式是y=+.(2)当x=时,y=×+=≠77.答一次函数关系式是y=+,小明家里的写字台和凳子不配套.2某企业到果园基地购置某种优良水果,慰劳医务工作者.果园基地对购置量在3000千克以上(含3000千克)的第2页有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该企业租车从基地到企业的运输费为5000元.(1)分别写出该企业两种购置方案的付款?第3页。

人教版八年级数学下册全册教案(9篇)

人教版八年级数学下册全册教案(9篇)

人教版八年级数学下册全册教案(9篇)人教版八年级数学下册教案篇一1、掌握一次函数解析式的特点及意义2、知道一次函数与正比例函数的关系3、理解一次函数图象特点与解析式的联系规律1、一次函数解析式特点2、一次函数图象特征与解析式的联系规律1、一次函数与正比例函数关系2、根据已知信息写出一次函数的表达式。

ⅰ.提出问题,创设情境问题1 小明暑假第一次去北京.汽车驶上a地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知a地直达北京的高速公路全程为570千米,小明想知道汽车从a地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是s=570-95t.说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的'存款与从现在开始的月份之间的函数关系式.分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.问题3 以上问题1和问题2表示的这两个函数有什么共同点?ⅰ.导入新课上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。

并且自变量和因变量的指数都是一次。

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当b=0时,称y是x的正比例函数。

例1:下列函数中,y是x的一次函数的是()①y=x-6;②y=2x;③y=;④y=7-x x8a、①②③b、①③④c、①②③④d、②③④例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长l(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)分析确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.解(1)a?20,不是一次函数.h(2)l=2b+16,l是b的一次函数.(3)y=壹五0-5x,y是x的一次函数.(4)s=40t,s既是t的一次函数又是正比例函数.(5)y=60x,y是x的一次函数,也是x的正比例函数;(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;(7)y=50+2x,y是x的一次函数,但不是x的正比例函数例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.分析根据一次函数和正比例函数的定义,易求得k的值.解若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.例4 已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.解(1)因为y与x-3成正比例,所以y=k(x-3).又因为x=4时,y=3,所以3=k(4-3),解得k=3,所以y=3(x-3)=3x-9.(2) y是x的一次函数.(3)当x=2.5时,y=3×2.5=7.5.1.2例5 已知a、b两地相距30千米,b、c两地相距48千米.某人骑自行车以每小时12千米的速度从a地出发,经过b地到达c地.设此人骑行时间为x(时),离b地距离为y (千米).(1)当此人在a、b两地之间时,求y与x的函数关系及自变量x取值范围.(2)当此人在b、c两地之间时,求y与x的函数关系及自变量x的取值范围.分析(1)当此人在a、b两地之间时,离b地距离y为a、b两地的距离与某人所走的路程的差.(2)当此人在b、c两地之间时,离b地距离y为某人所走的路程与a、b两地的距离的差.解(1) y=30-12x.(0≤x≤2.5)(2) y=12x-30.(2.5≤x≤6.5)例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.分析因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.解在第一阶段:y=3x(0≤x≤8);在第二阶段:y=16+x(8≤x≤16);在第三阶段:y=-2x+88(24≤x≤44).ⅰ.随堂练习根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y 是否为x有正比例函数?2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。

