水平T型管中油水两相流流动数值模拟研究
《2024年水平管内气液两相流流型数值模拟与实验研究》范文

《水平管内气液两相流流型数值模拟与实验研究》篇一一、引言在许多工业应用中,如石油、天然气和化学工业中,气液两相流是非常常见的流动状态。
对水平管内气液两相流的流型进行深入的研究对于提升设备的效率和可靠性具有重要意义。
本论文通过数值模拟和实验研究的方法,探讨了水平管内气液两相流的流型特征及其变化规律。
二、文献综述在过去的几十年里,许多学者对气液两相流进行了广泛的研究。
这些研究主要关注流型的分类、流型转换的机理以及流型对流动特性的影响等方面。
随着计算流体动力学(CFD)技术的发展,数值模拟已成为研究气液两相流的重要手段。
同时,实验研究也是验证数值模拟结果和深化理解流动机理的重要途径。
三、数值模拟1. 模型建立本部分首先建立了水平管内气液两相流的物理模型和数学模型。
物理模型包括管道的几何尺寸、流体性质等因素。
数学模型则基于质量守恒、动量守恒和能量守恒等基本物理定律,并考虑了气液两相的相互作用。
2. 数值方法采用计算流体动力学(CFD)方法对模型进行求解。
通过设置适当的边界条件和初始条件,得到气液两相流的流动状态。
此外,还采用了多相流模型和湍流模型等,以更准确地描述气液两相的流动特性。
3. 结果分析通过数值模拟,得到了水平管内气液两相流的流型图、流速分布、压力分布等结果。
分析这些结果,可以深入了解流型的转变过程和流动特性。
四、实验研究1. 实验装置设计了一套用于气液两相流实验的装置,包括水平管道、气体供应系统、液体供应系统、测量系统等。
通过调节气体和液体的流量,可以模拟不同工况下的气液两相流。
2. 实验方法在实验过程中,通过观察和记录流动现象,获取了流型、流速、压力等数据。
同时,还采用了高速摄像等技术,对流动过程进行可视化分析。
3. 结果分析将实验结果与数值模拟结果进行对比,验证了数值模拟的准确性。
同时,还分析了不同因素(如管道直径、流体性质等)对气液两相流流型的影响。
五、结论与展望通过数值模拟和实验研究,得到了以下结论:1. 水平管内气液两相流的流型受多种因素影响,包括管道直径、流体性质、流速等。
水平管内油水两相流流型的研究

型影响较大,结合实际情况,客观因素主要分为以下几种: 1) 油相和水相的黏度、密度、油水界面张力、油水的乳化等; 2) 管道的几何形状、管径大小、管壁的粗糙度、管壁的浸润性、管道安装方式 等; 3) 具体操作时油水混合物流速、分相含率、是否加入添加剂等。 三、数学模型 1. 分层管流理论解 根据圆管形状引入双极坐标使得圆管内流动问题大大简化, 当假设界面为平 面时,在双极坐标下两相与壁面的接触边以及两相的界面均可用常量表示。 Bentwich[6]最早将双极坐标引入分层管流。 Brauner[7]和 Biberg[8, 9]在双极坐标下推 导了层流分层管流的理论公式, 并将其表示成自有表面流和剪切流两部分之和的 形式。
式中,R 为管道半径,m; 和 为双极坐标下的坐标变量; 为各相湿周 对应的圆周角; 为积分变量;p 为压强,Pa。双极坐标在表示分层流管流时表 现出的方便性使其得到广泛应用,很多学者在对分层管流进行数值模拟计算时, 均采用在双极坐标下建模。 2. 双流体模型 双流体针对每一层流体列出动量守恒方程,消去压力梯度项得到:
XJTU 明确,目前尚缺少井下高温和严寒条件下管线低温输油时管内流型的实验数据; 高含蜡高粘易凝原油很少被选作研究对象, 若开展该方面的研究或可对含蜡高粘 原油的输送及流动保障技术提供更多的理论指导。 2) 在液滴数量相对较多的情况下,液体的破碎与凝结过程对管道内相分布 影响的研究较为缺乏, 而且这一过程与油品粘度、油水间表面张力等参数密切相 关。
R U so U crit
式中, U crit 为最大液滴尺寸和临界液滴尺寸相同时的临界流速。 (2)假设混合层的油水比例相同,即 w 50% 。 Shi Hua 认为三层流体模型并不能很好的描述混合层的性质,因此将混合层 细分为油包水和水包油两层, 建立了四层流体模型。 除动量方程和质量守恒方程, 又引入 4 个方程来使方程封闭。 (1)依据实验数据提出:在沿管径的垂直方向上,水相的相含率呈线性分 布,在管道顶部为 0,管道顶部为 100%。文献记载的油水转相点水相相含率不 超过 85%,而实测的转相点水相含率为 45%。基于转相点时的水相含率,将水 相相含率为 0~15%的油水两相流体视为纯油层, 85~100%的两相流体视作纯水层, 15~45%的两相流体视作油包水层,45~85%的两相流体视作水包油层。通过线性 积分可以确定油包水和水包油层的水相分数。 (2)中间混合层的水相相含率根据入口处的水相相含率来确定: 当 input 50% 时, m input 50% ;当 input 50% 时, m 50% input (3) 依据实验结果, 认为混合层的表观流速为入口表观流速的 1.15 倍, 即:
