不等式证明
基本不等式证明过程

基本不等式证明过程一、引言基本不等式是高中数学中非常重要的一个概念,它是解决不等式问题的基础。
本文将详细介绍基本不等式的证明过程。
二、基本不等式的定义在高中数学中,我们通常将两个正数a和b的平方和表示为a²+b²,而(a+b)²则表示它们的平方和加上2ab。
因此,我们可以得到以下公式:(a+b)² = a² + 2ab + b²根据这个公式,我们可以得到一个非常重要的结论:对于任意两个实数a和b,都有以下不等式成立:(a+b)² ≥ 4ab这就是基本不等式。
三、证明过程1. 将(a+b)²展开首先,我们需要将(a+b)²展开,得到以下结果:(a+b)² = a² + 2ab + b²2. 将2ab移到左边,并化简接下来,我们将2ab移到左边,并进行化简:(a+b)² - 4ab = a² - 2ab + b²(a-b)² ≥ 0由于平方永远大于或等于0,所以最后一步成立。
3. 化简左边表达式现在我们需要化简左边的表达式:(a+b)² - 4ab = (a-b)² + 4ab - 4ab(a+b)² - 4ab = (a-b)²4. 得出结论由于(a+b)² ≥ 0,所以(a-b)² ≥ 0。
因此,我们得出结论:(a+b)² ≥ 4ab这就是基本不等式。
四、基本不等式的应用基本不等式在高中数学中非常重要,它可以用于解决各种不等式问题。
例如,我们可以使用它来证明以下结论:对于任意三角形ABC,有以下不等式成立:AB² + AC² + BC² ≥ 4S²其中S表示三角形ABC的面积。
证明过程如下:1. 将三角形ABC分为四个小三角形:ABD、ACD、BCE和BDE。
利用基本不等式证明不等式

利用基本不等式证明不等式作者李凤岩利用基本不等式证明不等式时,首先要观察题中要证明不等式的形式.若符合基本不等式的条件,可以直接利用基本不等式或最值定理证明.若不符合基本不等式的条件,可以对代数式进行拆项、变形、配凑等,使之达到使用基本不等式的条件.若题中还有等式条件,要分析等式条件和所证不等式之间的联系,当等式条件中含有1时,要注意1的代换.最后,要注意等号能否取到.题型一无等式条件的证明问题【例】已知2a >,求证:log (1)log (1)1a a a a -⋅+<.证明: 2a >,0log (1)log (1)a a a a <-<+,∴22log (1)log (1)log (1)log 1222a a a a a a a a -++-==.【例】已知a ,b ,c 都是实数,求证:22221()3a b c a b c ab bc ca ++≥++≥++.证明: a ,b ,c ∈R ,∴222a b ab +≥,222b c ac +≥,222c a ca +≥.将这三个式子相加,得2222()222a b c ab bc ca ++≥++.①在不等式①两边同时加上222a b c ++,得22223()()a b c a b c ++≥++,即22221()3a b c a b c ++≥++.②将不等式①两边同时加上444ab bc ca ++,得22()6()a b c ab bc ca ++≥++,即21()3a b c ab bc ca ++≥++.③由②③,得22221()3a b c a b c ab bc ca ++≥++≥++.【例】设a 、b 、c 是不全相等的正数,求证:bc ac ab a b c a b c++>++.证明: a 、b 、c 是不全相等的正数,∴2bc ac c a b +>,2bc ab b a c +>,2ac ab a b c+>.∴2()2()bc ac ab a b c a b c ++>++,即bc ac ab a b c a b c ++>++.【例】已知a ,b ,c 为正数,求证:3b c a c a b a b c a b c+-+-+-++≥.证明:左边111()()()3b c c a a b b a c a b c a a b b c c a b a c c b=+-++-++-=+++++-. 0a >,0b >,∴2b a a b+≥,当且仅当a b =时,取等号;2c a a c+≥,当且仅当a c =时,取等号;2b c c b+≥,当且仅当b c =时,取等号.∴(()()33b a c a b c a b a c c b +++++-≥,即3b c a c a b a b c a b c+-+-+-++≥.【例】已知0a >,0b >,求证:1111222222()()a b a b b a+≥+.证明: 0a >,0b >,∴.≥,即1111222222()()a b a b b a +≥+.当且仅当a b =时,取等号.【例】若a 、b 、c 均为正数,求证:3333a b c abc ++≥.证明: 33223232222()()()()()a b a b ab a a b b ab a a b b b a a b a b +-+=-+-=-+-=-+.又 a ,b 均为正数,0a b +>,2()0a b -≥,2()()0a b a b -+≥,∴3322a b a b ab +≥+.①同理3322a c a c ac +≥+.②3322b c b c bc +≥+.③①+②+③得:333222222222()()()a b c a b ab a c ac b c bc ++≥+++++222222()()()b ac a b c c a b =+++++222b ac a bc c ab≥⋅+⋅+⋅6abc =.∴3333a b c abc ++≥,当且仅当a b c ==时,取等号.题型二有等式条件的证明问题【例】若a ,b 均为正数,且1a b +=,求证:149a b+≥.证明: 0a >,0b >,且1a b +=.∴14144()()145529b a a b a b a b a b +=++=+++≥++.当且仅当4b a a b =,即13a =,23b =时取等号.【例】已知a ,b ,c 均为正数,且1a b c ++=,求证:1119a b c ++≥.证明:(方法一) 0a >,0b >,0c >,且1a b c ++=,∴111111()()a b c a b c a b c++=++++111a a b b c c b c a c a b=++++++++3()()()a b b c c a b a c b a c=++++++3≥+9=.当且仅当13a b c ===时,取等号.(方法二) 0a >,0b >,0c >,且1a b c ++=,111a b c a b c a b c a b c a b c++++++++=++111a a b b c c b c a c a b=++++++++3()()()a b b c c a b a c b a c=++++++3≥+9=.当且仅当13a b c ===时,取等号.【例】已知a ,b ,c +∈R ,且不全相等,若1abc =,证明:111a b c ++>.证明: 0a >,0b >,0c >,1abc =,∴11a b +≥=,当且仅当a b =时,取等号.11b c +≥,当且仅当b c =时,取等号.11c a +≥,当且仅当c a =时,取等号. a ,b ,c 不全相等,∴111111()()()a b b c c a+++++>.