新人教版八年级数学下册教案

新人教版八年级数学下册教案

新人教版八年级数学下册教案正确地理解和形成一个数学概念,必须明确这个数学概念的内涵——对象的“质”的特征,及其外延——对象的“量”的范围。

一般来说,数学概念是运用定义的形式来揭露其本质特征的。

下面由我为大家整理了关于新人教版八年级数学下册教案,供大家参考。

新人教版八年级数学下册教案1:分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 .3. 难点与突破方法分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实.三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1四、课堂引入1.出示P13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析]这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1六、随堂练习计算(1) (2) (3)(4)-8xy (5) (6)七、课后练习计算(1) (2) (3)(4) (5) (6)八、答案:六、(1)ab (2) (3) (4)-20x2 (5)(6)七、(1) (2) (3) (4)(5) (6)新人教版八年级数学下册教案2:分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.3.认知难点与突破方法:紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则.三、例、习题的意图分析1. P17页例4是分式乘除法的混合运算.分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1) (2)五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1)= (先把除法统一成乘法运算)= (判断运算的符号)= (约分到最简分式)(2)= (先把除法统一成乘法运算)= (分子、分母中的多项式分解因式)==六、随堂练习计算(1) (2)(3) (4)七、课后练习计算(1) (2)(3) (4)八、答案:六.(1) (2) (3) (4)-y七. (1) (2) (3) (4)新人教版八年级数学下册教案3:分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.3.认知难点与突破方法讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算= = = , = = = ,……顺其自然地推导可得:= = = ,即 = . (n为正整数)归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.三、例、习题的意图分析1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:(1) = =( ) (2) = =( )(3) = =( )[提问]由以上计算的结果你能推出 (n为正整数)的结果吗?五、例题讲解(P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.判断下列各式是否成立,并改正.(1) = (2) =(3) = (4) =2.计算(1) (2) (3)(4) 5)(6)七、课后练习计算(1) (2)(3) (4)八、答案:六、1. (1)不成立, = (2)不成立, =(3)不成立, = (4)不成立, =2. (1) (2) (3) (4)(5) (6)七、(1) (2) (3) (4)。

人教新目标八年级下册数学全册教案

人教新目标八年级下册数学全册教案

人教新目标八年级下册数学全册教案第一章:实数与运算- 教学目标:通过本章的研究,使学生掌握实数的概念、性质以及实数的四则运算。

- 教学重点:实数的概念和性质、实数的四则运算。

- 教学难点:实数的乘法法则和除法法则的理解与运用。

第二章:代数与代数式- 教学目标:通过本章的研究,使学生掌握代数式的概念、性质以及代数式的加减乘除。

- 教学重点:代数式的概念和性质、代数式的加减乘除。

- 教学难点:代数式的减法和除法法则的理解与运用。

第三章:方程与方程组- 教学目标:通过本章的研究,使学生掌握一次方程与一次方程组的概念、性质以及解法。

- 教学重点:一次方程与一次方程组的概念和性质、一次方程与一次方程组的解法。

- 教学难点:一次方程与一次方程组的解法的灵活运用。

第四章:图形的认识和运用- 教学目标:通过本章的研究,使学生掌握图形的基本概念、性质以及图形的运用。

- 教学重点:图形的基本概念和性质、图形的运用。

- 教学难点:图形的运用和推理问题的解答。

第五章:比例与变比- 教学目标:通过本章的研究,使学生掌握比例与变比的概念、性质以及应用。

- 教学重点:比例与变比的概念和性质、比例与变比的应用。

- 教学难点:比例与变比应用问题的解答和推理。

第六章:分析图上的数据- 教学目标:通过本章的研究,使学生掌握统计图表的基本概念、性质以及数据的分析与应用。

- 教学重点:统计图表的基本概念和性质、数据的分析与应用。

- 教学难点:统计图表的应用问题的解答和数据的分析。

总结通过本教案中的教学设计,学生将能够在数学基础知识的基础上,掌握实数与运算、代数与代数式、方程与方程组、图形的认识和运用、比例与变比以及分析图上的数据等重要内容。

通过课堂教学的引导,培养学生的逻辑思维能力,提高数学解题的能力,为学生未来的学习打下坚实的数学基础。

人教版八年级数学下册全册教案(优秀5篇)

人教版八年级数学下册全册教案(优秀5篇)

人教版八年级数学下册全册教案(优秀5篇)人教版八年级数学下册全册教案篇一因式分解1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。

3.公因式的确定:系数的公约数?相同因式的最低次幂。

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式。

人教版八年级数学下册教案篇二1.类比分数的乘除运算探索分式的乘除运算法则。

2.会进行简单分式的乘除运算。

3.能解决一些与分式乘除运算有关的简单的实际问题。

4. 在故事情境中激发学生学习数学的兴趣,促进良好的数学观的养成。

数学生活化,学好数学,为幸福人生奠基。

本节课选自北师大版八下数学《5.2分式的乘除法》的第一课时。

学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

分式是分数的“代数化”,与分数的约分、分数的。

乘除法有密切的联系,也为后面学习分式的混合运算、分式方程等做了准备。

八年级学生具有很强的感性认识的基础,对具体的实践活动十分感兴起,在课堂中思维活跃,乐于表现自己,但在推理方面还不够严谨。

人教版数学八年级下册教案全册最新版

人教版数学八年级下册教案全册最新版

人教版数学八年级下册教案全册最新版一、教学内容第六章:数据的分析1. 平均数2. 中位数和众数3. 从统计图获取信息第七章:平面几何图形1. 三角形2. 勾股定理3. 矩形、菱形、正方形二、教学目标1. 理解并掌握数据分析的基本概念,能够运用平均数、中位数和众数描述数据集。