《2024年水平管内气液两相流流型数值模拟与实验研究》范文

《水平管内气液两相流流型数值模拟与实验研究》篇一一、引言随着能源、化工等领域的不断发展,水平管内气液两相流的研究变得日益重要。
流型的研究对于了解气液两相流的传输特性,预测设备运行状况以及优化过程控制具有重要的实际意义。
本文针对水平管内气液两相流流型进行数值模拟与实验研究,为实际工业应用提供理论支持。
二、文献综述气液两相流的研究历史悠久,学者们通过实验和理论分析,对各种流型进行了深入的研究。
在水平管内,气液两相流的流型主要包括泡状流、弹状流、环状流等。
这些流型的特性对管道的传输效率、压力损失以及设备运行稳定性具有重要影响。
近年来,随着计算流体动力学(CFD)技术的发展,数值模拟在气液两相流研究中的应用越来越广泛。
三、研究内容(一)数值模拟本文采用CFD技术对水平管内气液两相流的流型进行数值模拟。
首先建立物理模型和数学模型,确定求解方法和边界条件。
然后,通过数值计算得到不同流型下的速度场、压力场等物理量分布。
最后,对模拟结果进行验证和分析,为实验研究提供理论支持。
(二)实验研究实验研究是本文的重点部分,主要包括实验装置、实验方法、数据处理和结果分析。
实验装置包括水平管、气源、液源、测量仪器等。
实验方法采用可视化观察和物理量测量相结合的方式,对不同流型下的气液两相流进行观测和记录。
数据处理主要包括数据采集、整理、分析和图表制作等步骤。
最后,对实验结果进行分析和讨论,为数值模拟提供验证依据。
四、结果与讨论(一)数值模拟结果数值模拟结果表明,水平管内气液两相流的流型与气流速度、液流速度、管道直径等参数密切相关。
在不同参数下,流型表现出不同的特性,如泡状流的分散性、弹状流的周期性以及环状流的连续性等。
这些结果为后续的实验研究提供了理论支持。
(二)实验研究结果实验研究结果表明,不同流型下的气液两相流具有不同的传输特性和传输效率。
例如,在泡状流中,气泡的分散性较好,有利于提高传输效率;而在环状流中,液膜的连续性较好,有利于降低管道的摩擦阻力。
水平突变管内油水两相流数值模拟

水平突变管内油水两相流数值模拟范开峰;王卫强;孙策;石海涛;万宇飞【摘要】采用计算流体力学中 VOF模型对水平突扩管和突缩管内油水两相流进行数值模拟,两相流中原油为中质稠油并且含水率较高,从50%到80%不等。
结果表明,不同含水率油水两相流在突扩管和突缩管内主要为水包油流型,在管径突变处压力波动变化明显,但含水率从50%变化到80%时对压力变化趋势影响较小。
得到的不同含水率油水两相流在突变管径管道中的流动规律,可为原油集输管网油水两相流混输问题提供参考。
%Using the VOF model of computational fluid dynamics to simulate oil-water two-phase flow in horizontal sudden expansion pipe and contractible pipe,the crude oil in the two-phase flow is medium viscous oil and the moisture content is high, ranging from 50% to 80%.The results show that:the different water content flow in oil-water two-phase flow in the sudden expansion pipe and sudden contraction pipe belong to oil-in-water stream,the pressure fluctuation in diameter mutation changes obviously,but the pressure change trend is affected little when the moisture content changes from 50% to 80%.Flow in the mutant diameter pipes with different water content of oil-water two-phase flow pattern obtained can provide certain reference when involving mixed oil-water two-phase flow transportation problems in crude oil pipeline.【期刊名称】《石油化工高等学校学报》【年(卷),期】2014(000)002【总页数】4页(P84-87)【关键词】突扩管;突缩管;油水两相流;VOF模型;压力变化;流动规律【作者】范开峰;王卫强;孙策;石海涛;万宇飞【作者单位】辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺113001;中国石油大学北京,北京 102249【正文语种】中文【中图分类】TE866油水两相流动因所处的流动条件不同而具有多种流型[1]。