即111a b c++>.【例】已知正实数x ,y ,z 满足1x y z ++=,求证:111(1)(1)(1)8x y z---≥.证明: 0x >,0y >,0z >,∴x y +≥,当且仅当x y =时,等号成立.y z +≥,当且仅当y z =时,等号成立.z x +≥,当且仅当z x =时,等号成立.又 1x y z ++=,∴1x y z -=+,1y x z -=+,1z x y -=+.∴111(1)(1)(1)x y z ---111()()()x y z x y z ---=()()()y z x z x y x y z +++=)()(y ≥88xyz xyz==.当且仅当x y =且y z =且z x =,即x y z ==时,等号成立.【例】已知0a >,0b >,1a b +=,求证:1125()(4a b a b ++≥.证明:2111()2a b a b a b aba b b a ab b a ++=+++=++. 0a >,0b >,∴2a b b a +≥.1a b =+≥,∴12≤32-≥,即294-≥.∴11925()(2244a b a b ++≥++=.当且仅当a b =时,等号成立.【例】已知0a >,0b >,1a b +=,求证221125()()2a b a b +++≥.证明:2211(()a b a b+++2222114a b a b =++++222211()()4a b a b =++++22112()2()4a b ab a b ab ⎡⎤⎡⎤=+-++-+⎣⎦⎢⎥⎣⎦221(12)(1)4ab a b =-++. 21()24a b ab +≤=,∴1112122ab -≥-=,22116a b ≥,221117a b +≥.∴2211125()()17422a b a b +++≥⨯+=(当且仅当12a b ==时,等号成立).。
全部的初等不等式证明

初等不等式证明一、基本不等式及应用基本不等式是指已被人们证明了的较为常用的不等式,它常被当作定理,用于证明其他一些不等式.基本不等式在许多不等式专著中都作过介绍.这里给出几个常用的基本不等式. 1. 平均值不等式设12,,,n a a a ⋅⋅⋅是n 个正实数,记12111n nn H a a a =++⋅⋅⋅+,n G =12n n a a a A n ++⋅⋅⋅+=,n Q =, 分别称n n n n H G A Q 、、、为这n 个正数的调和平均、几何平均、算术平均和平方平均,则有n n n n H G A Q ≤≤≤, 当且仅当12n a a a ==⋅⋅⋅=时取等号.2. 柯西(Cauchy )不等式 设,(1,2,,)i i a b R i n ∈=⋅⋅⋅,则 222111()()()nn ni i i i i i i a b a b ===≤∑∑∑,当数组12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅不全为零时,当且仅当(1,2,,,0)i i b a i n λλ==⋅⋅⋅≠时取等号.3. 排序不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤,则 有1211n n n a b a b a b -++⋅⋅⋅+ (反序和) 1212n i i n i a b a b a b ≤++⋅⋅⋅+ (乱序和) 1122n n a b a b a b ≤++⋅⋅⋅+ (同序和)当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时取等号.4. 琴生(Jensen )不等式设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内的任意两个数12,x x ,都有1212()()()22x x f x f x f ++≤, 则称()f x 为(,)a b 上的凸函数.若上式不等式反号,则称()f x 为(,)a b 上的凹函数.若()f x 为(,)a b 上的凸函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≤++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.若为(,)a b 上的凹函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有 12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≥++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.5. 贝努利(Bernoulli )不等式 设1x >-,若0α<,或1α>-,则 (1)1x x αα+≥+. 若01α<<,则(1)1x x αα+≤+.当且仅当0x =时,以上两式均取等号. 6. 赫尔德(H ǒlder )不等式设,,,(1,2,,)i i i a b l R i n +⋅⋅⋅∈=⋅⋅⋅,又,,,R αβλ+⋅⋅⋅∈,且1αβλ++⋅⋅⋅+=,则有1111()()()nn n nii i i i i i i i i ab l a b l αβλαβλ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑,.当且仅当111(1,2,,)kkknnni i ii i i a b l k n a b l=====⋅⋅⋅==⋅⋅⋅∑∑∑时取等号.特别当1nαβλ==⋅⋅⋅==时,有 11111[()]()()()nn n nnn i iii i i i i i i a b l a b l ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑.7. 切比雪夫(Chebyshev)不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≥≥⋅⋅⋅≥,则有111111()()n n ni i i i i i i a b a b n n n ===≥∑∑∑.若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≥≥⋅⋅⋅≥,或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≤≤⋅⋅⋅≤, 则有111111()()n n ni i i i i i i a b a b n n n ===≤∑∑∑.当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时以上两式均取等号.8. 