2. 能够解读不同类型的统计图,提取并分析信息。

3. 掌握三角形的基本性质,运用勾股定理解决实际问题。

4. 熟悉矩形、菱形和正方形的特征,并能应用于解决几何问题。

三、教学难点与重点教学难点:勾股定理的推导和应用,矩形、菱形和正方形性质的深入理解。

教学重点:数据分析的基本方法,几何图形性质的实际应用。

四、教具与学具准备教具:多媒体教学设备,几何模型,统计图表。

学具:直尺,圆规,量角器,计算器。

五、教学过程1. 引入实践情景:通过展示生活实例,如购物小票数据分析、房屋面积测量,引出平均数、勾股定理等概念的实际应用。

2. 新课导入:讲解平均数、中位数、众数的定义和计算方法。

通过例题讲解,让学生动手计算并分析数据。

3. 例题讲解:演示如何利用勾股定理解决实际问题。

分析矩形、菱形和正方形的性质,并给出例题。

4. 随堂练习:设计练习题,包括数据的分析、几何图形的识别和应用。

学生独立完成,教师巡回指导。

梳理本节课的知识点,强调重点和难点。

回答学生疑问,巩固学习成果。

六、板书设计左侧:列出数据分析的关键概念和公式。

七、作业设计1. 作业题目:计算给定数据集的平均数、中位数和众数。

利用勾股定理解决实际问题。

识别并运用矩形、菱形和正方形的性质。

2. 答案:提供详细的解答步骤和答案。

八、课后反思及拓展延伸拓展延伸:鼓励学生探索数据分析在其他领域的应用,如经济学、社会学等;开展几何图形设计活动,激发学生对几何学的兴趣。

重点和难点解析1. 教学目标的设定2. 教学难点与重点的把握3. 例题讲解的深度和广度4. 随堂练习的设计5. 作业设计的针对性和拓展性一、教学目标的设定1. 数据分析能力的培养,使学生掌握描述数据集的基本方法。

新部编人教版八年级下册数学全册教案

新部编人教版八年级下册数学全册教案

新部编人教版八年级下册数学全册教案第一章有理数
第一节知识点
本节主要介绍正负数的概念,以及加减法的计算方法。

第二节教学目标
1. 掌握正负数的概念。

2. 能够正确使用正负数进行加减法运算。

3. 能够应用所学知识解决实际问题。

第三节教学重点和难点
重点:正负数的概念及加减法的计算方法。

难点:如何将实际问题转换为运算式进行计算。

第四节教学方法和学时安排
教学方法:课堂讲授、互动探究、小组讨论。

学时安排:本节课共2学时。

第二章代数式与方程
第一节知识点
本节主要介绍代数式的基本概念,以及如何将实际问题转换为代数式。

第二节教学目标
1. 掌握代数式的概念。

2. 能够将实际问题转换为代数式。

3. 能够使用代数式解决实际问题。

第三节教学重点和难点
重点:代数式的概念及如何将实际问题转换为代数式。

难点:如何将复杂实际问题转换为简单的代数式。

第四节教学方法和学时安排
教学方法:课堂讲授、互动探究、小组讨论。

学时安排:本节课共3学时。

......(省略后续内容)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学教案配新人教版八年级下册数学教案配新人教版【篇1】一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.2、会求一组数据的极差.二、重点、难点和难点的突破方法1、重点:会求一组数据的极差.2、难点:本节课内容较容易接受,不存在难点.三、课堂引入:下表显示的是上海2月下旬和同期的每日最高气温,如何对这两段时间的气温进行比较呢?从表中你能得到哪些信息?比较两段时间气温的高低,求平均气温是一种常用的方法.经计算可以看出,对于2月下旬的这段时间而言,和上海地区的平均气温相等,都是12度.这是不是说,两个时段的气温情况没有什么差异呢?根据两段时间的气温情况可绘成的折线图.观察一下,它们有区别吗?说说你观察得到的结果.用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).四、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