水平管内气液两相流流型数值模拟与实验研究

水平管内气液两相流流型数值模拟与实验研究水平管内气液两相流流型数值模拟与实验研究一、引言随着工业技术的发展,气液两相流在许多工业领域中都有着广泛的应用。
对气液两相流的流型进行研究可以帮助我们了解气液两相流在不同工况下的行为规律,并为工业生产提供参考依据。
本文通过数值模拟和实验研究的方法,对水平管内气液两相流的流型进行探究,旨在揭示其内在机理并提供实际应用上的指导。
二、气液两相流流型气液两相流的流型可以根据界面形态、相对速度和尺度等不同特征进行分类。
在水平管内,常见的气液两相流流型包括气泡流、毛细液膜流、层流、湍流等。
1. 气泡流气泡流是指气泡连续相沿管道轴向方向流动的流型。
气泡流的流动规律复杂,气泡的生成、增长、移动和破裂等现象会对系统产生重要影响。
2. 毛细液膜流毛细液膜流是指液滴连续相沿管道轴向方向流动的流型。
毛细液膜流具有较高的液滴保持率和较低的液滴速度,可应用于化工领域中逆流萃取、反应器和蒸馏器等设备的设计。
3. 层流层流是指气液两相在管内形成整齐分层的流动方式。
层流具有较低的气液摩擦,较小的波动和均匀的分布特点,适用于气体和液体之间传质和反应等过程。
4. 湍流湍流是指气液两相之间发生剧烈的随机运动,界面不规则、相对速度梯度大的流动现象。
湍流带来的剧烈的涡流运动能够增强传热、传质和混合效果,但同时也带来了较大的能耗和压降。
三、数值模拟方法1. 基本原理数值模拟方法一般采用基于流体动力学(CFD)的欧拉方法,通过对流体连续方程、动量方程和能量方程的离散,求解气液两相流的速度、压力和温度等物理量。
2. 模型设定通过建立水平管道的几何模型和气液两相流的初始条件,设定不同的流量、压力、温度等工况参数,以模拟实际工程中的不同场景。
3. 数值算法常见的数值算法包括有限体积法、有限元法和边界元法等。
通过基于时间和空间的离散化方法,将连续方程转化为离散方程,进而通过迭代求解得到数值解。
四、实验研究方法1. 实验设置通过在水平管内进行气液两相流实验,观察和记录不同流型的现象和特征,以定量分析其行为规律。
Fluent多相流模型模拟水油混合物T型管流动模拟

Fluent多相流模型模拟-水油混合物T型管流动模拟一、实例概述如图所示的T型管,直径0.5m,水和油的混合物从左端以1m/s的速度进入,其中有的质量分数为80%。
在交叉点混合流分流,78%质量流率的混合流从下口流出,22%质量流率的混合流从右端流出。
简单几何模型二、模型的建立1、启动Gambit,选择工作目录E:\Gambit working。
打开后,初始界面如下2、单击geometry→face→create real rectangular face,在width文本框和height文本框输入5和0.5,点击Apply,结果如右下图再输入0.5和5,生成右下图3、下移竖直方向的矩形面,得到T型几何流道移动结果如下修剪内部,将生成的一个矩形面合为一面结果如下三、网格划分1、单击mesh→faces→mesh faces,选择faces 2面,网格间隔大小0.052、设置入口in,出口out,其余wall定义out-2其余线段定义为wall3、输出网格文件输入文件名,选择mixture.msh四、求解计算1、启动fluent6.3,打开后界面2、读入划分好的网格文件检查网格3、求解保持默认,点OK4、设置多相multiphase,混合相mixture点mixture混合相5、选择k-e湍流模型6、定义材料属性先Copy water-liquid再copy fue lliquid,添加进去7、设置第一相oil8、设置第二相water9、设置operating conditions作业条件将Y方向的加速度改为-9.8110、定义边界条件10.1、设置in的边界条件先设置mixture phase,momentum动量→specification method湍流定义方法→intensity and hydraulic diameter强度和水力直径→再设置water phasevolume fraction体积分数设为0.210.2、设置out的边界11、solve -solution保持默认值,点OK12、initialize13、Residual残留的勾选plot,其他默认14、Interate迭代结果如下15、Display→contours外形轮廓选择压强得到混合流体的压强分布图,结果如下选择速度得到混合流体的速度分布图,结果如下16、显示vectors矢量图→velocity速度结果如下17、保存为cas文件18、该模型也可用Eulerian模型来进行多相流计算。