加权幂平均不等式设,(1,2,,)i i a p R i n +∈=⋅⋅⋅,,r s R ∈,且r s <,则111111nnrsrsi i i i i i nn i i i i p a p a p p ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪≤⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 当且仅当12n a a a ==⋅⋅⋅=时取等号. 9. 其他(1)设,,,,,x y z R αβγ∈,且(21)k αβγπ++=+(k Z ∈),则 i ) 2221cos cos cos ()2yz zx xy x y z αβγ++≤++ 当且仅当sin sin sin yz zx xy αβγ==时取等号.ii ) 22221sin sin sin ()4yz zx xy x y z αβγ++≤++, 当且仅当sin 2sin 2sin 2yz zx xy αβγ==时取等号. (2) 设,,1,2,,,ij x R i j n ∈=⋅⋅⋅则1n i =≥,当且仅当123::::i i i ni x x x x λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(3)设,,,,i i i i x y z l R -⋅⋅⋅∈,22220i i i i x y z l ---⋅⋅⋅-≥,1,2,3,,i n =⋅⋅⋅,则1ni =≤当且仅当::::i i i i x y z l λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(4)两个有用定理定理1 设,,u v R λ+∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,x =,y =i ) 23()61(xy xy xy +---(1)(2)3283()61(x xy xy xy ≤≤+-+-ii )23()61(xy xy xy +---(3)(4)3283()61(y xy xy xy ≤≤+-+-.当且仅当,,u v λ中有两个数相等且不小于第三个数时,(1)、(4)两式取等号;当且仅当,,u v λ中有两个数相等,且不大于第三个数时,(2)、(3)两式取等号.推论1 同定理1条件,有(5)(6)324(1)4(1)164129()219595xy xy xy x xy xy xy xy ---+≤≤++---;(7)(8)324(1)4(1)164129()219595xy xy xy y xy xy xy xy ---+≤≤++---当且仅当u v λ==时,(5)、(6)、(7)、(8)四式取等号.推论2 同定理1条件,有x ≤≤3(11)(12)12728972x y x x-+++≤≤,当且仅当u v λ==时,(9)、(10)、(11)、(12)四式均取等号.定理2 设,,u v R λ∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,w =(10w s ≤≤),则32322323(13)(14)11111111332(2)()(2)()3227272727s s w w s w s w s w s w s s w w s ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于113s 时,(13)式取等号;当且仅当,,u v λ中有两个数相等,且不大于113s 时,(14)式取等号. 推论3 同定理2条件,特别当11s =时,有232223(15)(16)132(12)(1)(12)(1)132********w w w w w w w w uv λ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于13时,(15)式取等号;当且仅当,,u v λ中有两个数相等,且不大于13时,(16)式取等号. 注:在应用定理2与其推论3时,要特别注意120w -≤的情况,有时要对120w -≤和120w -≥分别加以讨论,尤其在0u λν≥时的情况.(一) 算术几何平均值不等式应用例子 例1 已知 ,1,2,i a R i +∈=…,n, 且11nii a==∑,求证()()()()3122311*********n n n n a a a a a a a a n -++⋅⋅⋅++≥+++++ (1) 当且仅当 121n a a a n==⋅⋅⋅==时,(1)式取等号.例2 (20XX 年全国十八所奥赛协作体学校试题)设 ,,,a b c R +∈且 1bc ca ab ++=,求证1abc≤ (2) 提示 由1bc =≥∑知,可证更强式(3)⇔3 (※)例3 (2005,第17届亚太地区数学奥林匹克)设 ,,,x y z R +∈且 8xyz =,则243≥(4) 当且仅当2x y z ===时,(4)式取等号.注:由本题证明中可知,若将条件改为12yz zx xy ++≥,结论也成立.例4 (自创题,2006.12.17) 设,,a b c R +∈,则> (5)例 5 (自创题,1988.10.13)设同一平面上两个凸四边形的边长分别为,,,a b c d 和,,,a b c d '''',面积分别为∆和'∆,那么aa bb cc dd ''''+++≥ (6) 当且仅当这两个凸四边形都内接于圆(不一定要同一个圆),且 ()()()s a s a s b ''--=-⋅()()()()()s b s c s c s d s d ''''''-=--=--时,(6)式取等号. 这里1()2s a b c d =+++,1()2s a b c d '''''=+++.附: 凸四边形ABCD 四边长分别为AB a =,BC b =,CD c =,DA d =,当且仅当此四边形ABCD 内接于圆时,其面积最大,最大值为max ()ABCD S =(7)例6 (自创题,2006.12.26)设,,,a b c d R -∈,则32222()4[()()()()]a a c d b d a c a b d b c ≥+++++++∑ (8)当且仅当a c =,b d =时,(8)式取等号.例7 设,,x y z R -∈,求证 25()81x xyz x ≥⋅∑∑ (9)当且仅当x y z ==时,(9)式取等号.(二) 柯西不等式应用例子 例1 设,i i x y R ∈,1,2,,i n =⋅⋅⋅,且10nii x=≥∑,10ni i y =≥∑,10i j i j nx x ≤<≤≥∑,10i j i j ny y ≤<≤≥∑,1ni i x x ==∑,则1()niii x x y=-≥∑ (1)yxdc baDCBA当且仅当1212n nx x x y y y ==⋅⋅⋅= 时,(1)式取等号. 在(1)式中,当3n =时,被人们称之为“母不等式”.即以下 命题1:设123123,,,,,x x x y y y R ∈,且10x≥∑,10y ≥∑,120x x ≥∑,120y y ≥∑,则231()xx y +≥∑ (2)当且仅当312123x x x y y y ==时,(2)式取等号. 命题1应用如下:1.