八年级下册数学教案配新人教版【篇2】教学目标:1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L 的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

教学方法:动手实践、讨论。

教学工具:课件教学过程:一、先复习轴对称图形的定义,以及轴对称的相关的性质:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________2.轴对称的三个重要性质___________________________________________________________________________________________________________________二、提出问题:二、探索练习:1. 提出问题:如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

你能画出这个图案的另一半吗?吸引学生让学生有一种解决难点的想法。

2.分析问题:分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点,可采用如下方法:`在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

三、对所学内容进行巩固练习:1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

2. 试画出与线段AB关于直线L的线段3.如图,已知直线MN,画出以MN为对称轴的轴对称图形小结:本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。

因本节课内容较有趣,许多学生上课积极性较高八年级下册数学教案配新人教版【篇3】一、学习目标及重、难点:1、了解方差的定义和计算公式。

2、理解方差概念的产生和形成的过程。

3、会用方差计算公式来比较两组数据的波动大小。

重点:方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式二、自主学习:(一)知识我先懂:方差:设有n个数据,各数据与它们的平均数的差的平方分别是我们用它们的平均数,表示这组数据的方差:即用来表示。

给力小贴士:方差越小说明这组数据越。

波动性越。

(二)自主检测小练习:1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

2、甲、乙两组数据如下:甲组:10 9 11 8 12 13 10 7;乙组:7 8 9 10 11 12 11 12.分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.三、新课讲解:引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、 10、13、7、13、10、8、11、8;乙:8、13、12、11、10、12、7、7、10、10;问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = )(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是我们用它们的平均数,表示这组数据的方差:即用来表示。

(一)例题讲解:例1、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、测试次数第1次第2次第3次第4次第5次段巍 13 14 13 12 13金志强 10 13 16 14 12给力提示:先求平均数,在利用公式求解方差。

(二)小试身手1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7 经过计算,两人射击环数的平均数是,但S = ,S = ,则S S ,所以确定去参加比赛。

1、求下列数据的众数:(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 22、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。

8年级一班学生年龄的平均数,中位数,众数分别是多少?四、课堂小结方差公式:给力提示:方差越小说明这组数据越。

波动性越。

每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。

五、课堂检测:1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8如果根据这几次成绩选拔一人参加比赛,你会选谁呢?六、课后作业:必做题:教材141页练习1、2 选做题:练习册对应部分习题七、学习小札记:写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!八年级下册数学教案配新人教版【篇4】教学目标:1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

2、能力目标:①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。

②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。

3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。

重点与难点:重点:图形之间的变换关系(轴对称、平移、旋转及其组合);难点:综合利用各种变换关系观察图形的形成。

疑点:基本图案不同,形成方式不同。

教学方法:新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。

教学过程设计:1、情境导入播放自制图形形成的影片,如图351。

2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:(1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成;(2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的;(3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;(4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。

(学生可能还有其他不同描述,教师应予以肯定)3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。

4、利用想一想你能将图352的左图,通过平移或旋转得到右图吗?学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。

那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。

5、例1、怎样将图353中的甲图变成乙图案?通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)例2、怎样将图354中右边的图案变成左边的图案?留给学生充足的时间讨论交流。

(师):哪位同学有好好方法,请告诉大家!(生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900 。

(生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700 。

明确可以通过不同的办法达到同样的效果,激励学生动手动脑。

5、学习小结(1)内容总结两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)(2)方法归纳①了解并知道图案变化的一般方法。

②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。

6、目标检测图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?延伸拓展:1、链接生活链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。

(用课本知识解释生活中的图形变换)链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)实践探索:①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)②巩固练习课本74页中的习题3.6。

板书设计:3.5它们是怎样变过来的。

轴对称、平移、旋转的性质例题;图形之间的变换关系;八年级下册数学教案配新人教版【篇5】教学目标:1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:算术平方根的概念。

教学难点:根据算术平方根的概念正确求出非负数的算术平方根。

相关文档
最新文档