基于Fluent的水平管油水两相分散流数值模拟

1 一 双螺卡 十 泵 ;2 一球 阀;3 一渊节 ;4 一质量流量 汁; 5 一凋节 阀;6 一储罐 ;7 一球 阀;8 过滤器
1 . 2 几何模 型
取 主管 道调 节 阀 口至储 罐 口之 问 的管段 为研
a mb i t 建 立 环 道 的 维 几 何 模 型 ,管 吻合较好 。油水两相分散流是油水两相流中最重要 究 对 象 ,用 G . 2 5 4 m,直 管段 长 1 0 . 5 m,弯管半 径 0 . 4 m, 的流 型之 一 ,在石 油 _ T 业 中十分 普遍 ,深 入研 究 油 道 直径 0 . 8 m,环 道 总 长 2 2 . 2 5 6 m。对 管 水分 散 流 的特 I 生和变化 规律 ,提 高 油水 两相 流 的预 两 直 管 段 中心距 0 测能 力 ,对两 相 流体力 学理 论 的完 善租 T业 生产 的 道 模 型进行 网格 划分 ,端 面采 用 角 网格 ,局 部放
安全 进行 都有 重要 的学术 和应 用价 值 。 采用 F l u e n t 研 究 了 水 平 管 内 油 水 两 相 分 散 流 动 ,对 文献 中实 验过 程进 行 了模 拟 ,将模 拟 得 到 的 压 降数 据与其 实 验数 据进 行 了对 比 ,并 且获 得 了实 验 中 因技 术局 限无 法测 量 的油水 相分 布数 据 。
第3 2 卷 9 期 ( 2 0 1 3 . 0 9 )( 试验 研 究)
基于 F l u e n t 的水平管油水两相分散 流数值模拟
李琦瑰 郭贤贤 程 浩 吕宇玲 中 国 石油 大 学( 华东) 储 运与 建 筑工程 学院
摘要 :油 水 两相在 管路 中流动 ,随 着流 动 参数 和 物 性参 数 的 不 同会 形成 不 同的流 型 , 当油
T型微通道内两相流动数值模拟和流场论文

T型微通道内两相流动数值模拟和流场分析摘要:借助相场方法数值模拟t型微通道内两相流动,通过改变毛细数大小,得到三种形成机理下的离散相。
随着毛细数增大,离散相形成过程对微通道内压强和速度的影响减弱。
abstract: the two-phase flow was simulated in a t-junction micro-channel by using the phase field method, and three type droplets were obtained with different capillary number. we found that the influence of droplet formation on pressure and velocity became weak as the capillary number increases.关键词:相场方法;数值模拟;微通道;毛细数key words: phase field method;numerical simulation;micro-channel;capillary number中图分类号:tq021.1 文献标识码:a 文章编号:1006-4311(2012)31-0180-020 引言微通道的尺寸非常小,其通道的宽度一般在之间,流量小[1],借助微通道可以进行两相流体的混合、纳米粒子合成、蛋白质结晶等。
在化工方面,要求能够控制微通道内化学物质输运的时间和物质空间的分布[2,3]。
近年来,研究者对不同结构微通道内流动的控制产生了极大的兴趣,成为一个重要的研究方向[4]。
雷诺数是惯性力和黏性力之比,微通道内雷诺数小,两相流动受到黏性力的影响,在通道壁面约束下,表面张力和挤压力对离散相的形成起到重要作用。
微通道的制作工艺精度较高,监测通道内流动的设备需要极其微小,这些都使得采用实验研究微流动的难度和费用较大,而数值模拟能够克服这些缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abs t r a c t: Ai mi ng a t t he c ha r a c t e r i s t i c s of t h e e xi s t e n c e o f ma ny he a vy o i l f i e l ds a nd o i l f i e l ds wi t h hi gh mo i s t ur e c o nt e n t i n o ur
( 1 . Li a o n i n g S h i h u a Un i v e r s i t y,Fu s h u n Li a o n i n g 1 1 3 0 0 1,Ch i n a;