(匹多不等式)ABC ∆与'''A B C ∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2222()16ab c a ''-++≥∆∆∑ (3) 当且仅当ABCA B C '''∆∆时,(3)式取等号. 提示:取222x a b c =-++,2222x a b c ''''=-++等,并应用三角形面积公式.2.(程灵提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()a b c a '-++≥∑ (4)当且仅当ABC ∆与'''A B C ∆均为正三角形时,(4)式取等号.提示:在(2)中取1x a b c '''=-++,1y a b c =-++等,并应用到22bc a-∑∑≥.3.(安振平提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2()()16a b c a b c a ''-++-≥∆∆∑ (5)当且仅当222()()()a b c a a b c b a b c c a b c '''==-++-++-时,(5)式取等号.提示:在(2)中取2221x a b c '''=-++,1()()y a b c a b c =-++-等.4.(自创题,1983.05.07)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()()()16a a b c a b c a b c '''''''-++-++-≥∆∆∑ (6)当且仅当ABCA B C '''∆∆时,(6)式取等号.提示:在(2)中取1()()x a b c a b c =-++-,1()()y a b c a b c ''''''=-++-等. 以上(3)式与(6)式有相同的取等号条件,试讨论他们左边式子的大小.5. 设ABC ∆三边长为,,BC a CA b AB c ===,面积为∆,P 为ABC ∆内部或边界上一点,从P 分别向三边BC 、CA 、AB 所在直线作垂线,垂足分别为D 、E 、F ,记1PD r =,2PE r =,3PF r =,则223242r r bc a∆≤-∑∑∑. (7) 提示:12342()()ar a b c r r ∆==-+++∑∑≥≥.我们还可以由(2)式得到或证明更多不等式.又如第六章,“三角几何不等式”中的例6、例22等.注:类似上述方法,应用赫尔德不等式,有 命题 设x ,,i i i y z R -∈,1,2,3i =,则123123123111222333()()()()x x x y y y z z z x y z x y z x y z ++++++-++≥.(8)例2 (自创题,1988,0.4.20)设,,,,x y z w R λ∈,且0,0xy zw >>,2λ≤,则≤(9)=时,(9)式取等号.注:(9)式可参阅由吴康主编的《奥赛金牌之路》(高中数学)“第一章 §6 三角不等式”(P81—P90),本节系杨学枝所写.利用同上证法可得以下命题(自创题):设,,,x y z w R +∈,(21)k αβγθπ+++=+ ()k z ∈,则sin sin sin sin x y z w αβγθ+++≤(10)当且仅当,cos cos cos cos x y z w αβγθ=== 时,(9)式取等号.(10)式为笔者首创,可参见同上吴康主编的《奥赛金牌之路》(高中数学)P82. 本命题在《中等数学》杂志社组织的数学竞赛命题评奖中,获一等奖.本命题也可参见《中等数学》,1989年第二期,杨学枝文:《对一个三角不等式的再探讨》.例3 a ,i i b R ∈,1,2,,i n =⋅⋅⋅,则1112nnni i i i i i i a b a b n ===≥∑∑∑. (11) 注:(11)式是一个值得关注的不等式,如取3n =时,可证20XX 年中国国家队培训题:,,,,,a b c x y z R ∈,满足()()3a b c x y z ++++=,222222()()4a b c x y z ++++=,求证0ax by cz ++≥.例4 设a,,b c R +∈,且3a b c ++=,则2232a ab ≥+∑. (12)例5 (20XX 年.IMO.46)已知x,y,z ∈R +,且 1xyz ≥,求证525220x x x y z-≥++∑ (13)例6 (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(14)例7 a,b,c 为正数,证明22224()a b c a b a b c b c a a b c-++≥+++++, (15) 当且仅当a c b >>,且a b c a c a b c b==---,即a c b >>且3322b c b c +=时,(15)式取等号.例8 (20XX 年国家集训队测试题)设,,,x y z R -∈且1x y z ++=,求证+≤ (16)例9 (自创题,1987.07.20) 设 ,,,x y z w R +∈,则 ()2918x x x xy xz xw yz yw zw +⋅≥+++++∑∑∑ (17)当且仅当 x y z w === 时,(17)式取等号.注:(17)式可推广为:设 ,1,2,,i x R i n +∈=⋅⋅⋅,则111n ni i i i x x ==⋅≥∑∑()()2212112n i i i ji j jn x n n x x =≤<≤⎛⎫- ⎪⎝⎭--∑∑ (18) 当且仅当12n x x x ==⋅⋅⋅=时,(18)式取等号.若记11ni i s x ==∑,21i j i j ns x x ≤<≤=∑,12n n s x x x =⋅⋅⋅,111n n s s x -=∑,则(18)式可写成如下形式:22212121(2)(1)n n n s s s n n s s n s s -+-≥-.例10 (陈计,2008.08.29提供)对正数,,,a b c d 及0k ≥,有 41a b c d b kd c ka d kb a kc k+++≥+++++. (19)例11 (自创题,2010.11,09)设,,x y z R +∈,求证322x x xy y ≥++∑ (20) 当且仅当1x y z ===时(20)式取等号.注:猜想 设,,x y z R +∈,有322x x xy y ≥++∑322x x xy y≥++∑.例12 设,,,..a b c x y z 非负,且a b c x y z ++=++,则()()()3()ax a x by b y cz c z abc xyz +++++≥+. (21)例13 (第50届IMO 金牌得主林博提出的猜想)设,,0a b c ≥,求证2a ≤∑∑. (22)例14(自创题,2001.02.02)设,,x y z R +∈,且4yz zx xy xyz +++≤,则x y z yz zx xy ++≥++. (23) 注:1.用类似方法,可证以下命题 设,,p q r R -∈,,,x y z R ∈,且14p q r pqr +++≤,则222px qy rz yz zx xy ++≥++. (24) 2. 第48届国际数学奥林匹克中国国家集训队有一道测试题(20XX 年3月)与其相似.题目 设正实数,,u v w满足4u v w ++=,求证u v w ++. (25)x =y =z =,则原命题等价于:,,x y z R +∈,且4yz zx xy xyz +++=,则x y z yz zx xy ++≥++ ① 式证明可见《数学奥林匹克不等式研究》第八章章练习题64中i ).例15(第48届IMO 中国国家集训队测试题)设正数12,,,n a a a ⋅⋅⋅,满足12a a +1n a +⋅⋅⋅+=,求证1212231222223311()()1n n a a a na a a a a a a a a a a a n ++⋅⋅⋅+++⋅⋅⋅+≥++++ (26)例16 已知221,a b kab +-= 221c d kcd +-=,,,,,a b c d k R ∈,且 2k <,求证ac bd -≤(27)当且仅当()()()()22a b c d k k a b c d ---=+++,即bc ad k ac bd +=+时,(27)式取等号.例17. (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(28)3. 其他基本不等式应用例子 例1 设,,x y z R -∈,则4+≤(1)()2x y z ≤++,例2 (自创题,2010.07.03) 若,,a b c 为满足1a b c ++=的正数,19λ≥,则 31()()()(3)3a b c b c a λλλλ+++≥+, (3)推广式,即有以下命题 若12,,,n a a a ⋅⋅⋅为满足11ni i a ==∑的正数,21n λ≥,则 122311()()()()n n a a a n a a a nλλλλ++⋅⋅⋅+≥+, (4) 当且仅当121n a a a n==⋅⋅⋅==时,(4)式取等号.例3 (自创题,2010.07.03)若,,a b c 为满足1abc ≥的正数,23λ≥,则)a b c ≤++, (5)当且仅当1a b c ===时,(5)式取等号.推广式以下命题 若12,,,n a a a ⋅⋅⋅为满足121n a a a ⋅⋅⋅≥的正数,11nλ≥-,则11nni i i a ==≤, (6)当且仅当121n a a a ==⋅⋅⋅==时,(6)式取等号.例4(《不等式研究网站》,“竞赛不等式”专栏,20XX 年1月6日,陈胜利老师提出) 设,,0a b c >,且1abc =,求证2112()3a a ≥+-∑ (7)例5 (王雍熙,2011.08.22提供)设,,a b c R -∈,且2a a ≥∑∑,则31aabc bc +≥+∑∑. (8)本题可推广,见以下例6.例6(自创题,2011.08.22)设i a R -∈,1,2,,i n =⋅⋅⋅,2n ≥,记i a (1,2,,i n =⋅⋅⋅)中每k (1,2,,k n =⋅⋅⋅),个乘积之和为k s ,m 为不大于n 的正整数,且211n ni ii i a a==≥∑∑,则11352411+s 1nn n n ii n n s n s n as s s s n sn --=-⎧⎧++≥+++⋅⋅⋅+⎨⎨⎩⎩∑(为奇数)(为奇数)(为偶数)(为偶数), (9)二、其他方法证明不等式例子例1 (自创题,2006.08.25)设,,x y z R -∈,且2222x y z xyz +++1≤,则 142xyz yz +≥∑, (1)当且仅当12x y z ===,或,,x y z中一个为零,另外二个均等于2时,(1)式取等号.例2(20XX 年全国高中数学联赛A 卷加试题3)给定整数2n >,设正实数12,,,n a a a ⋅⋅⋅满足1,1,2,,k a k n ≤=⋅⋅⋅,记12,1,2,,kk a a a A k n k++⋅⋅⋅+==⋅⋅⋅.求证: 1112nnk k k k n a A ==--<∑∑. (2)例 3 已知123123a a a b b b ++=++,122331122331a a a a a a a a a a a a ++=++,若123123min{,,}min{,,}a a a b b b ≤,求证: 123123max{,,}max{,,}a a a b b b ≤.注. 本例可推广.例4 (自创题,2007.12.28)设,,a b c R +∈,且1bc =∑,则21142a bc ≥-+∑, (3)当且仅当a b c ===时取等号.例5 (宋庆老师在《中学数学研究》(广东),20XX 年第1期,文“两个优美的无理不等式”中提出的猜想) 若,,0a b c >,满足1a b c ===,则≥(4)例6 .(20XX 年,Serbian 数学奥林匹克试题) 已知,,a b c 是正数,且1a b c ++=,证明127131bc a a≤++∑. (5)例7(陈计,2008.05.04提供)设,,a b c R ∈,n N ∈,则 2[()()]4[()][()]n n n b c b c b c bc b c +-≥--∑∑∑. (6)例8 (自创题,2008.05.07)设,,a b c R -∈,求使22222233()()()(2)()b c bc c a ca a b ab abc a b c λλλλ++++++≥+++ 成立的最大正数λ的值.例9 (自创题,2008.08.30)设1122,,,a b a b R ∈,且222221122a b a b m -=-=,则2212211122211221122()()()()()4()()a b a b m a b a b a b a b m a b a b ++-+++≥++-++, (7) 当且仅当22211a b m -=,12a a =,12b b =时,(7)式取等号.例10 (江苏高三学生顾振同学2010.08.06提供)设,,x y z R -∈,且2221x y z ++=,则411x yzx xyz≤--∑∑∑ , (8)当且仅当3x y z ===,或,,x y z中,有一个为零,其余两个都等于2时,(8)式取等号.例11 (自创题,2005.12.04)设,,a b c R +∈,且1a b c ++=,则3)5)1080abc abc bc -+≥∑ (9)当且仅当13a b c ===,或,,a b c中有一个等于33-,另外两个都等于6时,(9)式取等号.例12(自创题,2007.09.18)设,,a b c R +∈,且1a b c ++=,则271481abc a-≤∑ (10)当且仅当13a b c ===,或,,a b c 中一个等于23,其余两个都等于16时,(10)式取等号.例13 (美国,Pham Kim Hung )设,,a b c 是三角形三边长,则222a b a b a≥+∑∑∑, (11) 当且仅当ABC ∆为正三角形时,(11)式取等号.例14 “奥数之家”2010.03.31,“476934847”提出: 设,,a b c R +∈,则22222()3a b c a c b c a a b c -++≥+++. (12)例15 假设P 、Q 、R 分别是ABC 的三边BC 、CA 、AB 上三点,且满足13AQ AR BR BP CP CQ +=+=+=,则12PQ QR RP ++≥(13)注:1. 