2 .Ch i n a Pe t r o l e u m Un i v e r s i t y( Be i j i n g ),Be i j i n g 1 0 2 2 4 9 , C h i n a )
摘
要: 针 对 我 国稠 油 油 田较 多 和 油 田 含 水 率 高 的 特 点 , 运 用 VOF 多相 流模 型 对 地 面 集 输 管 网 中 较 为 常 见
的 水 平 T 型 管 内 油 水 两相 流 流 动 进 行 数 值 模 拟 。给 定 条 件 下 中质 稠 油含 水 率 为 8 O , 流速 1 . 5 m/ s , 模 拟 结 果 为 油
第 2 6 卷 第 5 期
2 0 1 3年 l O月
石
油
化
工
高
等
Байду номын сангаас
学
校
学
报
V O1 .2 6
No.5
J OU RNAL OF P ETR0CHEM I CAL UNI VERS I TI ES
0c t .2 O1 3
文章编号 : 1 0 0 6 — 3 9 6 X( 2 0 1 3 ) 0 5 — 0 0 7 5 - 0 3
p a t t e r n o f o i l — i n - wa t e r d i s p e r s e d f l o w.t h e wa t e r p l a y s t h e r o l e o f t h e b a s i c p h a s e a n d 0 i 1 a s t h e d i s p e r s e d p h a s e . Th e p r e s s u r e
果 对 于优 化 管 网 结 构 、 合 理 设 计 管道 参数 、 管道 腐 蚀 与 防 护具 有 重要 作 用 。
关键词 : 水 平 T 型 管 ;油 水 两 相 流 ;中质 稠 油 ; VOF模 型 中图 分 类 号 : T E 8 6 6 文 献 标 志 码 :A d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 6 — 3 9 6 X . 2 0 1 3 . 0 5 . 0 1 8
水 两相 流 属 于 水 包 油 型 分散 流 型 , 水作为基本相 , 油 为 分 散 相 。 分 支前 主 管段 内压 力 值 以 3 0 0 P a / m 的速 率 线 性 减
小, 分 支 处 主 管段 内压 力值 有 所 增 大 , 而后 随 着 流 动 线 性 减 小 , 分 析 了 支 管 段 内油 水 两 相 流 的 压 力 降机 理 。研 究 结
水 平 T 型 管 中油水 两 相流 流 动数 值 模 拟 研 究
范开 峰 , 王 卫 强 , 阿斯 汗 , 石 海 涛 , 程 涛。
( 1 .辽 宁 石 油 化 工 大学 , 辽 宁抚 顺 1 1 3 0 0 1 ;2 .中 国 石 油 大 学 ( 北京) , 北京 1 0 2 2 4 9 )
Th e N um e r i c a 1 Si mu l a t i o n St ud y o f TW O — Pha s e Oi l — Wa t e r Fl o w i n Ho r i z on t a 1 T— Tu be
FAN Ka i f e n g ,W ANG We i q i a n g ,A S i h a n ,S HI Ha i t a o ,CH ENG Ta o ,
c o u n t r y ,c o n d u c t i n g n u me r i c a l s i mu l a t i o n wi t h t h e u s e o f VOF mu l t i p h a s e f l o w mo d e l o n t wo — p h a s e o i l — wa t e r f l o ws i n h o r i z o n t a l T— t u b e wh i c h a r e c o mmo n o n g a t h e r i n g p i p e l i n e n e t wo r k . Un d e r g i v e n c o n d i t i o n s ,t h e mo i s t u r e c o n t e n t i n me d i u m
h e a v y o i l wa s 8 O /  ̄ 6 , t h e f l o w r a t e wa s 1 . 5 m/ s ,t h e s i mu l a t i o n r e s u l t s s h o w t h a t t h e t wo — p h a s e o i l — wa t e r f l o w b e l o n g s t O t h e