关于本题,有其深刻的背景,可参阅杨之所著《初等数学研究的问题和课题》P297~298;或参阅《数学通讯》1991年第2期“问题征解”栏目杨学枝解答及编者评语;或参阅《中学数学教学参考》(陕西),1992年第6期,杨学枝文《一个几何不等式的再加强》;或参阅《数学通讯》1996年第10期,杨学枝文《从一道命题谈起》:也可以参阅杨学枝主编《不等式研究》(西藏人民出版社,2000年6月出版)一书中杨路教授写的“序”;还可以参阅杨学枝著《数学奥林匹克不等式研究》(哈尔滨工业大学出版社,20XX 年8月出版)一书中杨路教授写的“序”;还可以参见《UNIV, BEOGRAD. PUBL. ELEKTKOTEHN.FAKser. Mat.4(1993).25~27.陈计与杨学枝文:《ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER 》.2. 由以上所得重要不等式1()()(cos cos cos )3QR RP PQ a b c a b c A B C ++≥++-++++(14) 可得较(13)式更强的不等式33339()()8QR RP PQ BC CA AB ++≥++ (15)3. 《福建中学数学》,1996年第4期.杨学枝文:《对一道猜想题的证明》中,用与(13)式的类似证法,给出了2221()4RP PQ PQ QR QR RP BC CA AB ⋅+⋅+⋅≥++ (16)其中,,P Q R 分别为,,BC CA AB 边上的周界中点.。
不等式的证明

ab 证明:要证| | <1 1 ab 只需证|a+b|<|1+ab|
ab 例3:|a|<1,|b|<1,求证:| 1 ab |<1
只需证|a+b|2<|1+ab|2 展开得 a2+2ab+b2<1+2ab+a2b2 只需证 a2+b2<1+a2b2 只需证 a2+b2-1-a2b2 <0 即证(a2-1)(1-b2)<0 ∵|a|<1,|b|<1 ∴a2-1<0,1-b2>0 (a2-1)(1-b2)<0
hoq037egk
不宣的行规。为什么?原因只有一个,甲醛太便宜了!”„„„2天灾突变 ---突遇“非典”|正当花开人充满信心,准备再展往日辉 煌的时候,一场突如其来的飞来横祸将花开啤酒又一次抛入了险境。还记得那场可怕的、横扫全国的传染病——非典型肺炎(下面简 称“非典”)?地球人肯定都清楚地记得,谁也无法想像它会把全社会搅动成如此惨烈的、人人惊慌的模样!几年前爆炒兰花时,100 元钱的铃兰能“呼呼”地窜到40多万,人心都疯了。这一次,人确实都害怕了,没有那一次比这个更害怕的!仿佛地球马上就要毁灭 了,好像世界到了末日了似的,马启明刻骨铭心地记得那一场场景象。这是天灾!不是人祸。2003年初,当电视新闻首次报道,我国 广东省首例确诊的传染性疾病——“非典”时,马启明只是知道世界上又添了一种传染病叫“非典”,当个新闻听一下也就拉倒,心 想广东离江苏省海涛州绿溪镇太遥远了,“非典”不一定就能传到江苏,并没有在意,“非典”也只把它作为闲聊时的一个话题一带 而过了。与此同时花开啤酒单位员工们都忙着加班加点地生产啤酒,梦想着月底的工资和奖金又要拿到手,该如何花销?马启明从新 闻上看到,4月3日至4月8日世界卫生组织官员到达广东佛山考察,举行新闻发布会,到广州市第八人民医院考察,向外国驻广州领事 馆总领事们通报广东情况、世界卫生组织官员发布“取消到广东旅游不明智”等等一系列非正常的行动。紧接着在广东考察工作的** 总书记4月14日上午来到广东省疾病预防控制中心慰问,深入了解防治 “非典”型肺炎的情况,特别指出:把防治“非典”型肺炎 的工作,作为关系改革发展稳定大局、关系人民群众身体健康和生命安全的一件大事,切实抓紧抓好,把防治“非典”提到政治的高 度来看。政治的高度,马启明觉得政治的高度就是要多大就有多大,一切都要给它让路,事态真的有这么严重吗?很快电视、报纸上 有关“非典”的报道越来越多,马启明感到事情越来越不对劲。 “隔离”、“消毒”、“死亡”成了每个人关注的重点,人人出门带 着口罩,公共娱乐场所关闭,特别是江苏也发现“非典”病人时,特别是啤酒销量锐减,他当初的预感被现实残酷地撕成了碎片。4月 30日单位特地召开了一次“非典”专题会,会上通报的情况,把马启明当时就给吓傻了,吓呆了,当时的情景到现在马启明仍历历在目。 为保持空气畅通,会议室的门窗都大开着。从窗口望出去,天气阴沉沉的,风“呜呜呜”地像魔鬼一样疯狂抽打着室外的行道树,路 上几乎看不到来往的车辆和行人。马启明的心里莫明地恐惧、烦燥、紧张起来,他的心脏似乎要从胸腔里蹦跳出来了一样。会议由赵 树春主持,他神情严肃地讲道:“各位,这场突
高考数学证明不等式的基本方法

知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络
sobolev不等式证明

sobolev不等式证明Sobolev不等式是数学中的一种重要的不等式,它在偏微分方程、函数空间、概率论等领域中都有广泛的应用。
本文将详细介绍Sobolev不等式的定义、证明和应用。
一、Sobolev不等式的定义Sobolev不等式是指对于任意一个充分光滑的函数$f(x)$,都存在一个常数$C$,使得下面的不等式成立:$$\|f\|_{L^p(\mathbb{R}^n)} \leq C\|\nablaf\|_{L^q(\mathbb{R}^n)}$$其中$p>1$,$q$是$p$的共轭指数,即$\frac{1}{p}+\frac{1}{q}=1$。
$\|\cdot\|_{L^p}$和$\|\cdot\|_{L^q}$分别表示$L^p$和$L^q$范数。
二、证明为了证明Sobolev不等式,我们需要先引入一个引理:引理:对于任意一个充分光滑的函数$f(x)$,有如下估计:$$|f(x)| \leq C\left(\int_{\mathbb{R}^n} |\nablaf(y)|^2dy\right)^{\frac{1}{2}}$$其中$C$是一个与$f(x)$无关的常数。
证明:由Cauchy-Schwarz不等式可得:$$|f(x)| = \left|\int_{\mathbb{R}^n} f(x)\frac{\nabla f(y)}{\|\nabla f(y)\|}\cdot\frac{\nabla f(y)}{\|\nabla f(y)\|}dy\right|$$再利用Holder不等式,得到:$$|f(x)| \leq \left(\int_{\mathbb{R}^n} |\nablaf(y)|^2dy\right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n}|f(x)|^2\frac{1}{\|\nabla f(y)\|^2}dy\right)^{\frac{1}{2}}$$因为$\|\cdot\|$是$L^p$范数,所以$\frac{1}{p}+\frac{1}{q}=1$。
高考数学导数与不等式 导数方法证明不等式

探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.
证明不等式的基本方法

证明不等式的基本方法现实世界中的量,相等是局部的、相对的,而不等则是普遍的、绝对的,不等式的本质是研究“数量关系”中的“不等关系”.对于两个量,我们常常要比较它们之间的大小,或者证明一个量大于另一个量,这就是不等式的证明.不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如平均不等式,柯西不等式等,其中还需用到一些技巧性高的代数变形.本节将介绍证明不等式的一些最基本的方法.比较法比较法一般有两种形式;(1)差值比较欲证A ≥B .只需证A —B ≥0; (2)商值比较若B>0,欲证A ≥B ,只需证BA≥1. 在用比较法时,常常需要对式子进行适当变形,如因式分解、拆项、合并项等. 例l 实数x 、y 、z 满足1-=++zx yz xy ,求证:485222≥++z y x .例2 设+∈R c b a ,,,试证:对任意实数x 、y 、z ,有:)())()((2222zx bac yz a c b xy c b a a c c b b a abc z y x ++++++++≥++,并指出等号成立的充要条件.例3 设+∈R c b a ,,,试证: b a a c c b cb ac b a c b a +++≥222.例4 设+∈R c b a ,,,1222=++c b a ,求abc c b a cb a S )(2111333222++-++=的最小值.说明先猜后证是处理许多极值问题的有效手段.猜,一猜答案,二猜等号成立的条件;证明的时候要注意等号是否能取到.有时我们直接证明不等式A ≤B 比较困难,可以试着去找一个中间量C ,如果有A ≤C 及C ≤B 同时成立,自然就有A ≤B 成立.所谓“放缩”即将A 放大到C ,再把C 放大到B 或者反过来把B 缩小到C 再缩小到A .不等式证明的技巧,常体现在对放缩尺度的把握上.例5 证明:对任意+∈R c b a ,,,均有abc abca c abc cb abc b a 1111333333≤++++++++.例6 设),,2,1(1n i a i =≥,求证:)1(12)1()1)(1(2121n nn a a a n a a a +++++≥+++ .所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即要求推理过程的每一步都可逆),直到得到一个较容易证明的不等式或者一个明显成立的不等式.分析法是一种执果索因的证明方法,在寻求证明思路时尤为有效.例7 若0,,≥∈y R y x ,且2)1()1(+≤+x y y .求证;2)1(x y y ≤-.例8 设+∈R c b a ,,,求证:ab b a abc c b a 233-+≥-++.引入参数法引入适当的参数,根据题中式子的特点,将参数确定,从而使不等式获得证明. 例12 设+∈R q p ,,且233=+q p ,求证:2≤+q p .例13 设+∈R c b a ,,,且12222=++c b a ,求证:24333≥++c b a .例14 设z y x ,,是3个不全为零的实数,求2222z y x yzxy +++的最大值.标准化(归一化)当不等式为齐次式的时候,常可设变量之和为k (某个常数),这样不仅简化了式子,而且增加了条件,有助于我们解决问题.例15 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a .例16 已知0,02=++>++c bx ax c b a 有实根,求证:{}{}c b a c b a c b a ,,max 49,,min 4≤++≤.习题1.设R z y x ∈,,,求证:[][]2222222222222)()()()()()(zx yz xy z y x z y x zx yz xy z y x z y x ++-++++≥++-++++.2.设+∈R c b a ,,,求证:333888111c b a c b a c b a ++≤++.3.设实数10021,,,a a a 满足: (1)010021≥≥≥≥a a a ; (2)10021≤+a a ;(3)10010043≤+++a a a . 求21002221a a a +++ 的最大值.4.如果+∈R c b a ,,,求证:2222222)())()((ca bc ab a ca c c bc b b ab a ++≥++++++.5.设0,,≥z y x ,求证:xyz z y x z y x z y x z y x 3)()()(222≥-++-++-+.并确定等号成立的条件.6.设+∈R c b a ,,,求证:49)(1)(1)(1)(222≥⎥⎦⎤⎢⎣⎡+++++++x z z y y x zx yz xy .7.求证:161cos sin 1010≥+αα.变量代换法变量代换是数学中常用的解题方法之一.将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时候.有些式子可以用三角换元,从而使问题简化.当问题的条件或结论中出现“222r y x =+”,“222r y x ≤+”,“22x r -”或“1≤x ”等形式时,可以考虑用“sin α”与“cos α”代换;问题的条件或结论中出现“22x r +”.“22r x -”形式时,可作“αtan r x =”或“αsec r x =”代换等.在作代换时,要特别注意α的取值范围是由原变量x 的取值范围决定.例l 已知00≤α≤900,求证:49sin sin 452≤+-≤αα.例2 已知实数y x ,满足096422=+--+y x y x ,求证:996121922≤+++≤y x y x .例3 设c b a ,,是三角形的三边长,求证:0)()()(222≥-+-+-a c a c c b c b b a b a .已知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式证明一、常用的证明不等式的方法 1.比较法比较法证明不等式的一般步骤:作差—变形—判断—结论;为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负。
2.综合法利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法;利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件。
综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论B 。
3.分析法证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。
注意: (1)“分析法”是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”; (2)综合过程有时正好是分析过程的逆推,所以常用分析法探索证明的途径,然后用综合法的形式写出证明过程。
4.构造函数法5.放缩法(放缩工具,手段,目标)6.重要不等式证明7.数学归纳法 二、例题分析1.(2010江苏卷)设a 、b 是非负实数,求证:3322)a b a b +≥+。
证明:由a 、b 是非负实数,作差得3322)a b a b a b ++=+55]=-当a b≥时,≥,从而55≥,得55]0-≥;当a b<时,<,从而55<,得55]0-<;所以3322)a b a b +≥+。
2(2010辽宁理)已知c b a ,,均为正数,证明:36)111(2222≥+++++cb ac b a ,并确定c b a ,,为何值时,等号成立。
一题多证 证明:(证法一)因为a ,b ,c 均为正数,由平均值不等式得22223133()1113()a b c abc abc a b c-++≥++≥ ①所以2231119()abc a b c -⎛⎫++≥ ⎪⎝⎭② 故22222233111()3()9()a b c abc abc a b c-+++++≥+.又22333()9()abc abc -+≥= ③所以原不等式成立当且仅当a=b=c 时,①式和②式等号成立。
当且仅当22333()9()abc abc -=时,③式等号成立。
即当且仅当a=b=c=143时,原式等号成立。
3.(安徽理19)(Ⅰ)设1,1,x y ≥≥证明;111xy y x xy y x ++≤++,(Ⅱ)c b a ≤≤<1,证明log log log log log log a b c b c a b c a a b c ++≤++.本题考查不等式的基本性质,对数函数的性质和对数换底公式等基本知识,考查代数式的恒等变形能力和推理论证能力.证明:(I)由于1,1≥≥y x ,所以,)(1)(1112xy x y y x xy xy y x xy y x ++≤++⇔++≤++将上式中的右式减左式,得,0)1)(1)(1(,1,1).1)(1)(1()1)(1()1)(()1)(1())()(()1)(()1)(())((22≥---≥≥---=+---=-+--+=+-+--=++-++y x xy y x y x xy y x xy xy xy y x xy xy y x y x xy xy y x xy xy x y 所以即然从而所要证明的不等式成立.(II )设,log ,log y c x b b a ==由对数的换底公式得.log ,1log ,1log ,1log xy c y b x a xy a a c b c ====于是,所要证明的不等式即为,111xy y x xy y x ++≤++ 其中.1log ,1log ≥=≥=c y b x b a故由(I )立知所要证明的不等式成立.4、已知a,b,c 为正数n,是正整数,且f(n)=lg 3nn n c b a ++,求证2f(n)≤f(2n)证:2f(n)=29222lg)3lg(3lg 2222n n n n n n n n n n n n n n n c a c b b a c b a c b a c b a +++++=++=++ f(2n)=lg3222nn n c b a ++,由基本不等式知,n n n n n n n n n nnnc a c a b c b c b a b a 2222222,2,2+≤+≤+≤三式相加得5.设x>0,y>0且x ≠y,求证()()21223133yxyx +<+证明:由x>0,y>0且x ≠y,要证明()()21223133yxy x +<+只需()()322233y xy x +<+ 即()22223332y x y x y x +<只需222y x xy +<由条件,显然成立.∴原不等式成立 6.(2007湖北)已知m ,n 为正整数.(Ⅰ)用数学归纳法证明:当x >-1时,(1+x )m ≥1+mx ;(Ⅱ)对于n ≥6,已知21311<⎪⎭⎫ ⎝⎛+-n n ,求证mn n m ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛+-2131,m =1,1,2…,n ;(Ⅲ)求出满足等式3m +4m +…+(n +2)m =(n +3)n 的所有正整数n .解法1:(Ⅰ)证:用数学归纳法证明:(i )当m =1时,原不等式成立;当m =2时,左边=1+2x +x 2,右边=1+2x ,因为x 2≥0,所以左边≥右边,原不等式成立;(ii )假设当m =k 时,不等式成立,即(1+x )k ≥1+kx ,则当m =k +1时,kx x x x k+≥+>+∴->11,01,1)于是在不等式( 两边同乘以1+x 得x k kx x k x kx x x k )1(1)1(1)1)(1()1()1(2++≥+++=++≥+⋅+,所以1,)1(1)1(1+=++≥++k m x k x k 即当时,不等式也成立.(Ⅱ)证:当,)21()311(,21311,6m nm m n n n m n <⎥⎦⎤⎢⎣⎡+-∴<+-≤≥)(时,而由(Ⅰ),31)311(+-≥+-n mn m .)21()311()31(m nm n n n m <⎥⎦⎤⎢⎣⎡+-≤+-∴(Ⅲ) 解:假设存在正整数00)3()2(43600000n n nn n n n +=++++≥ 使等式成立,即有(0330nn +)+00)32()34(000n n n n n +++++ =1. ② 又由(Ⅱ)可得330n n ++++--++-=+++++0000)311()31()32()34(0000000n n n n n n n n n n n+,121121)21()21()311(000010<-=+++<+--n n n n n 与②式矛盾, 故当n ≥6时,不存在满足该等式的正整数n . 故只需要讨论n =1,2,3,4,5的情形; 当n =1时,3≠4,等式不成立; 当n =2时,32+42=52,等式成立; 当n =3时,33+43+53=63,等式成立;当n =4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n =5时,同n =4的情形可分析出,等式不成立. 综上,所求的n 只有n =2,3.7.(08全国1)设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. (Ⅰ)证明:()ln f x x x x=-,()()()'ln ,0,1'ln 0f x x x f x x =-∈=->当时,故函数()f x 在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i )当n=1时,101a <<,11ln 0a a <,211111()ln a f a a a a a ==->由函数()f x 在区间(01),是增函数,且函数()f x 在1x =处连续,则()f x 在区间(01],是增函数,21111()ln 1a f a a a a ==-<,即121a a <<成立; (ⅱ)假设当(*)x k k N =∈时,11k k a a +<<成立,即1101k k a a a +<<<≤那么当1n k =+时,由()f x 在区间(01],是增函数,1101k k a a a +<<<≤得1()()(1)k k f a f a f +<<.而1()n n a f a +=,则121(),()k k k k a f a a f a +++==,121k k a a ++<<,也就是说当1n k =+时,11n n a a +<<也成立;根据(ⅰ)、(ⅱ)可得对任意的正整数n ,11n n a a +<<恒成立. (Ⅲ)证明:由()ln f x x x x =-.1()n n a f a +=可得kk k k a a b a b a ln 1--=-+11ln ki i i a b a a ==--∑ 1, 若存在某i k ≤满足i a b ≤,则由⑵知:1k i a b a b +-<-≥0 2, 若对任意i k ≤都有b a i >,则kk k k a a b a b a ln 1--=-+ 11ln ki ii a b a a ==--∑11ln ki i a b a b==--∑11()ln ki i a b a b==--∑b ka b a ln 11--> b ka b a ln 11--≥)(11b a b a --->0=,即1k a b +>成立.8.(湖北理21)(Ⅰ)已知函数()1f x Inx x =-+,(0,)x ∈+∞,求函数()f x 的最大值;(Ⅱ)设,k k a b (1,2k =…,)n 均为正数,证明:(1)若1122a b a b ++…n n a b ≤12b b ++…n b ,则12121n k k k n a a a ≤;(2)若12b b ++…n b =1,则1n ≤121222212.n k k k n n b b b b b b ≤+++本题主要考查函数、导数、不等式的证明等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及化归与转化的思想。